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Abstract 

The exponentiated gamma (EG) distribution is one of the important families of distributions in lifetime 

tests. In this paper, a new generalized version of this distribution which is called the beta exponentiated 

gamma (BEG) distribution has been introduced. The new distribution is more flexible and has some 

interesting properties. A comprehensive mathematical treatment of the BEG distribution has been provided. 

We derived the rth moment and moment generating function for this distribution. Moreover, we discussed 

the maximum likelihood estimation of this distribution under a simulation study. 
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1.   Introduction 

Gamma distributions are some of the most popular models for hydrological processes. 

One of the important families of distributions in lifetime tests is the exponentiated 

gamma (EG) distribution. The exponentiated gamma (EG) distribution has been 

introduced by Gupta et al. (1998), which has cumulative distribution function (CDF) and 

a probability density function (pdf) of the form, respectively; 

( , , ) 1 (1 ) , 0, 0 and 0xG x e x x


               (1) 

where   and   are scale  and shape parameters respectively. The corresponding 

probability density function (pdf) is given by 

1
2( , , ) 1 (1 )x xg x xe e x


    


           (2) 

 

Shawky and Bakoban (2008) discussed the exponentiated gamma distribution as an 

important model of life time models and derived Bayesian and non-Bayesian estimators 

of the shape parameter, reliability and failure rate functions in the case of complete and 

type-II censored samples. In addition, the order statistics from exponentiated gamma 

distribution and associated inference was discussed by Shawky and Bakoban (2009). 

Ghanizadeh, et al. (2011), dealt with the estimation of parameters of the exponentiated 

gamma (EG) distribution with presence of outliers. The maximum likelihood and 

moment of the estimators were derived. These estimators are compared empirically using 
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Monte Carlo simulation. Singh et al. (2011) proposed Bayes estimators of the parameter 

of the exponentiated gamma distribution and associated reliability function under general 

entropy loss function for a censored sample. The proposed estimators were compared 

with the corresponding Bayes estimators obtained under squared error loss function and 

maximum likelihood estimators through their simulated risks. Khan and Kumar (2011) 

established the explicit expressions and some recurrence relations for single and product 

moments of lower generalized order statistics from exponentiated gamma distribution. 

Sanjay et el. (2011) proposed Bayes estimators of the parameter of the exponentiated 

gamma distribution and associated reliability function under general entropy loss function 

for a censored sample. Feroze and Aslam (2012) introduced Bayesian analysis of 

exponentiated gamma distribution under type II censored samples. Recently, Parviz et al. 

(2013) discussed classical and Bayesian estimation of parameters on the generalized 

exponentiated gamma distribution. 

 

Consider starting from the CDF  ( )G x   of a random variable, Eugene et al. (2002) 

defined a generalized class of distributions by 

( ) (1 ) 1

0

1
( ) (1 )

( , )

G x a bF x w w dw
B a b

         (3) 

where 0a   and 0b   are two additional parameters whose role is to introduce skewness 

and to vary tail weight. And  

1 (1 ) 1

0
( , ) (1 )a bB a b w w dw          (4) 

is the beta function. The application of the 1( )X G V  to ( , )V B a b yields X  with 

CDF (2). The class of generalized distributions (3) has been receiving considerable 

attention over the last years, in particular, after the recent studies by Eugene et al. (2002) 

and Jones (2004). Eugene et al. (2002) introduced what is known as the beta normal 

( )BN  distribution by taking ( )G x  in (3) to be the CDF of the normal distribution and 

derived some of its first moments. Many authors considered various forms of G  and 

studied their properties: Nadarajah and Kotz (2004) introduced the beta Gumbel ( )BGu

distribution by taking ( )G x  to be the CDF of the Gumbel distribution and provided 

closed form expressions for the moments, the asymptotic distribution of the extreme 

order statistics and discussed the maximum likelihood estimation procedure. Nadarajah 

and Gupta (2004) introduced the beta Frechet (BFr) distribution, and Cordeiro et al. 

