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Abstract

Estimation of finite population parameters has been an area of concern to statisticians for decades. This
paper presents an estimation of the population mean under a model-assisted approach. Dorfman (1992),
Breidt and Opsomer (2000) and Ouma et al (2010) carried out the estimation of finite population total on
the assumption that the sample size is large and the sampling distribution is approximately normal. Unlike
their researches, this paper considered a case when the sample size is small under a model-assisted
approach. A model-assisted regression model was considered in a case where the cluster sizes are known
only for the sampled clusters in order to predict the unobserved part of the population mean. Under mild
assumptions, the proposed estimator is asymptotically unbiased and its conditional error variance tends to
zero. Simulation studies show that model assisted estimation performs better than model based estimation
of a finite population mean in a case where the sample size is small.

Keywords: Model-assisted surveys, Non-parametric inference, Two-stage cluster
sampling.

1.1 Introduction

Sample surveys are concerned with obtaining desired information from a population. In
sample survey methods, some portion of the population called a sample is used to make
inferences about the entire population.

Every nation in the world uses surveys to estimate their rates of unemployment, basic
prevalence of immunization against diseases, opinions about the central government,
intentions to vote in an upcoming election, and people’s satisfaction with goods and
services that they purchase among other application areas. Surveys aid in tracking global
economic trends, the rate of inflation in prices, and investments in new economic
enterprises (Shewhart, 2004).

The theory of sample survey is concerned with the development of sampling strategies
that yield the selection of a sample that best represents the entire population. It provides
the procedures that are employed to make statistical inferences about the survey variable.
It is also used in choosing the criteria for comparing various strategies while attempting
to obtain optimal results from a sample survey. Generally there are four methods used in
sample surveys namely model based, model assisted, design based and design assisted
surveys (Ouma et al 2010). In this paper we used model-assisted approach to estimate the
population mean in two-stage cluster sampling.
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1.2 Background of the Problem

Model based methods in estimation of population parameters assume that there is an
underlying model that generate survey units. However, if the assumed model is incorrect,
the estimators of population parameters will certainly be incorrect. To address this
problem, we wish to implement non-parametric approach to estimation of population
mean then obtain a model that will be used to generate survey values given in finite
populations in two stage cluster sampling. Model- assisted estimation of population total
has been considered by Breidt and Opsomer (2000) under the assumption that the sample
size is large and the sampling distribution is approximately normal. However, this is not
always the case. In this study we consider a situation when the sample size is small and
develop an estimator for estimating population mean.

In particular, the problem is to estimate the population mean defined as
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(1.1

1.3 Summary of the paper

The rest of the paper is organized as follows: section 2 gives a summary of the two stage
cluster sampling that we proposed to use. In section 3 we introduce the estimator for the
finite population mean in two stage cluster sampling. In section 4 we look at the
asymptotic properties of the proposed estimator. In section 5 we give the conclusion of
our paper.

2. Review of Two Stage Cluster Sampling

Consider a finite population U of M primary sample units (PSU’s) or clusters labelled
1,2,..,MieC =(1,2,..,M) where M is a known number. Let N;,i = 1,2, ..., M, be the
number of secondary sampling units(SSU’s) in the j** PSU.

Let y;;i=12,..,M,j = 1,2,..,N; be the value of the survey variable y for the SSU i
belonging to the j&* PSU. We further assumed that the auxilliary data are known for all
the selected clusters and the population elements. The non-sampled units are not known
and we therefore use the auxiliary information together with the sampled units of the
survey variable to estimate the non-sampled part of the population. We proposed to
estimate the population mean defined by equation (1.1). In this paper, we generate the
survey values y; in the cluster j by the model given by

yi = ulx) +e (2.1)

Where e; are independent random variables with mean zero and variance, v(x). Further
v(x) is a smooth function of x and v(x) is smooth and strictly positive, u(x;) is a
function of the auxiliary variables.
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3. Proposed Estimator of the Population Mean

The population mean to be estimated is given by equation (1.1). The non-sampled survey
values of the population are unknown. We therefore use the sampled units of the
population together with the model defined in equation (2.1) to estimate the non-sampled
part of the population mean. The proposed estimator is given by

- %{ Z %} (3.1)
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4. Properties of the Proposed Estimator

4.1 Asymptotic Unbiasedness of the Estimator
The estimator of population mean is given by

_1 zy_
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iEsEC

1 (u(x) + e)
= Z —I (4.2)

iESEC

~

(4.1)

