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Abstract 

The families of mixture distributions have a wider range of applications in different fields such as fisheries, 

agriculture, botany, economics, medicine, psychology, electrophoresis, finance, communication theory, 

geology and zoology. They provide the necessary flexibility to model failure distributions of components 

with multiple failure modes. Mostly, the Bayesian procedure for the estimation of parameters of mixture 

model is described under the scheme of Type-I censoring. In particular, the Bayesian analysis for the 

mixture models under doubly censored samples has not been considered in the literature yet. The main 

objective of this paper is to develop the Bayes estimation of the inverse Weibull mixture distributions under 

doubly censoring. The posterior estimation has been conducted under the assumption of gamma and inverse 

levy using precautionary loss function and weighted squared error loss function. The comparisons among 

the different estimators have been made based on analysis of simulated and real life data sets. 

Keywords:   Inverse Transformation Method, Mixture Model, Doubly Censoring, Loss 

Functions, Bayes Estimator. 

1.   Introduction 

In survival analysis, data are subject to censoring. The most common type of censoring is 

right censoring, in which the survival time is larger than the observed right censoring 

time. In some cases, however, data are subject to left, as well as, right censoring. When 

left censoring occurs, the only information available to an analyst is that the survival time 

is less than or equal to the observed left censoring time. A more complex censoring 

scheme is found when both initial and final times are interval-censored. This situation is 

referred as double censoring, or the data with both right and left censored observations 

are known as doubly censored data.  

 

Analysis of doubly censored data for simple (single) distribution has been studied by 

many authors. Fernandez (2000) investigated maximum likelihood prediction based on 

type II doubly censored exponential data. Fernandez (2006) has discussed Bayesian 

estimation based on trimmed samples from Pareto populations. Khan et al. (2010) studied 

predictive inference from a two-parameter Rayleigh life model given a doubly censored 

sample. Kim and Song (2010) have discussed Bayesian estimation of the parameters of 

the generalized exponential distribution from doubly censored samples. Khan et al. 

(2011) studied sensitivity analysis of predictive modeling for responses from the three-

parameter Weibull model with a follow-up doubly censored sample of cancer 

patients.  Pak et al. (2013) has proposed the estimation of Rayleigh scale parameter under 

doubly type-II censoring from imprecise data.   

 

In statistics, a mixture distribution is signified as a convex fusion of other probability 

distributions. It can be used to model a statistical population with subpopulations, where 

constituent of mixture probability densities are the densities of the subpopulations. 
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Mixture distribution may appropriately be used for certain data set where the subsets of 

the whole data set possess different properties that can best be modeled separately. They 

can be more mathematically manageable, because the individual mixture components are 

dealt with more ease than the overall mixture density. The families of mixture 

distributions have a wider range of applications in different fields such as fisheries, 

agriculture, botany, economics, medicine, psychology, electrophoresis, finance, 

communication theory, geology and zoology. 

 

Soliman (2006) derived estimators for the finite mixture of Rayleigh model based on 

progressively censored data. Sultan et al. (2007) have discussed some properties of the 

mixture of two inverse Weibull distributions. Saleem and Aslam (2008) presented a 

comparison of the Maximum Likelihood (ML) estimates with the Bayes estimates 

assuming the Uniform and the Jeffreys priors for the parameters of the Rayleigh mixture. 

Kundu and Howalder (2010) considered the Bayesian inference and prediction of the 

inverse Weibull distribution for type-II censored data. Saleem et al. (2010) considered the 

Bayesian analysis of the mixture of Power function distribution using the complete and 

the censored sample. Shi and Yan (2010) studied the case of the two parameter 

exponential distribution under type I censoring to get empirical Bayes estimates. Eluebaly 

and Bouguila (2011) have presented a Bayesian approach to analyze finite generalized 

Gaussian mixture models which incorporate several standard mixtures, widely used in 

signal and image processing applications, such as Laplace and Gaussian. Sultan and 

Moisheer (2012) developed approximate Bayes estimation of the parameters and 

reliability function of mixture of two inverse Weibull distributions under Type-2 

censoring.  

 

The article is outlined as follows. In section 2, we define the mixture model, sampling 

and likelihood function of Rayleigh model. In section 3, the posterior distributions are 

derived under different priors. Expressions for the said estimators and corresponding 

posterior risks are derived in the section 4. Elicitation of hyperparameters via prior 

predictive approach is discussed in the section 5. Simulation study and comparison of the 

estimates are given in the section 6. Real data set to illustrate the methodology of the 

proposed mixture model are discussed in the section 7. Some concluding remarks close 

the paper.  

2.   The Model and Likelihood Function 

If the probability density function (pdf) of the Weibull distribution is: 

   1
, , exp ,  0,i i

i ij i i ij i ij ijf y y y y
    

       1,2,  and 1,2,..., ii j n    

 

Then the random variable 1/ij ijx y has the inverse Weibull distribution with pdf 

   ( 1)
, , exp ,  0i i

i ij i i ij i ij ijf x x x x
      

    1,2,  and 1,2,..., ii j n 
 

(1) 

where 0,and 0i i   are shape and scale parameters respectively. 

 



Bayesian Inference of a Finite Mixture of Inverse Weibull Distributions with an Application to Doubly ….. 