(2008) (Beta Weibull distribution), Nadarajah and Kotz (2006) (Beta Exponential 

distribution), Akinsete et al. (2008) (Beta Pareto distribution), Silva et al. (2010) (Beta 

Modified Weibull distribution), Mahmoudi (2011) (Beta generalized Pareto distribution), 

Singla et al. (2012) (Beta generalized Weibull distribution), Cordeiro et al. (2012) (Beta 

generalized gamma distribution) and Cordeiro et al. (2012) (Beta generalized normal 

distribution). Jafari and Mahmoudi (2012) introduced beta generalized exponential 

distribution. Recently, Cordeiro et al. (2013) introduced the properties of beta 

exponentiated weibull distribution. The properties of ( )F x  for any beta G  distribution 

defined from a parent ( )G x  in Equation (3) could, in principle, follow from the 
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properties of the hyper geometric function which are well established in the literature; 

see, for example, Section 9.1 of Gradshteyn and Ryzhik (2000). We can write the 

Equation (3) by 

( )( ) ( , )G xF x I a b         (4) 

where  (1 ) 11
( , ) 0

( , ) (1 )
y a b

y B a b
I a b w w dw     denotes the incomplete beta function ratio, i.e. 

the CDF of the beta distribution with parameters  a   and  b  . For general a  and b , we 

can express (4) in terms of the well-known hyper geometric function defined by 

2 1

0

( ) ( )
( , , ; ) ,

( )  !

ii i

i i

F x x
i

 
  







  

where ( ) ( 1)...( 1)i i        denotes the ascending factorial. We obtain 
( )

( , )
( )

G x

aB a b
F x   2 1( ,1 , 1; ( ))F a b a G x  . The properties of ( )F x  for any beta G  

distribution defined from a parent ( )G x  in (3) could, in principle, follow from the 

properties of the hyper geometric function which are well established in the literature; 

see, for example, Section 9.1 of Gradshteyn and Ryzhik (2000). 

 

The probability density function (pdf) corresponding to (3) can be put in the form 

 
11( )

( ) ( ) 1 ( ) ,
( , )

bag x
f x G x G x

B a b

   

we noted that ( )f x  will be most tractable when the CDF  ( )G x   and pdf  ( ) ( )d
dx

g x G x   

have simple analytic expressions. Except for some special choices for ( )G x in Equation 

(3), as is the case when ( )G x is given by Equation (1), it seems that the pdf ( )f x  will be 

difficult to deal with in generality. Now we introduce the four parameter beta 

exponentiated Gamma ( )BEG  distribution by taking ( )G x   in (3) to be the CDF (1). The 

CDF of the BEG  distribution is given by 

1 (1 ) (1 ) 1

0

1
( ) (1 ) , 0

( , )

xe x a bF x w w dw x
B a b


             (5) 

for 0, 0a b  , 0   and 0  . The pdf and hazard rate function of the new 

distribution are, respectively 

 
2 1

1

( ) 1 (1 ) 1 1 (1 ) , 0
( , )

x b
a

x xxe
f x e x e x x

B a b


 

 
 

 


               (6) 

and 

 
1

1
2

1 1 (1 )

1 (1 ) 1 1 (1 )
( )

( ) ,
1 ( ) ( , ) ( , )

x

b
a

x x x

e x

xe e x e x
f x

h x
F x B a b I a b



 
  



  






  

   
 

          
 


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  Fig. 1: Curves of pdf for different parametric values 

P1 => (a  = 0.2, b = 0.1, λ = 0.1, θ = 0.1) 

P2 => (a  = 0.2, b = 0.1, λ = 0.1, θ = 0.5) 

P3 => (a  = 0.2, b = 0.1, λ = 0.1, θ = 1) 

P4 => (a  = 0.2, b = 0.1, λ = 0.1, θ = 2) 

 

Fig. 3: Curves of pdf for different parametric values 

P1 => (a  = 0.2, b = 0.1, λ = 0.1, θ = 0.1) 

P2 => (a  = 0.2, b = 0.1, λ = 0.1, θ = 0.5) 

P3 => (a  = 0.2, b = 0.1, λ = 0.1, θ = 10) 

P4 => (a  = 0.2, b = 0.1, λ = 0.1, θ = 20)

 

  

Fig. 2: Curves of pdf for different parametric values 

P1 => (a  = 0.2, b = 0.5, λ = 0.1, θ = 0.1) 

