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Abstract 

Censoring is an unavoidable feature of reliability and survival analysis due to time and cost constraints. In 

this paper, we numerically study the effect of sample size, censoring rate and parameter size of Weibull 

distribution on its estimates. Some interesting properties and comparison of the Bayes and ML estimates 

along with their standard errors have been studied. The sample expressions for the Bayes and ML estimates 

and their variances are derived as a function of test termination time. The difference between ML estimates 

and uninformative Bayesian estimates becomes negligible for large sample size.  

Keywords: Censored Data, Inverse transformed method, Fixed test termination time, 

Uniform Prior. 

1. Introduction 

In recent era Weibull distribution has proved its importance in the field of reliability and 

life testing because of its flexibility in fitting life time distributions. Various problems 

associated with this distribution have been considered by numerous writers, among whom 

are Kao (1958, 1959), Leone, Rutenberg, and Topp (1960), Procassini and Romano 

(1961), Lloyd and Lipow (1962), Dubey (1963), Esary and Proschan (1963), Lehman 

(1963), Menon (1963), Proschan (1963) and Jaech (1964). 

 

Seguro and Lambert (2000) proposed modified maximum likelihood method to calculate 

the parameters of the Weibull wind speed distribution for wind energy analysis. They 

recommended their method for use with wind data in frequency distribution format. Ng et 

al. (2012) used maximum likelihood estimators (MLEs), corrected MLEs, weighted 

MLEs, maximum product spacing estimators and least squares estimators to estimate 

three parameter Weibull distribution based on progressively Type-II right censored 

sample. In addition they proposed the use of a censored estimation method with one-step 

bias-correction to obtain estimates for iterative procedures. 

 

Monthly average wind speed in Malaysia for nine different sites for the year 2011 was 

studied by Albani and Ibrahim (2013). They applied Weibull and Rayleigh model to data. 

The scale and shape parameter was calculated by method of MLE. From the analysis, it 

was shown that the Weibull distribution was fitting the field data better than the Rayleigh 

distribution. Earlier; Paul (2004), Pimenta et.al (2004) and Khan (2006) has discussed 

that the most practical and simplest method used for wind distribution function. 
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Saleem and Aslam (2010a) focused on rayleigh distributed survival time with a rayleigh 

distributed censor time considered to derive the maximum likelihood and the Bayes 

estimators for the unknown parameters and their corresponding variances. Saleem et al. 

(2010b) considered the Bayesian analysis of the mixture of power function distribution 

using the complete and the censored sample. The characteristic function of three 

parameter Weibull distribution is derived independently and the moment generating 

function (MGF) is deduced from it by Muraleedharan (2013). It generated all the 

moments of the distribution and satisfies the tests to verify a function to be a 

characteristic function. He also obtained expressions for mean, variance, skewness and 

kurtosis from MGF. Further literature on parameter estimation is available in Munir et al. 

(2013). 

 

A major deterrent to wider usage of the Weibull distribution has been the difficulty in 

estimating its parameters. Unfortunately, the calculations involved are not always simple. 

Depending on the values of the parameters, the Weibull distribution can be used to model 

a variety of life behaviors. It is a versatile distribution that can take on the characteristics 

of other types of distributions, based on the value of the shape parameter.  

2. The Weibull distribution 

The two-parameter Weibull random variable  t  has the following distribution function 
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Here; 0v  is the shape parameter and 0  is the scale parameter of the distribution. 

Its complementary cumulative distribution function is a stretched exponential function. 

The Weibull distribution is related to a number of other probability distributions, it 

interpolates between the exponential distribution ( 1v ) and the Rayleigh distribution  

( 2v ). 

 

Hazard function is constant in exponential distribution and increasing in Rayleigh 

distribution. In Weibull distribution when shape parameter ( 1v ) then hazard function is 

less than zero i.e., decreasing trend, when ( 1v ) then hazard function is greater than zero 

i.e., is increasing trend. Moreover, the Weibull family is commonly used in statistical 

analysis of lifetime or response time data from reliability experiments and survival 

studies. It is generally adequate for modeling monotone hazard rates, and large data are 

needed to discriminate it from other monotone hazard rate models such as gamma. 

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Scale_parameter
http://en.wikipedia.org/wiki/Stretched_exponential_function
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Rayleigh_distribution
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Figure 1:   Shows some of the simple Weibull distribution for 3.   

 

Graphical representations of different values of shape parameter for the Weibull model 

are shown in figure-1. This figure suggests that as we increases the shape parameter the 

distribution tends to be approximately normal. However, for higher values of shape 

parameter the graph of cdf gives elongated S shape for the Weibull model. 