Pak.j.stat.oper.res.  Vol.XII  No.1 2016  pp53-72 55 

The cumulative distribution function (CDF) of the distribution is: 

   , , exp ,  0,i

i ij i ij ijF x x x
   

   0,and 0i i    1,2,  and 1,2,..., ii j n 
 

(2) 

 

A density function for mixture of two components densities with mixing weights (p1,  

1- p1) 

       1 1 1 21 ,f x p f x p f x  
 10 1p       (3)

 
 

The cumulative distribution function for the mixture model is: 

       1 1 1 21F x p F x p F x          (4)
 

 

Consider a random sample of size ‘ n ’ from inverse Weibull distribution, and let 

1, ,...,r r sx x x  be the ordered observations that can only be observed. The remaining  

‘ 1r  ’ smallest observations and the ‘ n s ’ largest observations have been assumed to 

be censored. Now based on causes of failure, the failed items are assumed to come either 

from subpopulation 1 or from subpopulation 2; so the 
1 11 1,...,r sx x

 
and 

2 22 2,...,r sx x  failed 

items come from first and second subpopulations respectively. The rest of the 

observations which are less than rx
 

and greater than sx have been assumed to be 

censored from each component. Where  
1 21, 2,max ,s s sx x x

 
and  

1 21, 2,min ,r r rx x x . 

Therefore, 1 1 1 1m s r  
 
and 2 2 2 1m s r  

 
number of failed items can be observed 

from first and second subpopulation respectively. The remaining ( 2)n s r    items are 

assumed to be censored observations, and 2s r   are the uncensored items. Where 

1 2r r r   , 1 2s s s 
 
and 1 2m m m  . Then the likelihood function for the Type II 

doubly censored sample     
1 1 2 21 1 2 2x ,..., , ,...,r s r sx x x x , assuming the causes of the 

failure of the left censored items are identified, can be written as:

 
          

     

1 2

1 2

1 2

1 2

1 1

 1  2 1 1 ( ) 1 ( ) 2 1 2

1 1 1( ) 1 1 2 2( ) 2

, , , , 1 , ,

                             , 1 ,

x
r r n s

r r s

s s

i i

i r i r

L p F x F x F x

p f x p f x

     

 

  

 

 

    
   
    
 

  (5)

 

 
              

           

1 2

1 2 1 2

1 2 1 2

1 2

1 1 2 2

1 2

1 1

 1  2 1 1 2 1 1 2 2

( 1) ( 1)

1 1 1 1 1 2 2 21 1 2 2

, , exp exp 1 exp exp

                             exp 1 exp

x
r r r r

r r n s

s s

i i i i
i r i r

L p x x p x p x

p x x p x x

   

   

     

     

  
   

     

 

      

    
     
   
 

  

(6) 

Assuming the shape parameter to be known the likelihood function (6) reduces 

   

       

1 1 1 2 2 2

2

1 2

1
1

 1  2 1 1 1

1 0 0 1 2

 1  2  1 1 1  2 2 2

, , 1 (1 )

                             exp exp

x
n s k

k m k k m k

k k

m m

j j

n s k
L p p p

k k

x x

 

     


  

 

  
    

  

  



  (7) 
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                       

1 2

1 1 1 1 2 2

1 2

1 2

1 1 1 2 1 2 2 2 21 2

1 1 1 2 2 2

where   1 ,    1 ,

1,  and 1

s s

j ji s r i s r
i r i r

x x k k x r x x x k x r x

m s r m s r

           

 

        

     

   

3.   Bayes Estimation 

The simple estimation of the scale parameter often pre-assumes the knowhow of the 

shape parameter (for more detail, see Panaitescu et al. (2010), Zanakis (2007), Kundu and 

Howaldar (2010), Shi and Yan (2010), etc.). For the Bayesian estimation, let us assume 

that the parameters 1 and  1,2i p i   are independent random variables, and then we 

consider the following priors for different parameters:  

3.1 Bayesian Estimation using Conjugate Prior 

The prior for the rate parameters  i  for i=1, 2, is assumed to be the gamma distribution, 

with the hyperparameters ai and bi, given by 

 
 

 1 exp ,      , 0
i

i

a
aii

i i i i i i

i

b
f b a b

a
     


      (8) 

 

The prior for p1 is the beta distribution, whose density is given by 

 
 

   
  11

11 1 1

1 1 1 1 1

1 1

1 ,      , 0
dc

p

c d
f p p p c d

c d

 
  
 

     (9) 

 

From equation (8)-(9), we propose the following joint prior density of the vector 

  1  2 1, , :p    

      11
111

1 1 1 1 1exp 1 ,0 1,  0,  0,  0,  0
dcai

i i i i ig b p p p a b c d 
           (10) 

 

By multiplying equation (10) with equation (7), the joint posterior density for the vector 

  given the data becomes 

       1 1 1 2 1 2 2 1

2

21
1 ( ) 11 11

1 1 1

1 0 0 11 2

| x 1 (1 )  expi i

n s k
k a mm k k c m k d

i i i ij

k k i

n s k
p p x

k k
   


       

  

  
       

  
 

  

(11) 

   
 

  
 

1

2

21
1

1 1 1 2 1 2 2 1

1 0 0 11 2

where 1 ,  ,
i i

n s k
k i i

a m
k k i

i ij

n s k a m
Beta m k k c m k d

k k x




  