Denoting the initial sampling weights by m; which is equal to the inverse of their
selection probabilities i.e. probability of including unit i from cluster j in the sample, we
have:
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But as shown by Ouma et al (2010), E(e;) = 0, therefore the proposed estimator for the
population mean becomes
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Since
E(ei) =0
Then
2 1 n(x;)
E(7) = 7|2 (4.8)
LES
Let the sampling weights of the primary sampling units be given by
w(xy)=—,i€si=12.,nj=12.,m (4.9)
ij

Rupert (2003) applied (4.9) as a basis and suggested that the sampling weights in this
kind of survey can be computed using
Ti

we () = — (— )1/2 (4.10)

T[ij n—1

Where 7; is the number of times the i*" primary sampling unit is chosen. Thus using this
procedure, it follows that

A 21
E(7)=(=9) #E

But since we sample with replacement we have 1 < r < n; Rao and Wu (1998) observed
that there is considerable benefit and little loss in choosing r = n — 1; therefore we put
r =n— 1, so that

(1) = () “ -y

n(x;)
r

l
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= [n(n — 1)]1/2%15

(4.13)

Let the initial sampling weights defined in (4.9) be given by the kernel weights:
_ —17, (*Xij—Xik
(n— 1)b~ e (RL)
Tijes(n — Db~ (RL7E)

Zw(xij) =1

ijes

(4.14)

w(x;;) =

Where
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Using (4.14) we have

1 o) Dbk ()
E(7) = n(n - 1)] zME; M \Zoentn— Dbk ()

(4.15)

Let

dy(2;) = (n— )b~k (x” ; x”‘) (4.16)

be the kernel estimator of d;(x;;) then

N(n — -1y, (X Xik
E(?)z%[n(n—l)]l/Zn—ilZNliE S d:ziij)k( ? ) (4.17)
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This consequently gives us
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We make the following substitutions:

w = xij \
W — X
Y= (4.19)
w=1ub + x; |
dw = bdu
A 1 1 1 1
E(7) = (- i ) ZZ [EE(,u(xij))] kw[ds(2))] (4.20)
Using substitutions in (4.19), from equation (4.20) we have
E[dy(8)/xy] = E| =157 )1 (R ) (421)
ijes
-1 = X
= (2 )]Z b () dy (1) () (4.22)
ijes
- (n ; 1) f z k(w)d, ey + bu)b6(u) (4.23)
ijes

Where E[ds(2;;)/x;;] is the conditional mean of dg(%;;) given the auxiliary values of
Xij, l] € s.

We let k,(u) = b‘lk(u/b) where k(u) is a kernel and b is a chosen bandwidth. In
addition k(w) is a symmetric density function such that

fk(u) du = 1,fuk(u) du=0, k, = fuzk(u) du > O,f k2(uw)du>0 (4.24)
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Since the relationship between the conditional mean and the selected bandwidth is too
complex to establish we utilize the following theorem whose proof is given in Dorfman
(1992).

Theorem: Let k(u) be a symmetric density function with [uk(u)du =0 and
[u?k(u) du > 0, assume that n and N increase together such that % >mTwithd<m<

1, assume sampled and non-sampled values of x are in the interval [c,d] and are
generated by densities dg and d,_ respectively both bounded away from zero on [c, d]
and assumed to have continuous second derivatives. If for any variable Z, E(Z/U = u) =
A(u) + 0(B) and var(Z/U =u) =0(c), U being a random variable and u an
observation, then

1
Z=A)+0, (B + CE), where 0, (.) is an order of a term with p elements.

From expression (4.16) let Z = dy(%;;) i.e
o 1, (Xij — Xik
Z=m-1)b"k (—b ) (4.25)

Then

d(xl,)/ ‘_(n_l)b z [(%xlk)] (4.26)

ijes

"_1 Z f x"‘ d,(w)S(w) (4.27)

ijEs

Using the substitution

(= _bx“‘) —u (4.28)