Table 1:   Parameters affect on properties of Weibull distribution 

Parameters 
Descriptives Skewness Kurtosis 

Condition Range 

 

 Mean< Variance 

Positive 
Leptokurtic  Mean = Variance 

 

Mean >Variance  
Pletykurtic 

 Negative 

 

 Mean< Variance 

Positive 
Leptokurtic 

 

Mean >Variance 

 
Pletykurtic 

 Negative 

 

 --- --- 

 
Positive 

Leptokurtic 

 
Pletykurtic 

 Negative 

 

Saqib (2014) found some parameters affect on properties of Weibull distribution about 

table 1 shows that 

 when shape & scale parameter are equal 

 but lies b/w (0, 1) the mean is less than variance and the distribution is positively 

skewed & leptokurtic. But, when shape & scale parameter are equals to one, the 

mean is equal to variance and the distribution is positively skewed & leptokurtic. 

Similarly, when shape & scale parameter lies b/w (1, 2] the mean is greater than 

variance and the distribution is positively skewed & leptokurtic. However, when 

shape & scale parameter lies b/w (2, 3.5] the mean is greater than variance and the 

distribution is positively skewed & pletykurtic. When both parameters are greater 

than , the mean will be greater than variance and the distribution is negatively 

skewed & pletykurtic. 
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 when scale parameter is greater than shape parameter 

 but scale parameter is greater than or equal to 4 and shape parameter less than or 

equal to 1.5, the mean is less than variance and the distribution is positively skewed 

& leptokurtic. However, if scale parameter is greater than or equal to 4 and shape 

parameter greater than 1.5, the mean will be greater than variance and the 

distribution is positively skewed & leptokurtic. 

 when scale parameter is less than shape parameter 

 the mean is greater than variance but if shape parameter less than or equal to 2 the 

distribution will be positively skewed & leptokurtic. When scale parameter is less 

than shape parameter, but shape parameter lies between (2, 3.5] the distribution is 

positively skewed & pletykurtic. If shape parameter is greater than 3.5, the 

distribution will be negatively skewed & pletykurtic. 

3. Methodology 

Censoring is an important feature of the lifetime data because most of the times it is not 

feasible to continue the experiment until the last observation in order to obtain a complete 

data set, i.e., a data set with the exact life times of all the objects. A censored data set 

contains at least one observation about which only partial information on the exact failure 

time is available. There are three types of censored observations, the left, the interval and 

the right censored observations. A right censored observation may be of Type I or Type 

II. Censoring is said to be of Type I if the censoring time is fixed and the number of 

failures is random. On the other hand in Type II, censoring the number of failures in the 

sample is predetermined and so the time to complete the test is random. Basic literature 

on account of censoring can be seen in Kalbfleisch and Prentice (2002). 

3.1 Sampling 

In a typical life test, n  samples are placed under observation and as each failure occurs, 

the time is noted. Finally at some pre-determined fixed time T or after some pre-

determined fixed number of sample fail, the test is terminated. In both of these cases the 

data collected consist of observations 
1 2, , , nt t t

 
plus the information that (n – r) samples 

survived beyond the time of termination, T in the former case, and tn in the latter. When T 

is fixed and r is thus a random variable, censoring is said to be of type I. When r is fixed 

and the time of termination tn is a random variable, censoring is said to be of type II. We 

define jt failure time of the j
th

 unit belonging to the population where rj ...2,1 , 

Tt j 0 . 

3.2  Censored Likelihood Function 

The Likelihood Function for the Weibull distribution is given by; 

    






















rn

j

r

j
TFtfL 1  

1
       (3) 

Where  rj tttt   ,...,, 21   corresponds to sample data. 
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3.3 ML Estimation 

Saqib (2014) obtained ML estimates by simultaneously solving the two equations 

obtained by setting the first order derivatives of the likelihood with respect to ,   to zero. 

   Where      (5) 

     (6) 

 

It is not possible to solve the above system of nonlinear equations analytically. However 

they can be solved by numerical iterative procedure. Let  and it is a well known 

result that . 

3.4 Variance of ML estimates 

For Weibull distribution of our objective elements are given by 

     (7) 

is the information matrix of order , inverting it we can find the variance of ML 

estimates on the main diagonal. Following are the elements of the symmetric information 

matrix. 

      (8) 

     (9) 

    (10) 

 

3.5 Expressions for Estimators and Their Variances Assuming Uniform Prior 

Let us assume a state of ignorance that   and v are uniformly distributed over  0, . 