    
         

  
   

       1 1 1 1 1 2 2 2 2 2 and j j j jx x b x x b        

 

Marginal distributions of 1 and  1,2 i p i   can be obtained by integrating the nuisance 

parameters.  
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3.2 Bayesian Estimation using Inverse Levy Prior 

The prior for the rate parameters  i  for i=1, 2, is assumed to be the inverse Levy 

distribution, with the hyperparameter vi, given by 

  1/2 exp ,      0
2 2i

i i i
i i if

 
  



  
  

 
      (12) 

 

The prior for p1 is the beta distribution, whose density is given by 

 
 

   
  22

12 2 1

1 1 1 2 2

2 2

1 ,      , 0
dc

p

c d
f p p p c d

c d

 
  
 

    (13) 

 

From equation (12)-(13), we propose the following joint prior density of the vector

  1  2 1, , :p    

    22
111/2

1 1 1 2 2exp 1 ,0 1,  0, 0, 0
2

dci i
i ig p p p c d


 

  
        

 
  (14) 

 

By multiplying equation (14) with equation (7), the joint posterior density for the vector 

  given the data becomes 

       1 1 1 2 2 2 2 2

2

21
1 1/21 11

2 1 1

1 0 0 11 2

| x 1 (1 )   expi

n s k
k mm k k c m k d

i i i ij

k k i

n s k
p p x

k k
   


      

  

  
       

  
 

 

(15) 

   
 

  
 

1

2

21
1

2 1 1 2 2 2 2 2 1/ 2
1 0 0 11 2

1/ 2
where 1 ,  ,

i

n s k
k i

m
k k i

i ij

n s k m
Beta m k k c m k d

k k x




  

    
         

  
   

       1 1 1 1 1 2 2 2 2 2/2 and /2 j j j jx x x x        
 

 

Marginal distributions of 1 and  1,2 i p i   can be obtained by integrating the nuisance 

parameters.  

4.   Bayes Estimation of the Vector of Parameters   

The Bayesian point estimation is connected to a loss function in general, signifying the 

loss is induced when the estimate ̂ differ from true parameter . It is often noticed that 

in some situations Bayes estimate under another loss function works better than the 

Bayes estimate under the true loss function, when true loss function exists. Since there is 

no specific rule that helps us to identify the appropriate loss function to be used. 

Precautionary loss function (PLF), which is defined as    
2

ˆ ˆ ˆ, /l        is proposed 

by Norstrom (1996). Bayes estimator and posterior risk under (PLF) are 

  
1/ 2

2ˆ E  |x  and       
1/ 2

2ˆ 2 E E     
  

| |x x  respectively. A 
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generalization of the squared error loss which is of concern is    
2

ˆ ˆ, /l         called 

weighted squared error loss function. Bayes estimator and posterior risk under (WSELF) 

are   
1

1ˆ E 


 |x  and       
1

1ˆ E E   


 | |x x  respectively. 

 

In this section, the respective marginal distribution of each parameter has been used to 

derive the Bayes estimators and posterior risks of 1 2,   and p1 under precautionary loss 

function (PLF) and weighted squared error loss function (WSELF). The Bayes estimators 

and their posterior risks of the parameters 1 2, 
 
and p1 for the conjugate (gamma and 

beta) priors using the PLF and WSELF functions are given in this section.  

 

The Bayes estimators of 1 2,   and p1 under PLF using gamma prior are: 

 

   
   

  
 

  
 

   
   

  

1

1 1 2 2

2

1

2

1
1 1 1 2 2

1 1 2 1 2 2 1 2
1 0 0 1 2

1 1 1 2 2 2

1 PLF 1
1 1 1 2 2

1 1 2 1 2 2 1

1 0 0 1 2
1 1 1

2
1 ,  

ˆ  

1 ,  

n s k
k

a m a m
k k

j j

n s k
k

k k
j

n s k a m a m
Beta m k k c m k d

k k b x b x

n s k a m a m
Beta m k k c m k d

k k b x

 






  
 



 

       
       

    


      
       

   



  

  
 1 1 2 2

1

2

2 2 2

a m a m

jb x
 

 
 
 
 
 
 
 
   

 

   
   

  
 

  
 

   
   

  

1

1 1 2 2

2

1

2

1
1 1 1 2 2

1 1 2 1 2 2 1 2
1 0 0 1 2

1 1 1 2 2 2

2 PLF 1
1 1 1 2 2

1 1 2 1 2 2 1

1 0 0 1 2
1 1 1

2
1 ,  

ˆ  

1 ,  

n s k
k

a m a m
k k

j j

n s k
k

k k
j

n s k a m a m
Beta m k k c m k d

k k b x b x

n s k a m a m
Beta m k k c m k d

k k b x

 






  
 



 

       
       

    


      
       

   



  

  
 1 1 2 2
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The posterior risks of 1 2,   and p1 under PLF using gamma prior are: 
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The Bayes estimators of 1 2,   and p1 under WSELF using gamma prior are: 
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The posterior risks of 1 2,   and p1 using gamma prior are: 
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Thus, expressions for Bayes estimators and their posterior risks under the inverse Levy 

can be obtained with little alteration. 
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5.   Elicitation 