P2 => (a  = 0.2, b = 0.5, λ = 0.1, θ = 0.5) 

P3 => (a  = 0.2, b = 0.5, λ = 0.1, θ = 10) 

P4 => (a  = 0.2, b = 0.5, λ = 0.1, θ = 20) 

Fig. 4: Curves of pdf for different parametric values 

P1 => (a  = 0.1, b = 0.1, λ = 0.1, θ = 10) 

P2 => (a  = 0.5, b = 0.5, λ = 0.1, θ = 10) 

P3 => (a  = 0.9, b = 0.9, λ = 0.1, θ = 10) 

P4 => (a  = 2, b = 2, λ = 0.1, θ = 10) 

 

 

The probability density function in Equation (6) does not involve any complicated 

function. If X  is a random variable with pdf (6), we write ( , , , )X BEG a b   . The  

BGE  distribution generalizes some well-known distributions in the literature. If 

1a b  , we get Exponentiated gamma distribution, also when the shape parameter 

1a b       in both (1) and (2) give the CDF and pdf of gamma distribution with 

shape parameter 2   and scale parameter 1   i.e. (2,1)G . For more details about this 

distribution, see: Shawky and Bakoban (2008). 

 

The rest of the paper is organized as follows. In section 2, we demonstrate that the  

( )BEG   density function can be expressed as a linear combination of the exponentiated 

gamma. This result is important to provide mathematical properties of the BEG   model 

directly from those properties of the exponentiated gamma distribution. In section 3, we 
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discussed some important statistical properties of the ( )BEG  distribution such as 

quantile, and the ordinary moments and measures of skewness and kurtosis. The 

distribution of the order statistics is expressed in section 4. The maximum likelihood 

estimates of the four parameter index to the distribution are presented in section 5. The 

section 6 contains the simulation study. Finally the discussion and conclusion regarding 

the study have been presented in the section 7. 

2.   Expansion for the Density Function 

In this section, we presented two formulae for the CDF of the BEG  distribution 

depending if the parameter  0b   is real non- integer or integer. First, if 1z   and 0b   

is real non- integer, we have 

1

0

1 ( 1) ( )
(1 ) ( 1)

! ( )

j
b j j j

j

b b
z z z

j j b j






   
    

  
      (7) 

 

Using the expansion (7) in (5), the CDF of the  BEG   distribution when  0b    is real 

non-integer follows 

1 (1 ) (1 ) 1

0

1 (1 ) 1

0

0

1
( ) (1 )

( , )

( ) ( 1)

( , ) ! ( )

x

x

e x a b

j
e x a j

j

F x w w dw
B a b

b
w dw

B a b j b j















     


     



 

 
 

 


 

and then 

( )

0

( ) ( 1)
( ) 1 (1 )

( ) ! ( )( )

j
a j

x

j

a b
F x e x

a j b j a j


 








  
       

    (8) 

 

Equation (8) reveals the property that the CDF of the BEG  distribution can be expressed 

as an infinite weighted sum of CDFs of EG  distributions,  

0

( ) ( 1) ( , , ( ))
( ) .

( ) ! ( )( )

j

j

a b G x a j
F x

a j b j a j

 



   


   
  

when  0b    is integer, using the expansion (7) in (5) , we get  

1
1 ( )

0

1 ( 1)
( ) 1 (1 )

( , ) ( )

jb
b a j

x

jj

F x e x
B a b a j


 


 





  
       

    (9) 

 

Again, the same property of Equation (8) holds but now the sum is finite. Expression (8) 

and (9) are the main results of this section. Also the pdf (6) can be expressed in mixture 

from in terms of CDFs of the exponentiated gamma distributions, if b  is real non- 

integer, we have  

2

0

( 1)
( ) ( , , 1) ( , , )

( , ) ! ( )

x j

j

xe
f x G x a G x j

B a b j b j


   

 




 

 
    (10) 
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and if  b   is integer, then 

2 1
1

0

( ) ( , , 1) ( 1) ( , , ).
( , )

x b
b

j

jj

xe
f x G x a G x j

B a b


   

 




 
   

 


 