Hence 

  1,0f k    and   2 ,0f v k v   . 

 

Assuming independence we have an improper joint prior that is proportional to a constant 

and is incorporated with the likelihood (3.4) to yield a proper joint posterior distribution. 

The respective marginal distributions yield the following Bayes estimators of   and v  

under the squared error loss function. 
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Now we obtain Bayes estimator and its variance for v  under square error loss function. 
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Now we obtain Bayes estimator and its variance for   under square error loss function. 
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3.5  The Limiting Expression 

When the sample is uncensored, T tends to  , r tends to n and consequently all the 

observations are included into our analysis. Therefore, the amount of information 
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variances of the estimates. The expressions for the complete sample Bayes and ML 

estimators (table 2) and their variances (table 3) are simplified below. 

Table 2:   The limiting expressions for the Bayes and ML estimates as T  

Parameters 
Estimator 

Bayes ML 
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In Table 2 the efficiency of both (Bayes and ML) estimates are increased. This is clear 

from the second order derivatives of the log likelihood given in above section that the off 

diagonal terms of the information matrix vanish and ensure the independence of the ML 

estimates. The information matrix becomes a diagonal matrix which can very 

comfortably be inverted by simply inverting the terms on the main diagonal. 

Table 3:   The limiting expressions for the Bayes and ML variances as T  
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4.   Simulation Study 

A simulation study was conducted in order to investigate the performance of the Bayes 
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only failure units were identified. For each of the 1000 samples, for each of combinations 

of parameters the Bayes estimates were computed through Mathemetica and average of 

1000 estimates is presented in table 4-7. 

 

Reference to table 4-5 shape & scale parameter becomes closer to their corresponding 

lifetime parameters by increasing the sample size for both the techniques. For Bayes 

estimates, if we increase the values of shape parameter a decrease in estimates of scale 

parameter is noted but some exceptional cases at different censoring rates for different 

sample sizes and vise versa whilst there is a mixed pattern is observed in ML estimates. 

With an increase in the values of scale parameter, table 4 reports, a decrease in estimates 

of shape parameter is noted at different censoring rates for different sample sizes and vise 

versa however, there is a mixed pattern is observed in ML estimates. In addition, for 

Bayes estimates, it is observed that both the lifetime parameters are over estimated but 

were under estimated also for ML estimates. 

 

The standard errors of Bayes and ML estimates for both the lifetime parameters decreases 

by increasing sample size (table 4-6) but at different censoring rates the standard error of 

scale parameter increases with an increase in corresponding lifetime parameter for 

different sample sizes. It is worth mentioning that by increasing shape parameter the 

standard error of scale parameter decreases at different sample sizes by varying censoring 

rates for Bayes estimates but showed mixed pattern in ML estimates. Also, the standard 

error of shape parameter decreases with an increase in corresponding lifetime parameter 

for different sample sizes at different censoring rates for Bayes estimation while in ML 

estimation it increases but some exceptional cases. It is worth mentioning that by 

increasing scale parameter the standard error of shape parameter increases at different 

sample sizes by varying censoring rates for Bayes estimates whilst increase but some 

exceptional cases. 

 

When we were dealing with the Bayes estimates an increase in censoring rate caused the 

decreases in estimate of the scale parameter for small values of shape parameter but 

showed mixed pattern for larger values of shape parameter. There is a mixed pattern of 

the estimates of scale parameter for increasing the values of shape parameter in case of 

ML estimation. The estimates of the shape parameter decreases as we increase censoring 

rate but some exceptional cases regardless of values of scale parameter for the Bayes 

estimates however, there is a mixed pattern of the estimates of shape parameter for any 

given value of scale parameter in ML estimation. Keeping an increase in censoring rate 

will decreases the standard error of both scale and shape parameter but some exceptional 

cases and signifies the Bayes estimation in comparison with ML estimation for which 

there is a mixed pattern for the standard error of both scale and shape parameter. 
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Table 4:  Bayes and ML estimates of Weibull parameters and their standard 

errors (in parenthesis) with 4  . 

v
 

n
 

3.2T   
 3.8T   

Bayes  ML  Bayes  ML 

̂  v̂   ̂  v̂   ̂  v̂   ̂  v̂  

1.0 

20 7.19471 

(3.4507800) 

1.28707 

(0.3741940) 
 

4.51477 

(0.9661165) 

1.21353 

(0.2600462) 
 

6.67216 

(2.7179300) 

1.25113 

(0.3371670) 
 

4.47566 

(0.9198310) 

