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Abstract 
The distributions of the ratio of two independent random variables arise in many applied problems 
and have been extensively studied by many researchers. This article derives the distributions of 

the ratio Z=
Y
X

, when  X  and Y  are gamma and Rayleigh random variables respectively and 

are distributed independently of each other. The associated pdf, cdf, and moments have been 
given in terms of different special functions, for examples, confluent hypergeometric function, 
parabolic-cylinder function and beta functions. Some plots for the cdf and pdf associated with the 
distribution of the ratio have been provided. 

Keywords: Gamma distribution, hypergeometric function, Parabolic-cylinder, 
Ratios, Rayleigh distribution. 

1.   Introduction 
The distributions of the ratio of two  independent random variables arise in many 
applied problems of biology, economics, engineering, genetics, hydrology, 
medicine, number theory, order statistics, physics, psychology, etc, (see, for 
example, [4], [6], and [8], among others, and references therein). These have 
been extensively studied by many researchers when the two independent 
random variables belong to the same family, among them  [9], [10], [11], [12], 
[14], [16], and [17] are notable. In recent years, there has been a great interest in 
the study of the above kind when X  and Y  belong to different families, (see, for 
example, [13], and [15], among others). This paper discusses the distributions of 

the ratio 
Y
XZ =  , when X  and Y  are gamma and Rayleigh random variables 

and are distributed independently of each other. The organization of this paper is 
as follows. In Section 2, the derivation of the cdf of the ratio Z  and associated 
plots of the cdf’s are given. The pdfs and their plots have been given in Section 
3. The moments are discussed in Section 4. Finally, some concluding remarks 
are given in Section 5.  
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The derivations of the associated pdf, cdf, and moments in this paper involve 
some special functions, which are defined as follows (see, for example, [1], [2], 

[3], [5], [7], and [18], among others, for details). The integrals ∫
∞
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0
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t dtetx
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1 0,, ααγ α , are called (complete) gamma and incomplete 

gamma functions respectively, whereas the integral 0,),( 1 >=Γ ∫
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called complementary incomplete gamma function. For negative values, gamma 
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defined by ∫ −=
x

u duexerf
0

22)(
π

, and )(12)(
2

xerfduexerfc
x

u −== ∫
∞

−

π
 are called 
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is called a generalized hypergeometric series of order ),( qp , where k)(α  and 

k)(β  denote Pochhammer symbols. For 1=p  and 2=q , we have generalized 
hypergeometric function 21 F  of order )2,1( , given by 
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hypergeometric function 22 F  of order )2,2( . For 2=p  and 1=q , we have 
generalized hypergeometric function 12 F  of order )1,2( , given by 

( ) ( ) ( ) ∑
∞

= ⎭
⎬
⎫

⎩
⎨
⎧

=≡≡
0

12 !)(
)()(

;;,;;,;;,
k k

k
kk

k
z

zFzFzF
γ
βα

γαβγβαγβα . The following 

series ( ) ∑
∞

= ⎭
⎬
⎫

⎩
⎨
⎧

=
0

11 !)(
)(

;;
k k

k
k

k
z

zF
β
α

βα  , (where ∞<z ; ...,2,1,0 −−≠β ), is known as 

degenerate hypergeometric function or confluent hypergeometric function of 
Kummer. The confluent hypergeometric function ( )zF ;;11 βα  is a degenerate 
form of the generalized hypergeometric function ( )zF ;;,12 γβα  of order )1,2(  
which arises as a solution the confluent hypergeometric differential equation. 
Also, ( ) ( )zFezF z −−= ;,;, 1111 βαββα , known as Kummer Transformation, and 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
−−= −

1
;;,)1(;;,

z
zFzzF γαγβγβα β . The series ( ) ⎥

⎦

⎤
⎢
⎣

⎡
+−

−
Γ=Ψ

1
1

;,
βα
β

βα z , 



Exact distribution of the Ratio of Gamma and Rayleigh Random Variables 

Pak. j. stat. oper. res.   Vol.II  No.2 2006   pp87-98 89

( ) ( )zFzzF ;2;1
1

;; 11
1

11 ββα
α
β

βα β −+−⎥
⎦

⎤
⎢
⎣

⎡ −
Γ+ −  (where ∞<z ; ...,2,1,0 ±±≠β ), 

is known as confluent hypergeometric function of Tricomi. Note that 
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The following four Lemmas will also be needed to complete the derivations. 