3.   Statistical Properties 

This section is devoted to studying statistical properties of the ( )BEG  distribution, 

specifically the quantile function, moments and moment generating function 

3.1  Quantile Function 

The quantile  
qx   of the  ( )BEG   distribution can be easily given as 

1 (1 )

( , )( ) ( , ) ( )
xe x

q a b qF x I a b P X x


   
  

        (11) 

where  
1

( )( ) ( ),q BEGx F u  is given by the following relation 

1

1

( , )(1 ) 1
u

x

a be x I
               (12) 

3.2 Moments 

In this subsection we discussed the  thr   moment for  ( )BEG   distribution. Moments are 

necessary and important in any statistical analysis, especially in applications. It can be 

used to study the most important features and characteristics of a distribution (e.g., 

tendency, dispersion, skewness and kurtosis). 

Theorem (3.1) 

If  X   has  ( , )BEG x    , ( , , , )a b     then the  thr   moment of  X   is given by the 

following 

 

2
1 ( ) 1

2
0 0 0

( 2)
( ) ( 1)

( , ) ( 1)

m
b j a k

j k

r r m
j k mj k m

r m
x

B a b k






   
  



 
  

      
     

   
   (13) 

Proof: 

Let  X   be a random variable with density function (10). The  thr   ordinary moment of 

the  ( )BEG   distribution is given by 

)

0

2 1
1

1

0

1
1

1

0

( ) ( ( , )

1 (1 ) 1 (1 )
( , )

1 (1 ) 1 (1 )

r r

r

x b
a

r x x

b
a

r x x x

x E X x f x dx

xe
x e x e x dx

B a b

C x e e x e x dx


 

 

 
  




 

 



 
   


    

  

              

              
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where 
2

,
( , )

C
B a b


  

setting 
1

1

0

1 (1 ) ( 1) 1 (1 )
b

b j
x j x

jj

e x e x
 

  



 



                  
    (14) 

then 

1 ( ) 1
1

0

0

( ) ( 1) 1 (1 )
b j a

j r x x

r
jj

x C x e e x


  


     



 
       

 
  

but  

( ) 1( ) 1

0

1 (1 ) ( 1) (1 )
j aj a

x k kx k

kk

e x e x


  


  
 



 
       

 
    (15) 

then 

1 ( ) 1
1 ( 1)

0

0 0

( ) ( 1) (1 )
b j a

j k r k x k

r
j kj k

x C x e x dx


 
 

      

 

  
    

  
  

again 

0

(1 ) ( )
k

k m

mm

x x 




 
   

 
        (16) 

 

Thus the  thr   moment is given by 

 
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( ) 1

2
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j a k

r m
k m
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k





 

 

      
   

   

  (17) 

which completes the proof . 

 

Based on the first four moments of the ( )BEG  distribution, the measures of skewness  

( )A   and kurtosis ( )k   of the ( )BEG  distribution can obtained as 

3
2
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3 1 2 1
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2 1

( ) 3 ( ) ( ) 2 ( )
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 
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3.3. Moment Generating function 

In this subsection we derived the moment generating function of  ( )BEG   distribution. 

Theorem (3.2): If X  has ( )BEG  distribution, then the moment generating function 

( )XM t  has the following form 

 

2
1 ( ) 1

2
0 0 0

( 2)
( ) ( 1)

( , ) ( 1)

m
b j a k

j k

X m
j k mj k m

m
M t

B a b k t





   
  




  

     
     

    
   (18) 

Proof. 

We start with the well known definition of the moment generating function given by 

0

2 1
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1
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x b
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 
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  

              


 (19) 

substituting from (14) and (15) into (19) we get 

 

 
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Which completes the proof. 

4.   Distribution of the order statistics 

In this section, we derive closed form expressions for the pdfs of the  thr   order statistic of 

the  ( )BEG  distribution, also, the measures of skewness and kurtosis of the distribution 

of the thr  order statistic in a sample of size  n   for different choices of ;n r  are presented 

in this section. Let  1 2, ,..., nX X X   be a simple random sample from ( )BEG  distribution 

with pdf and CDF given by (6) and (9), respectively. 