1.17355 

(0.2265257) 

30 5.61429 

(1.7499100) 

1.16649 

(0.2691490) 
 

4.38479 

(0.7593076) 

1.18479 

(0.2086842) 
 

5.44280 

(1.5314500) 

1.15055 

(0.2478760) 
 

4.45548 

(0.7587060) 

1.15184 

(0.1895430) 

50 4.88919 

(1.0499700) 

1.10308 

(0.1945050) 
 

4.31858 

(0.5841327) 

1.11385 

(0.1591634) 
 

4.75223 

(0.9512690) 

1.08416 

(0.1800130) 
 

4.43735 

(0.5964770) 

0.98118 

(0.1362210) 

100 4.39189 

(0.6262320) 

1.04570 

(0.1293840) 
 

4.24565 

(0.4033634) 

1.09176 

(0.1099555) 
 

4.32869 

(0.5805160) 

1.04109 

(0.1217960) 
 

4.39457 

(0.4069010) 

1.13167 

(0.1013190) 

150 4.26180 

(0.4869270) 

1.03144 

(0.1101270) 
 

4.16786 

(0.3245027) 

1.08560 

(0.0908743) 
 

4.20619 

(0.4517850) 

1.02649 

(0.0982475) 
 

4.36875 

(0.3303450) 

1.12201 

(0.0837957) 

300 4.09997 

(0.3254730) 

1.01035 

(0.0743993) 
 

4.13779 

(0.2262980) 

1.08309 

(0.0632007) 
 

4.09890 

(0.3100450) 

1.01357 

(0.0714434) 
 

4.24468 

(0.2257830) 

1.10830 

(0.0574355) 

500 4.07358 

(0.2490030) 

1.01019 

(0.0601047) 
 

4.03898 

(0.1711410) 

1.05531 

(0.0484285) 
 

4.04530 

(0.2473270) 

1.01132 

(0.0523621) 
 

4.19875 

(0.1732940) 

1.09484 

(0.0444025) 

1.5 

20 6.30182 

(1.9994100) 

1.80642 

(0.4053070) 
 

4.51148 

(0.9376641) 

1.51658 

(0.2908818) 
 

6.22258 

(1.8324500) 

1.78143 

(0.3673360) 
 

3.62083 

(0.7472523) 

1.76288 

(0.3059064) 

30 5.49872 

(1.3172500) 

1.70978 

(0.3129870) 
 

4.38436 

(0.7383360) 

1.51234 

(0.2335151) 
 

5.18556 

(1.1489500) 

1.66058 

(0.2810880) 
 

3.97424 

(0.6925077) 

1.65220 

(0.2633672) 

50 4.75701 

(0.8325540) 

1.61109 

(0.2293900) 
 

4.31877 

(0.5610562) 

1.35772 

(0.1670272) 
 

4.66587 

(0.7678740) 

1.58919 

(0.2087880) 
 

4.34749 

(0.5633435) 

1.37691 

(0.1599125) 

100 4.34289 

(0.5184820) 

1.55084 

(0.1575360) 
 

4.28988 

(0.3913560) 

1.55099 

(0.1270410) 
 

4.29713 

(0.4833970) 

1.54317 

(0.1449760) 
 

4.22335 

(0.3811640) 

1.37200 

(0.1091100) 

150 4.22063 

(0.4056480) 

1.53649 

(0.1279050) 
 

4.23065 

(0.3170900) 

1.51586 

(0.1038450) 
 

4.18661 

(0.3800570) 

1.52785 

(0.1164260) 
 

4.19335 

(0.3142090) 

1.38568 

(0.0934294) 

300 4.09519 

(0.2744600) 

1.51489 

(0.1001660) 
 

4.14860 

(0.2201680) 

1.42809 

(0.0709315) 
 

4.08903 

(0.2602480) 

1.51420 

(0.0818803) 
 

4.15246 

(0.2206410) 

1.39705 

(0.0669389) 

500 4.05154 

(0.2120290) 

1.51010 

(0.0723765) 
 

4.10455 

(0.1682420) 

1.44905 

(0.0552005) 
 

4.04269 

(0.2046760) 

1.50196 

(0.0507364) 
 

4.10546 

(0.1668780) 

1.42986 

(0.0511211) 

2.0 

20 6.06587 

(1.6209200) 

2.35309 

(0.4488600) 
 

3.75813 

(0.7853611) 

1.89356 

(0.3486445) 
 

5.91030 

(1.5178900) 

2.30974 

(0.4206920) 
 

4.42746 

(0.9138446) 