In Bayesian analysis the elicitation of opinion is a crucial step. It helps to make it easy for 

us to understand what the experts believe in, and what their opinions are. In statistical 

inference, the characteristics of a certain predictive distribution proposed by an expert 

determine the hyperparameters of a prior distribution. In this article, we focused on a 

method of elicitation based on prior predictive distribution. The elicitation of 

hyperparameter from the prior  p   is a difficult task. The prior predictive distribution 

is used for the elicitation of the hyperparameters which is compared with the experts' 

judgment about this distribution and then the hyperparameters are chosen in such a way 

so as to make the judgment agree closely as possible with the given distribution. Readers 

desiring more detail may refer to: Grimshaw et al. (2001), O’Hagan et al. (2006), 

Jenkinson (2005) and Leon et al. (2003). According to Aslam (2003), the method of 

elicitation is to compare the prior predictive distribution with experts’ assessment about 

this distribution and then to choose the hyperparameters that make the assessment agree 

closely with the member of the family. The prior predictive distributions under all the 

priors are derived using the following formula: 

   ( )p y p y p d
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5.1 Elicitation under gamma distribution 

The prior predictive distribution using gamma prior is: 
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   (16) 

 

We have assumed (θ1, θ2) = (1, 1) for convenience in calculations. For the elicitation of 

the six hyperparameters, six different intervals are considered. From equation (16), the 

experts’ probabilities/assessments are supposed to be 0.10 for each case. The six integrals 

for equation (19) are considered with the following limits of the values of random 

variable ‘Y’: (0, 10), (10, 20), (20, 30), (30, 40), (40, 50) and (50, 60) respectively. For 

the elicitation of hyperparameters, a1, a2, b1, b2, c1, and d1. these six integrals are solved 

simultaneously through computer program developed in SAS package using the command 

of PROC SYSLIN. Thus the values of hyperparameters obtained by applying this 

methodology are: 4.982587, 3.356211, 0.987542, 0.46523, 1.45987 and 0.05690. 

5.2 Elicitation under Inverse Levy Prior 
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Now, we have to elicit four hyperparameters, so we have to consider the four integrals. 

The expert probabilities are assumed to 0.15 for each integral with the following limits of 

the values of random variable ‘Y’: (0, 15), (15, 30), (30, 45) and (45, 60). Using the 

similar kind of program, as discussed above, we have the following values of 

hyperparameters v1 = 0.062138, v2 = 0.19136, c2 = 0.895777 and d2 = 0.63889. 

6.   Simulation Study and Comparisons  

This section consists of the simulation study to compare the performance of the discussed 

estimators on the basis of generated samples from the inverse Weibull mixture 

distribution using doubly censored data. We have assumed (θ1, θ2) = (1, 1) for 

convenience in calculations. We take random samples of sizes n = 20, 40, and 80 from 

the two component mixture of inverse Weibull distributions with following choice of 

parametric values         1 2
( , ) 0.1,  0.15 , 10,  15 , 0.1,  15 , 10,  0.15 ,    

1 0.45 and 0.6.p   To develop a mixture data we adopt the  probabilistic mixing with 

probability p1 and (1- p1). A uniform number u is generated n times and if u < p1 the 

observation is taken randomly from 1F  (the inverse Weibull distribution with parameter

1 ) otherwise from 2F (from the inverse Weibull with parameter 2 ). Hence the 

parameters to be estimated are known to be 1 2( , )   and p1. The choice of the censoring 

time is made in such a way that the censoring rate in the resultant sample is to be 

approximately 20%. The simulated data sets have been obtained using following steps: 

 

Step 1:  Draw samples of size ‘n’ from the mixture model  

Step 2:  Generate a uniform random no. u for each observation 

Step 3:  If u  , the take the observation from first subpopulation otherwise from the 

second subpopulation 

Step 4:  Determine the test termination points on left and right, that is, determine the 

values of rx and sx  

Step 5:  The observations which are less than rx and greater than sx have been 

considered to be censored from each component 

Step 6:  Use the remaining observations from each component for the analysis 

 

To avoid an extreme sample, we simulate 10, 000 data sets each of size n. The Bayes 

estimates and posterior risks (in parenthesis) are computed using Mathematica 8.0. The 

average of these estimates and corresponding risks are reported in Tables 1-8. The 

abbreviations used in the tables are: B.Es: Bayes estimators; P.Rs: Posterior risks; GP: 

Gamma prior; ILP: Inverse Levy prior. 
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Table 1:  B.Es and their P.Rs under GP for 

 1 2 1, , (0.1, 0.15, 0.45) and (0.1, 0.15, 0.60)p  
 

n 
Precautionary loss function  

1̂  2̂  1p̂
 1̂  2̂  1p̂

 

20 
0.183998 0.210992 0.520207 0.157451 0.273239 0.670615 

(0.012870) (0.015336) (0.024894) (0.0080078) (0.025618) (0.017334) 

40 
0.141437 0.189734 0.476807 0.128095 0.19939 0.64533 

(0.006581) (0.008025) (0.014814) (0.004569) (0.011663) (0.010202) 

80 
0.121225 0.179241 0.459446 0.121049 0.181134 0.636047 

(0.004236) (0.005333) (0.010484) (0.003139) (0.007711) (0.007219) 