And applying Taylor’s series expansion about a point x;; we get

| O | = )+ 50 + 000 (429)
= d,(ra) + bZ%ds”(xik) +0(b) (4:30)
r ds(fij)/xij] =(n—1)?p? Z Var [k Ml (4.31)
ijes
= m-12 Y [ [l ()] e ()] (432)
ijEs
(n — 1) 2 [E [k xlk ] [Ek (w —bxik)]z] (4.33)
ijEs
=(”;1) ZU (W_x“‘ ) dyw)8,, U d(w)5]}(434)

ijes

132 Pak.j.stat.oper.res. Vol.XIll1 No.12017 ppl27-139



Model-Assisted Estimation of Population Mean in Two-Stage Cluster Sampling

Applying Taylor’s series expansion about a point x;;, on d(x;; + bu), we have

ds(2) /xij]

=(n-1)71 z [ds(xij) f k(uw)du + bd,' (x;;) f uk (u) du

ijEs

b2 n b3 14
+7ds (xij)fuzk(u)du+§ds (xl-j)fu3 k(u)du

E

+ l (4.35)

By the theorem stated above, this reduces to

dy(X;; k,
E S( U)/xl-j] = dg(xy) + b? 72ds (Xig) + - (4.36)
2 2
d.(x:: d.(x:: d.(x::
Var s( ”)/xl_j =E s( ”)/xl.j —|E s ”)/xij] (4.37)
The second term in equation (4.37) is given in equation (4.36), we therefore need to
12
evaluate E ds(2 )/ x;;| as follows:
. 2 [ 2
d(x;; Xij — Xik .
£ |95 ”)/xi,-] —E|(n—-1)? Zk(%) ies, (4.38)
j€Es
|5 S (e (e (439)
B b , b , b '
L LES LES
But
2 2
k Xij—Xik k Xij—Xik
E Z S )/xi,- - z j (5 )/xi,- dy(xi7)Bx,. (4.40)
i€s LES
Applying the substitutions in (4.19) equation (4.40) becomes
2
k (xij_xik)
E Z b /xij _ Z f k2(w) d, (xy + bu)béu (4.41)
iEs i€s
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Using Taylor’s series expansion about point x;; in equation (4.41) we get

xl] xlk
/xu
S

kaZ(u)b{d (x;;) + budy'(x U)+ d s (i)

LES

lE

+ 0(b3)} du (4.42)
d
Ez Z y (xij ; Xik) " (xij' ; xik> _ b2 Z Z f ke (w) dy Gy
ij
+ bu)duf k(u") dg(x; + bu')du' (4.43)

Expanding the right hand side of equation (4.43) we get

bzzz lds(xij)fk(u)du+bds'(xij)fuk(u)&u+b72ds”(xl-j)fu2k(u)du

+ 0(b3)l (4-44)
Therefore
Xi: — Xi x..’_x. bZ N
Ezz k( Y b lk) k( Y b lk> = bzzz Ids(xij) +7ds (xl-j)kzl lds(xl-j)
ij bz

+ o Gyl (445)
by the above theorem.
This leads to

b?>(n—1)(n — 2)[d (xi)) + b 2d" (x;j ) kods(xi;) + 0(b®)]

() + 2 + 0(b3)l (4.46)

Equation (4.46) leads to

EZJ:Z k (xij ; xik) K (Jﬁj' ; xik) =b’(n—-1Dn-2) ldsz(xij)

+ b?d”(xik)kzds(xik) + 0(b3)l (4.47)

=b*(n — D(n — D [kods(xy)d" (xi) + 0(b*)]  (448)
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Using this result in equation (4.43) gives

xl] xlk /
S

=(n-1)>b"? [(n - 1)bds(xij) f k?(u)du + bd, (xl-j) f uk? (u)éu

lE

2
+ b?d”(xik) f u?k(u) du
+0(b*)b*(n — 1) (n — 2)(b?kpds (xy)d" (xipe) + 0(b3))l (4.49)
This simplifies to
k Xij—Xik
o[y M

=(m-1b1 d (xl])sz (w)du + bd, (xu)fuk2 (w)du

b2
+ 7d’(xik) j u?k(u) du + 0(b3)l (4.50)
Therefore
Var|ds(x;;)] = ud (xik)sz (w)du
d (xlk)jkz(u)du+2( d ! (xlk)f u?k (wW)du
+ bZ En : 2% [bzkzds(xik)ds”(xik) + 0(b3)]
— [b?kadg(xg)d" (xye) + 0(b3)] (4.51)
Thus we get
Var[ds(x;)] = l( —1 l +0 [( )b] +0[b?] + (4.52)
Hence
. ds(jeij)/xij] — O[bZ] (453)
From equation (4.20)
5\ _ o 1 d" (xu)
E(7)=7+0,(p?+b72)- [bz TR (4.54)
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As b — 0, and for n small,

E(V)=7 (4.55)
And therefore the proposed estimator is asymptotically unbiased.