1.94072 

(0.3199547) 

30 5.20980 

(1.0831100) 

2.22629 

(0.3466050) 
 

4.37385 

(0.7401446) 

1.96165 

(0.2817098) 
 

5.16009 

(1.0363400) 

2.20033 

(0.3271930) 
 

3.79182 

(0.6290870) 

1.54082 

(0.2199580) 

50 4.57166 

(0.7104900) 

2.11499 

(0.2568260) 
 

4.29944 

(0.5554359) 

1.99091 

(0.2107952) 
 

4.58713 

(0.6887380) 

2.10852 

(0.2416980) 
 

4.29323 

(0.5721330) 

1.79729 

(0.2076130) 

100 4.27054 

(0.4565780) 

2.06178 

(0.1832280) 
 

4.25557 

(0.3945821) 

1.99970 

(0.1566726) 
 

4.30503 

(0.4489980) 

2.05634 

(0.1679510) 
 

4.16022 

(0.3912820) 

1.98304 

(0.1557270) 

150 4.19823 

(0.3629330) 

2.04192 

(0.1505890) 
 

4.21657 

(0.3158156) 

2.20800 

(0.1309912) 
 

4.18728 

(0.3522340) 

2.03410 

(0.1354940) 
 

4.15647 

(0.3246010) 

2.26039 

(0.1483010) 

300 4.08764 

(0.2481610) 

2.02392 

(0.1021130) 
 

4.04774 

(0.2171220) 

2.15530 

(0.0956315) 
 

4.08196 

(0.2457320) 

2.01556 

(0.0943119) 
 

4.09376 

(0.2268670) 

2.17403 

(0.1038930) 

500 4.04346 

(0.1892850) 

2.01237 

(0.0860997) 
 

4.04075 

(0.1677230) 

2.12299 

(0.0731641) 
 

4.05426 

(0.1903370) 

2.01174 

(0.0783425) 
 

4.00993 

(0.1717180) 

2.17229 

(0.0796076) 

2.5 

20 5.97999 

(1.5086900) 

2.91652 

(0.5204230) 
 

4.42925 

(0.9181171) 

2.17216 

(0.3673513) 
 

5.83774 

(1.4629500) 

2.87700 

(0.5093470) 
 

4.30473 

(0.8735970) 

2.09302 

(0.3140460) 

30 5.07120 

(1.0036800) 

2.75274 

(0.3985190) 
 

4.41749 

(0.7511210) 

2.40950 

(0.3239690) 
 

5.18209 

(1.0193100) 

2.76175 

(0.3967640) 
 

3.90556 

(0.6583897) 

2.09888 

(0.27467053) 

50 4.54189 

(0.6910280) 

2.65711 

(0.2982060) 
 

4.39638 

(0.5879694) 

2.55503 

(0.2767716) 
 

4.70630 

(0.6747300) 

2.64981 

(0.2939140) 
 

4.41858 

(0.5897491) 

2.26333 

(0.24123598) 

100 4.23716 

(0.4405630) 

2.57199 

(0.2035910) 
 

3.96305 

(0.3839580) 

2.44461 

(0.2122710) 
 

4.26042 

(0.4366850) 

2.56026 

(0.2020740) 
 

4.23542 

(0.4055380) 

2.46391 

(0.1926110) 

150 4.15945 

(0.3463750) 

2.54416 

(0.1679980) 
 

4.19438 

(0.3298788) 

2.43035 

(0.1680274) 
 

4.21628 

(0.3502970) 

2.54928 

(0.1629970) 
 

4.16473 

(0.3273520) 

2.62957 

(0.1686170) 

300 4.08455 

(0.2388020) 

2.52293 

(0.1200320) 
 

4.04033 

(0.2259296) 

2.47233 

(0.1233888) 
 

4.07404 

(0.2370330) 

2.51909 

(0.1143040) 
 

4.13336 

(0.2337750) 

2.59408 

(0.1314690) 

500 4.03932 

(0.1829280) 

2.50990 

(0.0926587) 
 

4.03846 

(0.1736990) 

2.51828 

(0.0938211) 
 

4.02611 

(0.1873600) 

2.50587 

(0.1025870) 
 

4.08511 

(0.1806590) 

2.46382 

(0.1032780) 
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Table 5:  Bayes and ML estimates of Weibull parameters and their standard 

errors (in parenthesis) with 5   

v
 

n
 

3.2T   
 3.8T   

Bayes  ML  Bayes  ML 

̂  v̂   ̂  v̂   ̂  v̂   ̂  v̂  

1.0 

20 11.25450 

(6.7840800) 