Weighted squared error loss function 

20 
0.162952 0.19599 0.478401 0.141383 0.223633 0.643437 

(0.0130423) (0.016329) (0.028097) (0.008997) (0.025234) (0.019361) 

40 
0.12213 0.185997 0.45076 0.123577 0.18100 0.62999 

(0.006237) (0.008474) (0.015847) (0.004704) (0.011856) (0.010825) 

80 
0.114715 0.173503 0.443054 0.119293 0.175483 0.624909 

(0.004285) (0.005458) (0.010936) (0.003244) (0.0080854) (0.007489) 

Table 2:  B.Es and their P.Rs under GP for 

 1 2 1, , (10, 15, 0.45) and (10, 15, 0.60)p  
 

n 
Precautionary loss function  

1̂  2̂  1p̂
 1̂  2̂  1p̂

 

20 
7.918210 12.7604 0.512701 8.24576 12.0699 0.673449 

(0.562497) (0.919622) (0.025237) (0.472256) (0.15019) (0.017232) 

40 
8.47102 14.0426 0.471625 8.95589 12.9464 0.64686 

(0.398777) (0.589584) (0.014899) (0.319934) (0.765791) (0.010184) 

80 
8.90369 14.3116 0.45554 9.13910 13.33460 0.636388 

(0.310527) (0.425427) (0.007971) (0.23731) (0.570857) (0.007250) 

Weighted squared error loss function 

20 
6.95149 11.47690 0.471111 7.62418 9.97148 0.646635 

(0.565598) (0.948828) (0.028409) (0.485881) (1.14909) (0.019255) 

40 
7.76927 13.06160 0.448141 8.56982 11.6106 0.631632 

(0.399421) (0.59337) (0.015889) (0.326552) (0.769426) (0.010805) 

80 
8.26151 13.92270 0.448517 8.89651 12.71100 0.625797 

(0.311853) (0.437513) (0.010896) (0.242402) (0.58988) (0.006540) 
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Table 3:  B.Es and their P.Rs under GP for 

 1 2 1, , (0.10, 15, 0.45) and (0.10, 15, 0.60)p  
 

n 
Precautionary loss function  

1̂  2̂  1p̂
 1̂  2̂  1p̂

 

20 
0.16186 13.54830 0.474766 0.146025 13.1666 0.618725 

(0.011790) (0.900287) (0.024783) (0.008728) (1.09648) (0.018182) 

4

0 

0.127299 14.81350 0.435332 0.123062 14.7135 0.615899 

(0.00141) (0.568845) (0.014397) (0.004604) (0.716151) (0.010529) 

80 
0.117819 15.40490 0.452022 0.108965 15.34370 0.607914 

(0.004246) (0.4158504 (0.009173) (0.003038) (0.540336) (0.007618) 

Weighted squared error loss function 

20 
0.147975 12.28820 0.434705 0.140810 11.39540 0.589610 

(0.012349) (0.923973) (0.027690) (0.009397) (1.11182) (0.020201) 

40 
0.118479 14.08820 0.44281 0.110857 13.14360 0.57350 

(0.006241) (0.579943) (0.015292) (0.004437) (0.720862) (0.011141) 

80 
0.114257 14.5437 0.450933 0.106203 14.29730 0.596316 

(0.0043927) (0.412396) (0.009751) (0.003032) (0.545823) (0.005546) 

Table 4:  B.Es and their P.Rs under GP for 

 1 2 1, , (10, 0.15, 0.45) and (10,  0.15, 0.60). p  
 

n 
Precautionary loss function  

1̂  2̂  1p̂
 1̂  2̂  1p̂

 

20 
8.16501 0.213878 0.566323 8.40326 0.252588 0.710226 

(0.522519) (0.016322) (0.020654) (0.450088) (0.025007) (0.013816) 

40 
9.53031 0.168253 0.53525 9.43799 0.171463 0.68998 

(0.387634) (0.007612) (0.0119353) (0.307876) (0.010648) (0.007560) 

80 
9.95986 0.158290 0.523602 9.80757 0.164939 0.62817 

(0.290613) (0.005088) (0.008327) (0.230131) (0.007261) (0.005086) 

Weighted squared error loss function 

20 
7.55109 0.19143 0.533040 8.13207 0.220316 0.688048 

(0.544131) (0.016855) (0.023020) (0.480553) (0.026363) (0.0153175) 

40 
8.80390 0.161305 0.516536 8.82344 0.170619 0.677469 

(0.385674) (0.007924) (0.012660) (0.305347) (0.0118843) (0.008418) 

80 
9.30670 0.153653 0.508710 9.64879 0.148905 0.670460 

(0.292979) (0.005234) (0.008488) (0.236021) (0.007314) (0.005437) 
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Table 5:  B.Es and their P.Rs under ILP for 

 1 2 1, , (0.1, 0.15, 0.45) and (0.1, 0.15, 0.60)p  
 

n 
Precautionary loss function  

1̂  2̂  1p̂
 1̂  2̂  1p̂

 

20 
0.127691 0.177611 0.485151 0.121899 0.182759 0.64281 

(0.013163) (0.016013) (0.026508) (0.009401) (0.023537) (0.018733) 

40 
0.110914 0.172404 0.456984 0.113023 0.168986 0.62988 

(0.006591) (0.008203) (0.015296) (0.004813) (0.011884) (0.010635) 