LEMMA 1 (Prudnikov et al. (1986), Volume 2, [18], Equations (2.10.3.9), Page 
151). 

For ( ) 0Re >c , 0)(Re,0)(Re >> νp , and 0)(Re >+να , we have  
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LEMMA 2 (Prudnikov et al. (1986), Volume 2, [18], Equations (2.10.3.10), Page 
151). 

For ( ) 0Re >c , 0)(Re >p , and 2)(Re −>ν , we have  

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛Γ
= −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ +

−
∞

∫ p
cDe

p

cdxxcex p
c

xp

2
)2(

, 8

2
2

0

2

2

νν

ν ννγ  

LEMMA 3 (Gradshteyn and Ryzhik (2000), [5], Equation (3.462.1), Page 337). 
For 0)(Re >p , and 0)(Re >α , we have                  
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LEMMA 4 (Gradshteyn and Ryzhik (2000), [5], Equation (7.612.2), Page 858). 
For )(Re)(Re0 bb << , and 1)(Re)(Re +< bc , we have                  
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Distribution of the Ratio 
Y
X   

Let X  and Y  be gamma and Rayleigh random variables respectively, distributed 
independently of each other and defined as follows. 

Gamma Distribution: A continuous random variable X  is said to have a gamma 
distribution if its pdf )(xf X  and cdf )()( xXPxFX ≤=  are, respectively, given by 

        0,0,0,
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where ( )xβαγ ,  denotes incomplete gamma function.     

Rayleigh Distribution: A continuous random variable Y  is said to have a 
Rayleigh distribution if its pdf )(yfY  and cdf ( )yYPyFY ≤=)(  are, respectively, 
given by 
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In what follows, we consider the derivation of the distribution of the ratio 
Y
X ,  

when X  and Y  are gamma and Rayleigh random variables respectively, 
distributed independently of each other and defined as above. An explicit 

expression for the cdf of 
Y
X  in terms of parabolic-cylinder function )(zDν  has 

been derived in the following subsection and provided in Theorem 2.1. In 

Theorem 2.2, another explicit expression for the cdf of 
Y
X  in terms of the 

generalized hypergeometric function 22 F  has been given.  
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2.   Derivation of CDF of the ratio Z 

THEOREM 2.1  
Suppose X  is a gamma random variable with pdf )(xf X  as given in (1) and cdf 

)()( xXPxFX ≤=  given by (2). Also, suppose Y  is a Rayleigh random variable 

with pdf )(yfY given by (3). Then the cdf of 
Y
XZ =  can be expressed as 

        ( ) ( ) ( )zDezzF z βσβσ α
βσα

−= 4/)( 222

     (5)  
where ( )zD βσα−  denotes parabolic-cylinder function. 

PROOF 
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expression (3) for the pdf of Rayleigh random variable Y , the cdf 
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where 0,0,0,0,0 >>>>> σβαzy . The proof of Theorem 2.1 easily follows by 
using Lemma 2 in the integral (6) above. 

THEOREM 2.2 
Suppose X  is a gamma random variable with pdf )(xf X  as given in (1) and cdf 

)()( xXPxFX ≤=  given by (2). Also, suppose Y  is a Rayleigh random variable 

with pdf )(yfY given by (3). Then the cdf of 
Y
XZ =  can be expressed as 
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where (.)22 F denotes the generalized hypergeometric function of order )2,2( . 
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PROOF 
Using the expressions (2) for cdf of gamma random variable X and expression 

(3) for pdf of Rayleigh random variable Y , the cdf ( ) ⎟⎟
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where 0,0,0,0,0 >>>>> σβαzy . The proof of Theorem 2.2 easily follows by 
using Lemma 1 in the integral (8) above.                                   

Plots of CDF of the ratio Z 
The possible shapes of the cdfs of the ratio in (5) or (7) for 1,1 == σα , and 
different values of β  = 0.2, 0.5, 1, 2, and for 5,2 == σα , and different values of 
β  = 0.2, 0.5, 1, 2, are provided respectively, in Figures 1 and 2 below. The 
effects of the parameters  can easily be seen from these graphs. Similar plots 
can be drawn for others values of the parameters. 
 