1.43065 

(0.5317060) 
 

5.70001 

(1.2768046) 

1.23185 

(0.2736158) 
 

10.01830 

(5.3991900) 

1.33785 

(0.4130410) 
 

5.74897 

(1.2289915) 

1.22325 

(0.2406317) 

30 7.79833 

(2.7925800) 

1.23917 

(0.3222030) 
 

5.58456 

(1.0662645) 

1.17867 

(0.2304292) 
 

7.56446 

(2.4340200) 

1.20248 

(0.2865410) 
 

5.61897 

(0.9770205) 

1.20955 

(0.1966850) 

50 6.45376 

(1.5374900) 

1.14282 

(0.2232050) 
 

5.49352 

(0.7768822) 

1.16614 

(0.1690595) 
 

6.17021 

(1.3485200) 

1.10517 

(0.2005590) 
 

5.35879 

(0.7249800) 

1.14297 

(0.1485079) 

100 5.52606 

(0.8586230) 

1.04886 

(0.1428280) 
 

5.29646 

(0.5242804) 

1.15147 

(0.1572123) 
 

5.49867 

(0.7965460) 

1.04872 

(0.1345390) 
 

5.28565 

(0.5073795) 

1.13880 

(0.1045739) 

150 5.39463 

(0.6696520) 

1.04140 

(0.1200230) 
 

5.21737 

(0.4255314) 

1.12851 

(0.0963103) 
 

5.32742 

(0.6192580) 

1.03315 

(0.1128490) 
 

5.20556 

(0.5003929) 

1.12986 

(0.1042110) 

300 5.17548 

(0.4452920) 

1.01810 

(0.0825528) 
 

5.18548 

(0.2973260) 

1.11776 

(0.0672306) 
 

5.16795 

(0.4210900) 

1.01587 

(0.0782743) 
 

5.07238 

(0.2810356) 

1.08913 

(0.0593856) 

500 5.08941 

(0.3353630) 

1.01512 

(0.0618561) 
 

5.05385 

(0.2242170) 

1.09811 

(0.0516385) 
 

5.10757 

(0.3943600) 

1.01274 

(0.0694633) 
 

5.04340 

(0.2158850) 

1.09139 

(0.0211016) 

1.5 

20 8.78319 

(3.0962300) 

1.87315 

(0.4624360) 
 

5.57364 

(1.1882340) 

1.38517 

(0.2738989) 
 

8.46207 

(2.6586200) 

1.83604 

(0.4077110) 
 

4.80145 

(0.9602250) 

1.38922 

(0.2328220) 

30 7.10527 

(1.8307100) 

1.73028 

(0.3482560) 
 

5.40744 

(0.9381151) 

1.38026 

(0.2214854) 
 

6.79062 

(1.5898300) 

1.68723 

(0.3055370) 
 

4.86057 

(0.8310084) 

1.36968 

(0.2146774) 

50 6.09529 

(1.1359000) 

1.63604 

(0.2506650) 
 

5.36647 

(0.7168626) 

1.40208 

(0.1753921) 
 

5.92747 

(1.0219700) 

1.60800 

(0.2249150) 
 

4.96420 

(0.6625398) 

1.66992 

(0.1964999) 

100 5.50137 

(0.7008190) 

1.56947 

(0.1739330) 
 

5.30459 

(0.4893840) 

1.58606 

(0.1278050) 
 

5.43998 

(0.6399320) 

1.55311 

(0.1537670) 
 

5.97644 

(0.5531910) 

1.57609 

(0.1217130) 

150 5.35241 

(0.5445670) 

1.54788 

(0.1391840) 
 

5.23464 

(0.3971620) 

1.52000 

(0.1039450) 
 

5.26173 

(0.4996600) 

1.53595 

(0.1300420) 
 

5.93463 

(0.4535890) 

1.55789 

(0.1028240) 

300 5.16832 

(0.3663590) 

1.52405 

(0.1003850) 
 

5.17587 

(0.2800850) 

1.43727 

(0.0721630) 
 

5.10611 

(0.3413860) 

1.51426 

(0.0866092) 
 

5.51434 

(0.2930300) 

1.52497 

(0.0683376) 

500 5.08793 

(0.2782490) 

1.51416 

(0.0773615) 
 

5.10735 

(0.2128320) 

1.44309 

(0.0552815) 
 

5.05439 

(0.2946370) 

1.50974 

(0.0673437) 
 

5.44463 

(0.2253010) 

1.43367 

(0.0515113) 