4.2 The Bias of the Proposed Estimator
The bias of the proposed estimator is given by

Bias = E(?) ~7 (4.56)
5 u(x) ei Z Yi
ElY - — 4.57
( ) { — Nim;) & N (457)
lESEC LESEC
E(u(xl)) Ee) 1 (4.58)
M N;; "ML N, ;M N; '
iESEC iES lESEC
But
E(ei) =0
Hence
E(e)
= 4.59
M N;m; =0 (4.59)
i€s
E(.u(xl)) 1 Vi
E - — — 4.
M Z N;; L N; (4.60)
iIESEC lESEC
But the inclusion probability in two-stage cluster sampling is given by
1
= —— 4.61
Therefore
= = E(ll(xi)) 1 Vi
( ) nz Nin-i M Ni ( 6 )
LESEC LESEC
We have
2 1yl 4.63
N; N2 N, N’ (4.63)
iES
Since
2iN;=N
- - n? E(u(x)) n
B(V)-7=2 Z T z v (4.64)
LESEC LESEC
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As n becomes small the bias asymptotically tends to zero i.e

E(?) —7 -0 (4.65)
4.3 Asymptotic Error Variance of the Proposed Estimator
Error Variance = Var E(Y - Y/xi]l (4.66)
= VarE(?) + Var(Y) (4.67)
=varE(7) + o?(x;) (4.68)

due to i.i.d of auxiliary variables.

But

varE(Y) = var [%(nf /ZZ[N ,u(xl]))] (x”—x”‘)[d GO 469
- %(n ﬁ 1) Z %Var [k(u) [ds(fij)]_l] Var (,u(xl-j)) (4.70)
) L v feolae)l o @71

lES

Substituting equation (4.71) in equation (4.68) we get

= 02 (xy;)
+i( n )Z%Vﬂr[k(U)[ds(fij)]_l]o-z(xij) (4.72)

M2\n—1

i€s

But as shown above, the conditional variance of ds(a?l-j) is given by (4.53) i.e

. ds(fij)/xij] — O[bZ]

Which tends to zero as b — 0, and hence the second term on the right of equation (4.72)
vanishes. Therefore the error variance becomes

-y
/xij‘ = 02 (xy;) (4.73)
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Table 1: Summary of the Mean Squared Error Values (MSE)

The table below shows the results of the mean squared errors (MSE) of the estimators of
the finite population mean in two stage cluster sampling at different bandwidths.

Bandwidth Model-Assisted Model-Based
0.001 0.006646769 4.328651
0.002 0.001167328 4.071455
0.003 0.09797738 5.799239
0.004 0.2305878 4.33418
0.005 0.1958319 6.575275
0.006 0.1321953 5.486596
0.007 1.758383 4.897115

From Table 1 above we observe that at different bandwidths considered, the mean
squared errors obtained in estimating population mean using the model-assisted estimator
are significantly smaller than those incurred in using model-based estimator when the
sample size is small i.e when n < 30 as used in the empirical study.

Table 2: Summary of the bias for the Two Estimators

Bandwidth Model-Assisted Model-Based
0.001 0.02105037 0.4000981
0.002 0.02789657 0.05316963
0.003 -0.08081971 -0.3859103
0.004 -0.123986 -0.1279632
0.005 -0.1142605 0.001984305
0.006 -0.1442672 -0.189994
0.007 -0.3423822 0.5324499

From Table 2 above we observe that the bias associated with the model assisted
estimator increases insignificantly while that of model based estimator fluctuates.
However, the bias due to model assisted estimator is comparatively low with respect to
that of model based estimation at the different bandwidths considered.

It can be noted also that there is a trade-off between these two approaches as illustrated
by the graphs. So none of the approaches is overally better but they can be compared at
specific bandwiths.

5. Conclusion

The main aim of the paper was to estimate a finite population mean using model assisted
approach in two stage cluster sampling when the sample size is small i.e n < 30. The
empirical study compared the performance of a model based estimator of the finite
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population mean with the proposed estimator. Empirical results show that model-assisted
approach performed better than model-based approach when the sample size is small.
Comparison was done on the basis of the mean squared errors and biases of the two
estimators.
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