 
 
 

Figure 1: Three_Parameters_Gamma_Rayleigh_Ratio_CDFS for 
1,1 == σα , and different values of β  = 0.2, 0.5, 1, 2 
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Figure 2: Three_Parameters_Gamma_Rayleigh_Ratio_CDFS for 
5,2 == σα , and different values of β  = 0.2, 0.5, 1, 2 

 
 

PDF of the Ratio 
Y
XZ =  

3.   Derivation of PDF of the ratio Z 

This section derives the pdf of the ratio 
Y
XZ = ,  when X  and Y  are gamma and 

Rayleigh random variables distributed according to (1) and (3), respectively, and 

independently of each other. An explicit expression for the pdf of the ratio 
Y
XZ =  

in terms of parabolic-cylinder function )(zDν  has been derived in Theorem 3.1. 

Another explicit expression for the cdf of 
Y
X  in terms of the confluent 

hypergeometric function (.)Ψ  of Tricomi has been given in Corollary 3.1. To 
describe the possible shapes of the associated pdfs, the respective plots are 
provided in Figures 3, 4, and 5.  
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THEOREM 3.1 
Suppose X  is a gamma random variable with pdf )(xf X  given by (1) and Y  is a 

Rayleigh random variable with pdf )(yfY given by (3). Then the pdf of 
Y
XZ =  

can be expressed as 
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where 0,0,0,0,0 >>>>> σβαzy . The proof of Theorem 3.1 easily follows by 
using Lemma 3 in the integral (10) above.                                   

COROLLARY 3.1 
Using the definition of parabolic-cylinder function in terms of confluent 
hypergeometric function of Tricomi ( ).Ψ , as given above, it is easy to see that the 

pdf of 
Y
XZ =  can be expressed as           
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REMARK: Using the above expression (11) for the pdf of the ratio and Lemma 4, 

one can easily see that  ( )∫
∞

=
0

1dzzf Z . 

4.  Plots of PDF of the ratio Z 
The possible shapes of the pdfs of the ratio in (9) or (11) for different values of 

σα , , and β  are provided, respectively, in Figures 3, 4, and 5 below. These 
graphs evident that the distribution of z is right skewed. The effects of the 
parameters can easily be seen from these graphs. Similar plots can be drawn for 
others values of σα , , and β .  
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Figure 2: Three_Parameters_ Gamma_Rayleigh_Ratio_PDFS  
for 1,1 == σα , and different values of β  

 
 

Figure 3: Three_Parameters_Gamma_Rayleigh_Ratio_PDFS  
for 5,2 == σα , and different values of β  
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Figure 4: Three_Parameters_ Gamma_Rayleigh_Ratio_PDFS  
for 1,5 == σα , and different values of β  

 

The kth  Moment of the ratio  
Y
XZ =  

In this section, the expression for the kth  moment of RV 
Y
XZ =  in terms of 

gamma or beta function has been derived. 

THEOREM 4.1 
If Z  is a random variable with pdf given by (11), then its kth  moment can be 
expressed as   
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Substituting tz
=

2

222 βσ , and using Lemma 4 in the integral (13) above, the 

result of Theorem 4.1 easily follows. It is evident from Theorem 4.1 that the 
moment exists 1≥∀ k , where k  is an integer. 

COROLLARY 4.1 
Using the definition of beta function, the kth  moment given by (12) can be easily 
expressed in terms of beta function as follows:   
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COROLLARY 4.2 
It is easy to see from (12) that the first few moments are given by  

( )
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2 2
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3 2
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Also, one can easily obtain the variance given by 

          ( ) 222 σβ
α

=ZVar . 

5.   Concluding Remarks 
This paper has derived the exact probability distribution of the ratio of two 
independent random variables X  and Y , where X  has a gamma and Y  has a 
Rayleigh distribution respectively. The expressions for the cdf, pdf and moments 
of the ratio of two variables are given as function of some special functions. The 
plots for the cdf and pdf have been provided. We hope the findings of the paper 
will be useful for the practitioners in various fields. 
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