80 
0.105183 0.164297 0.450695 0.108526 0.167578 0.621729 

(0.004385) (0.005319) (0.010548) (0.003198) (0.008080) (0.006645) 

Weighted squared error loss function 

20 
0.107436 0.154796 0.442314 0.105422 0.149031 0.612117 

(0.013662) (0.016713) (0.029916) (0.009459) (0.025018) (0.021025) 

40 
0.101026 0.153699 0.443702 0.102699 0.15455 0.61200 

(0.006722) (0.008510) (0.016316) (0.004750) (0.012422) (0.0113582) 

80 
0.097219 0.152891 0.449901 0.099979 0.152524 0.601227 

(0.004383) (0.005444) (0.011171) (0.003115) (0.008062) (0.007708) 

Table 6:  B.Es and their P.Rs under ILP for 

 1 2 1, , (10, 15, 0.45) and (10, 15, 0.60)p  
 

N 
Precautionary loss function  

1̂  2̂  1p̂
 1̂  2̂  1p̂

 

20 
11.54270 15.78400 0.486493 11.48880 16.38070 0.644266 

(1.19393) (1.42804) (0.026501) (0.885081) (2.11917) (0.018660) 

40 
10.78201 15.3402 0.459242 11.00650 15.4734 0.631273 

(0.638153) (0.733376) (0.015272) (0.467721) (1.09394) (0.10601) 

80 
10.5890 15.14441 0.457813 10.77321 15.4127 0.625869 

(0.439570) (0.500679) (0.010707) (0.316332) (0.748079) (0.007298) 

Weighted squared error loss function 

20 
9.6918 13.8270 0.442583 10.222580 12.33190 0.61656 

(1.23064) (1.492460) (0.029893) (0.91153) (2.094820) (0.020826) 

40 
9.70297 14.77460 0.443817 10.1601 13.83130 0.610646 

(0.645132) (0.772058) (0.016319) (0.466147) (1.04578) (0.011236) 

80 
9.93870 15.07190 0.447321 10.10782 14.57050 0.610372 

(0.44666) (0.519686) (0.011155) (0.316407) (0.775175) (0.007727) 
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Table 7:  B.Es and their P.Rs under ILP for 

 1 2 1, , (0.10, 15, 0.45) and (0.10, 15, 0.60)p  
 

n 
Precautionary loss function  

1̂  2̂  1p̂
 1̂  2̂  1p̂

 

20 
0.113891 17.90741 0.446898 0.116951 18.10440 0.590388 

(0.012322) (1.392810) (0.25974) (0.009551) (1.97170) (0.019419) 

40 
0.101979 17.48260 0.449381 0.103028 17.6810 0.59747 

(0.006277) (0.753463) (0.014747) (0.004631) (1.030430) (0.010889) 

80 
0.094424 16.38130 0.451028 0.097250 16.74250 0.59867 

(0.004061) (0.479399) (0.009569) (0.003015) (0.666457) (0.006751) 

Weighted squared error loss function 

20 
0.090966 14.83110 0.404816 0.101476 14.44741 0.559089 

(0.012129) (1.41690) (0.029059) (0.009664) (1.943110) (0.021586) 

40 
0.092145 15.67300 0.439736 0.094058 15.31430 0.56776 

(0.006355) (0.730601) (0.015672) (0.004588) (0.993869) (0.011525) 

80 
0.096173 15.660901 0.454473 0.098058 15.10425 0.58945 

(0.004214) (0.483135) (0.010071) (0.003196) (0.793825) (0.008256) 

Table 8:  B.Es and their P.Rs under ILP for 

 1 2 1, , (10, 0.15, 0.45) and (10,  0.15, 0.60)p  
 

n 
Precautionary loss function  

1̂  2̂  1p̂
 1̂  2̂  1p̂

 

20 
12.51210 0.170129 0.539734 12.0588 0.184551 0.683249 

(1.120190) (0.016066) (0.021809) (0.848933) (0.025185) (0.015041) 

40 
11.90580 0.152507 0.520874 11.86440 0.150392 0.675412 

(0.581756) (0.007923) (0.012278) (0.433103) (0.011354) (0.008319) 

80 
11.78190 0.14776 0.513769 11.1487 0.150152 0.62718 

(0.405284) (0.005231) (0.008354) (0.290233) (0.007433) (0.005063) 

Weighted squared error loss function 

20 
11.68720 0.1379633 0.504726 11.33731 0.138891 0.65924 

(1.239050) (0.016191) (0.024295) (0.909669) (0.025252) (0.016662) 

40 
10.91920 0.140533 0.501675 10.81830 0.142696 0.642486 

(0.594303) (0.008030) (0.013022) (0.442718) (0.011539) (0.008792) 

80 
10.26490 0.148138 0.49162 10.61130 0.15384 0.66391 

(0.412552) (0.005351) (0.007930) (0.291512) (0.007762) (0.005686) 

 

The simulation study has revealed some interesting properties of the Bayes estimates. It is 

worth mentioning that in each case the posterior risks of estimates of lifetime parameters 

are decreasing as the sample size increases. The posterior risks of the estimates of 1 2,   

have been assessed to be quite large when the values of the parameters are large and 

entirely small for rather smaller values of 1 2,  . Another interesting point regarding the 

posterior risks of the estimates of parameters 1 2,  is that by increasing (decreasing) the 
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proportion of the component in mixture reduces (increases) the posterior risk of the 

concerned  parameter’s estimate. 