2.0 

20 7.86426 

(2.2230100) 

2.35469 

(0.4733870) 
 

5.57884 

(1.1712814) 

2.22703 

(0.3851948) 
 

8.35150 

(2.2010700) 

2.34910 

(0.4356270) 
 

5.78128 

(1.2024226) 

2.08819 

(0.3264965) 

30 6.72517 

(1.4519800) 

2.23555 

(0.3682690) 
 

5.48635 

(0.9309810) 

2.15981 

(0.2968880) 
 

6.69852 

(1.3713600) 

2.21720 

(0.3378300) 
 

5.28291 

(0.9108551) 

2.06158 

(0.2928168) 

50 6.01732 

(0.9666550) 

2.15390 

(0.2751410) 
 

5.36488 

(0.7096060) 

1.82482 

(0.2099260) 
 

5.89595 

(0.9020100) 

2.12309 

(0.2555280) 
 

5.20392 

(0.6814829) 

1.77400 

(0.2123118) 

100 5.41151 

(0.5970340) 

2.07114 

(0.1871770) 
 

4.65557 

(0.4319910) 

1.89629 

(0.1577320) 
 

5.40966 

(0.5704600) 

2.05948 

(0.1724450) 
 

5.12015 

(0.4796728) 

1.89330 

(0.1573360) 

150 5.30160 

(0.4726440) 

2.04814 

(0.1524240) 
 

5.26875 

(0.3959540) 

2.11857 

(0.1270990) 
 

5.27810 

(0.4505600) 

2.04152 

(0.1434500) 
 

5.41875 

(0.4181090) 

1.95993 

(0.1268470) 

300 5.12432 

(0.3201380) 

2.01932 

(0.1056900) 
 

5.15659 

(0.2762280) 

1.89321 

(0.0860566) 
 

5.12038 

(0.3066800) 

2.01795 

(0.1004390) 
 

5.26486 

(0.2882770) 

2.06061 

(0.0942689) 

500 5.04329 

(0.2436960) 

2.00717 

(0.0861744) 
 

5.10459 

(0.2109570) 

1.94340 

(0.0770210) 
 

5.02631 

(0.2573400) 

2.01234 

(0.0937480) 
 

5.02901 

(0.2146330) 

2.00855 

(0.0798236) 

2.5 

20 7.71517 

(1.9747900) 

2.92340 

(0.5250180) 
 

5.39749 

(1.1123039) 

2.44817 

(0.3793508) 
 

7.61291 

(1.5024000) 

2.92885 

(0.5203930) 
 

4.88403 

(1.0064343) 

2.04574 

(0.3253875) 

30 6.68519 

(1.3386200) 

2.77607 

(0.4092580) 
 

5.30867 

(0.9090616) 

2.48412 

(0.3361756) 
 

6.61784 

(1.3039000) 

2.77156 

(0.3991040) 
 

4.97834 

(0.8447698) 

2.22960 

(0.2873982) 

50 5.82953 

(0.8739850) 

2.67474 

(0.3027640) 
 

5.32259 

(0.6949482) 

2.57780 

(0.2484538) 
 

5.83901 

(0.8640880) 

2.65178 

(0.2961870) 
 

4.97925 

(0.6692511) 

2.24771 

(0.2470518) 

100 5.39987 

(0.5596680) 

2.57301 

(0.2087780) 
 

5.27844 

(0.4954735) 

2.54593 

(0.1874764) 
 

5.40864 

(0.5551900) 

2.57669 

(0.2032500) 
 

5.59969 

(0.5421808) 

2.43144 

(0.2017236) 

150 5.24804 

(0.4406730) 

2.54714 

(0.1688230) 
 

5.19265 

(0.4044663) 

2.54310 

(0.1698590) 
 

5.27882 

(0.4388700) 

2.55557 

(0.1671770) 
 

5.35307 

(0.4250706) 

2.55587 

(0.1752775) 

300 5.08544 

(0.2997260) 

2.53543 

(0.1201040) 
 

5.03983 

(0.2775460) 

2.51688 

(0.1158390) 
 

5.09311 

(0.2973870) 

2.52090 

(0.1144251) 
 

5.27583 

(0.3003580) 

2.47783 

(0.1315600) 

500 5.06414 

(0.2306990) 

2.51404 

(0.0955532) 
 

5.02863 

(0.2154240) 

2.50327 

(0.0941932) 
 

5.05728 

(0.2485790) 

2.51847 

(0.1037437) 
 

5.21875 

(0.2279750) 