 

It has been observed that for the relatively smaller value of   i.e. (0.1, 0.15), the 

performance of the precautionary loss function and the gamma prior is better than their 

counterparts, as the amounts of posterior risks are smaller than those in case of their 

counterparts. However, inverse Levy prior produces some closer estimates to the true 

value of parameters. Estimates of mixing proportion are found to be underestimated using 

inverse levy prior when p1 = 0.45, but they are pretty good under gamma prior. When we 

consider the estimation of comparatively larger value of   i.e. (10, 15), again under 

estimation is observed of the estimates of parameters under both priors and loss 

functions. But extent of under estimation is higher under precautionary loss function 

using gamma prior. Nonetheless, this underestimation is due to the random procedure and 

is tolerable. Further this problem can be faced off by using lager sample sizes. As far as 

the efficiency of the prior is concerned, gamma is found to be the efficient than inverse 

Levy prior. Moreover, on assessing the behavior of estimates , in case of the extremely 

different value of the parameters 1 2 1 2( ,  and )      = (0.1, 15 and 10, 0.15) i.e. one is 

small and other is hundred fold large, it is noticed that the parameters are once again 

underestimated, and this underestimation is higher at every point using precautionary loss 

function under both priors. However, the use of weighted squared error loss function has 

exhibited the pretty good estimates with few exceptions, in terms of convergence. In 

general, the estimates under gamma prior using precautionary loss function are the best as 

the amounts of posterior risks associated with these estimates are the least in almost all 

the cases. 

7.   Real Data Analysis 

In this section, we have analyzed real data sets to illustrate the methodology discussed in 

previous sections. In order to show the usefulness of the proposed mixture model, we 

applied the findings in this paper to the survival times (in days) of guinea pigs, injected 

with different doses of tubercle bacilli, in table 9. This data set has been discussed by 

Kundu and Howlader (2010). Singh (2013) has also analyzed this data set. The regimen 

number is the common logarithm of the number of bacillary units in 0.5 ml. of challenge 

solution; i.e., regimen 6.6 corresponds to 4.0 *10
6 

bacillary units per 0.5 ml.  

Corresponding to regimen 6.6, there are 72 observations listed below. Further we used 

the Kolmogorov-Smirnov and chi square tests to see whether the data follow the inverse 

weibull distribution. These tests say that the data follow the inverse weibull distribution 

at 5% level of significance with p-values 0.1361 and 0.1290 respectively. We have 

assumed (θ1, θ2) = (1, 1) for convenience in calculations. 

Table 9:  Survival times (in days) of guinea pigs injected with different doses of 

tubercle bacilli 

12,  15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 

60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 

95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 

263, 297, 341, 341, 376 
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Now we consider the case when the data are doubly type II censored. Data are randomly 

grouped into two sets when p1 = 0.45. It is assumed that we observe 33 data points 

belonging to population I and 39 data points belonging to population II respectively. To 

implement censored samplings, the 
1 1 2 21 1 2 2,...,  and ,...,r s r sx x x x  failed items come from first 

and second subpopulations respectively.  The rest of the observations which are less than 

rx and greater than sx have been assumed to be censored from each component. Here, 

1 1 1 1m s r  
 
and 2 2 2 1m s r  

 
number of failed items can be observed from first and 

second subpopulation respectively. The remaining ( 2)n s r    items are assumed to be 

censored observations, and 2s r   are the uncensored items. Where 1 2r r r   , 

1 2s s s  and 1 2m m m  . The detail of the censored mixture data is as under: 

Table 10:   Doubly censored mixture real life data 

Population-I Population-II 

61, 12, 24, 60, 24, 32, 65, 34, 68, 38, 

43, 67, 72, 48, 54,73, 76, 55, 81, 83, 58, 

84, 233,341, 263, 146, 175, 129, 146, 

109, 99, 35, 376 

15, 131, 87, 143, 91, 95, 175, 110, 121, 127, 

297, 341, 60, 62, 65, 63, 70, , 96, 211, 98, 258, 

258, 70, 75, 76, 59, 60, 57, 56, 58, 53, 54, 44, 

52, 43, 38, 33, 32, 22 

 

The following characteristics are extracted from censored data for the analysis of mixture 

model: 

p1 = 0.45, n = 72, r = 8, r1 = 4, r2 = 43, s = 64, s1 = 29, s2 = 35, n1 = 33, n2 = 39, 

1 2 0.5,  
1 1 2 2

32,  233,  33,  and 258.r s r sx x x x       

1 2

1 2

1 2

1( ) 2( )3.21314 and 3.85409.
s s

i i

i r i r

x x
  

 

    

 

The similar methodology has been employed when p1 = 0.60, n = 72, r = 8, r1 = 5, r2 = 3, 

s = 64, s1 = 39, s2 = 25, n1 = 44, n2 = 28, 1 2 0.5,  

1 1 2 2
33,  211,  32,  and 175,r s r sx x x x     

1 2

1 2

1 2

1( ) 2( )4.16450 and 3.21392.
s s

i i

i r i r

x x
  

 