2.46619 

(0.0960146) 
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Table 6:  Bayes and ML estimates of Weibull parameters and their standard 

errors (in parenthesis) with 0.4v    

n  

3.2T    3.8T   

Bayes  ML  Bayes  ML 

̂  v̂   ̂  v̂   ̂  v̂   ̂  v̂  

20 0.42839 

(0.1097330) 

0.43259 

(0.0804596) 
 

0.64940 

(0.1330460) 

0.39745 

(0.0900769) 
 

0.43063 

(0.1100100) 

0.42906 

(0.0797294) 
 

0.78218 

(0.1650670) 

0.29293 

(0.0681180) 

30 0.41776 

(0.0848799) 

0.41923 

(0.0622741) 
 

0.78956 

(0.1310640) 

0.43996 

(0.0817299) 
 

0.41532 

(0.0828032) 

0.41951 

(0.0671551) 
 

0.76578 

(0.1270570) 

0.36211 

(0.0673869) 

50 0.41545 

(0.0622090) 

0.40904 

(0.0472003) 
 

0.66693 

(0.0860701) 

0.32783 

(0.0473902) 
 

0.40971 

(0.0657405) 

0.40870 

(0.0505820) 
 

0.64756 

(0.0949875) 

0.37479 

(0.0574516) 

100 0.40454 

(0.0423499) 

0.40582 

(0.0395781) 
 

0.56428 

(0.0438857) 

0.34747 

(0.0287208) 
 

0.40641 

(0.0419104) 

0.40470 

(0.0370878) 
 

0.56336 

(0.0422174) 

0.36212 

(0.0298016) 

150 0.40252 

(0.0357668) 

0.40310 

(0.0267726) 
 

0.55973 

(0.0364591) 

0.37405 

(0.0267323) 
 

0.40419 

(0.0345798) 

0.40414 

(0.0344655) 
 

0.58261 

(0.0377196) 

0.33246 

(0.0237916) 

300 0.40246 

(0.0276901) 

0.40082 

(0.0208987) 
 

0.52249 

(0.0280173) 

0.36161 

(0.0217638) 
 

0.40260 

(0.0265052) 

0.40118 

(0.0185489) 
 

0.49207 

(0.0266969) 

0.37935 

(0.0219517) 

500 0.40198 

(0.0200221) 

0.40042 

(0.0200221) 
 

0.50839 

(0.0213533) 

0.39020 

(0.0175436) 
 

0.40041 

(0.0198937) 

0.40104 

(0.0169774) 
 

0.47803 

(0.0202138) 

0.38466 

(0.0172257) 

Table 7:  Bayes and ML estimate along with variances as a function of T  for  

5 , 5.2v  and 200n  

T  

Bayes  ML 

̂  v̂  
 ̂  v̂  ˆ ˆ( , )Cov v  

3  
5.20831 

(0.3823660) 

2.53752 

(0.1495240) 

 4.85058 

(0.3196480) 

2.32112 

(0.1253250) 
0.00910149 

4 
5.21329 

(0.3747590) 

2.53997 

(0.1453500) 

 4.97192 

(0.3437220) 

2.43108 

(0.1497370) 
0.00429048 

5 
5.21207 

(0.3739680) 

2.53435 

(0.1442410) 

 5.36858 

(0.3796160) 

2.53763 

(0.1794380) 
0 

10 
5.19293 

(0.3714500) 

2.53474 

(0.1403630) 

 5.44457 

(0.3849890) 

2.59897 

(0.1837750) 
0 

15 
5.21941 

(0.3747020) 

2.53928 

(0.1401890) 

 5.69917 

(0.4029920) 

2.69437 

(0.1905210) 
0 

 

The efficiency of estimates for scale and shape parameters as a function of T are 

highlighted in table 7. An increase in the efficiency of the estimates with the increase in T 

is expected. The maximum gain in precision is accompanied by an increase in test 

termination time T = 3 to T = 10 for Bayes estimates while for ML estimation the test 

termination time pictorates T = 3 to T = 5. The further increase in test termination time is 

not reciprocated by a significant increase in the precision of the estimates. The relative 

increase in variances of the estimates can be plotted against the test termination time to 

decide the suitable value of T. 
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5. Conclusion 

The ML estimates and the Bayes estimates are identical and are almost equally efficient 

for large samples but the ML estimates tend to be more efficient for small samples only 

instead of Bayes estimates. Both estimates are independent with the increase in the test 

termination time. The ML estimates and the Bayes estimates are expressed as a function 

of test termination time. This is advantageous in deciding the suitable test termination 

time. 
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