    

Bayes estimates are obtained assuming informative priors under minimum expected loss 

function, and k-loss function. 
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Table 11:  B.Es and their P.Rs under minimum expected loss function, and k-loss 

function for real data set 

Priors 

p1 = 0.45 

Precautionary loss function Weighted squared error loss function 

1̂  
2̂  

1p̂
 1̂  

2̂  
1p̂

 

Gamma Prior 7.24033 

(0.214571) 

8.12311 

(0.207398) 

0.462888 

(0.008964) 

6.916430 

(0.216613) 

7.81032 

(0.209089) 

0.449092 

(0.009315) 

Inverse Levy Prior 
7.88449 

(0.268576) 

8.14470 

(0.224745) 

0.455393 

(0.009102) 

7.47857 

(0.271625) 

7.80556 

(0.226764) 

0.441383 

(0.009460) 

p1 = 0.60 
1̂  2̂  1p̂

 1̂  2̂  1p̂
 

Gamma Prior 7.57257 

(0.170820) 

7.23829 

(0.251558) 

0.617057 

(0.006404) 

7.31514 

(0.172019) 

6.85812 

(0.254391) 

0.607212 

(0.006642) 

Inverse Levy Prior 
8.12849 

(0.203551) 

7.17986 

(0.277515) 

0.609343 

(0.006523) 

7.82155 

(0.205167) 

6.76003 

(0.281074) 

0.599315 

(0.006767) 

 

The results in the table 11 indicate that the Bayes estimates under gamma prior are better 

than those under inverse levy prior under both loss functions. Similarly in comparison of 

the loss functions it has been assessed that the performance of the precautionary loss 

function is better than weighted squared error loss function. The larger values of the 

mixing parameter (p1) impose a positive impact on the performance of the estimation of 

the first component of the mixture. Hence the analysis of real life data indorsed the 

findings of the simulation study, suggesting the preference of gamma prior along with 

precautionary loss function. 

7.1 Graphical Representation of Posterior Risks under Different Loss Functions 

Various Priors 

Risks of the estimators are empirically evaluated based on a Monte-Carlo simulation 

study of samples. A number of values of unknown parameters are considered. Sample 

size is varied to observe the effect of small and large samples on the estimators. Different 

combinations of parameters are considered in studying the change in the estimators and 

their risks. The results are summarized in figures 1-4. It is easy to observe that the risk of 

the estimators will be a function of sample size, population parameters, hyperparameters 

of the prior distribution. After an extensive study of the results, the conclusions are drawn 

regarding the behavior of the estimators, which are summarized below. It may be 

mentioned here that because of space restrictions, all results are not shown in the graphs. 

It is noted that as sample size increases, the risk of all the estimators decrease, see figures 

1-4. The effect of variation of parameters on the risks of the estimator has also been 

studied. It has been noticed that the risk of the estimators increases when increase the 

value of parameters.  
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8.   Conclusion 

In this article, we have considered the Bayesian inference of inverse Weibull mixture 

distribution based on doubly type II censored data. The prior belief of the model is 

represented by the independent gamma, beta priors and inverse Levy, beta priors on the 

scale and mixing proportion parameters. Numerical results of the simulation study 

presented in tables 1- 8 exposed salient properties of the proposed Bayes estimators. The 

parameters of the mixture distributions have been over/under estimated under different 

cases. In general the larger values of the parameters have been over estimated and smaller 

values of the parameters have been under estimated in majority of the cases. However, it 

is nice to observe that the estimated values converge to the true values and the amounts of 

the posterior risks tend to decrease by increasing the sample size. This simply indicates 

that the proposed estimators are consistent. The smaller (larger) values of the parameter 

representing one component of the mixture impose a positive (negative) impact on the 

estimation of the parameter representing the other component of the mixture distribution. 

The larger values of the mixing parameter (p1) impose a positive impact on the 

performance of the estimation of the first component of the mixture. This may be due to 

the reason that the lager values of the mixing parameter incorporate more values for the 

analysis of the first component. Bayes estimators performed well under the precautionary 

loss function than the weighted squared error loss function under both priors. In addition, 

the performance of the estimates under gamma prior is better than those under inverse 

Fig.1 Posterior risks of for 
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Fig.4 Posterior risks of for 
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levy prior using both loss functions. However, in case of gamma prior the estimates under 

both loss functions are comparatively more under estimated, though this problem is less 

severe in the larger samples. Therefore on the basis of the above discussion we can 

recommend the use of gamma prior under precautionary loss function for the analysis of 

the inverse weibull mixture distribution under the Bayesian framework.  

 

However, when we use such a mixture model in real-life we can chose the prior as well 

as the loss function according to the need. In case of loss functions, if lower posterior risk 

is desired than in the present scenario, the precautionary loss function should be given 

importance, if compromise on risk is affordable than one can easily select to use the k-

loss function. Also the informative gamma prior can easily be preferred over the other 

informative prior as shown by results. It may be mentioned here that because of space 

restriction, only selected results are included and presented graphically. The findings of 

real life example are in accordance with the simulation study. The findings of the paper 

are useful for the analysts (from different fields) dealing with the Bayesian analysis of the 

time to failure data when causes of the failure are more than one, and the data is doubly 

censored. 
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