 

Let  1 2, ,..., nX X X   denote the order statistics obtained from this sample. We now give the 

probability density function of  :r nX , say : ( , )r nf x   and the moments of  :r nX  

, 1,2,...,r n . Therefore, the measures of skewness and kurtosis of the distribution of the 

:r nX  are presented. The probability density function of  :r nX   is given by 

   
1

:

1
( , ) ( , ) 1 ( , ) ( , )

( , 1)

r n r

r nf x F x F x f x
B r n r

 
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 
  (20) 
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where  ( , )F x   and ( , )f x   are the CDF and pdf of the ( )BEG distribution given by (6), 

(9), respectively, and  (.,.)B  is the beta function, since  0 ( , ) 1F x   , for  0x  , by 

using the binomial series expansion of   1 ( , )
n r

F x


  , given by 

   
0

1 ( , ) ( 1) ( , ) ,
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we have 

 
1

:

0

( , ) ( 1) ( , ) ( , )
n r

r jj

r n

j

n r
f x F x f x

j


 



 
     

 
     (21) 

substituting from (6) and (9) into (21), we can express the  thk   ordinary moment of the  

thr   order statistics  :r nX   say  :( )k

r nE X   as a linear combination of the  thk   moments of 

the ( )BEG  distribution with different shape parameters. Therefore, the measures of 

skewness and kurtosis of the distribution of  
:r nX   can be calculated. 

5.   Estimation and Inference 

In this section, we determined the maximum likelihood estimates (MLEs) of the 

parameters of the  ( )BEG  distribution from complete samples only. Let 1 2, ,..., nX X X
 
be 

a random sample of size n  from ( , , , )BEG a b   The likelihood function for the vector of 

parameters ( , , , )a b    can be written as 

 
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Taking the log-likelihood function for the vector of parameters  ( , , , )a b     we get 
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  (22) 
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The log-likelihood can be maximized either directly or by solving the nonlinear 

likelihood equations obtained by differentiating (22). The components of the score vector 

are given by  

 1 1
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and 

 
1

log  
( ) ( ) log 1 1 (1 )

n
x

i

L
n a b n b e x

b


  




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    (26) 

where (.)  is the digamma function. We can find the estimates of the unknown 

parameters by maximum likelihood method by setting these above non-linear equations 

(23) - (26) to zero and solve them simultaneously. As the closed for expressions for the 

estimators cannot be derived we have obtained the estimated values numerically. 

6.   Simulation Study 

The simulation study has been conducted in order to have the numerical estimates for the 

parameters of the beta exponentiated gamma distribution. The samples of sizes 20, 50 

and 100 have been drawn from the distribution under 1000 replications. Different 

combinations of the parameters {(θ, λ, a, b) = (0.1, 0.1, 0.1, 0.1), (10, 10, 10, 10), (100, 

100, 100, 100), (100, 0.1, 0.1, 0.1), (0.1, 100, 0.1, 0.1), (0.1, 0.1, 100, 0.1) and (0.1, 0.1, 

0.1, 100)} have been assumed to investigate and compare the performance of the 

estimates. The amounts of variances for the estimates of each parameter have been 

reported in the parenthesis in the tables. 
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Table 1:   MLE and variances for the different values of θ, λ, a and b 

(θ, λ, a, b)  n ̂  ̂  â  b̂  

(0.1, 0.1, 0.1, 0.1) 

20 
0.13108 0.14014 0.13187 0.14116 

(0.06584) (0.03661) (0.05695) (0.07296) 

50 
0.12491 0.12660 0.12619 0.12884 

(0.04259) (0.02819) (0.04881) (0.03539) 

100 
0.11942 0.11516 0.11415 0.11959 

(0.03170) (0.02112) (0.03270) (0.02905) 

(10, 10, 10, 10) 

20 
13.22759 14.03771 13.25134 14.23258 

(1.41686) (0.56764) (1.23619) (1.55018) 

50 
12.47687 12.44025 12.48110 12.79116 

(0.87680) (0.43504) (0.90339) (0.53345) 

100 
11.23081 11.15227 10.98506 11.38695 

(0.42148) (0.30988) (0.49297) (0.40885) 

(100, 100, 100, 100) 

20 
119.03190 0.13571 0.14701 0.13405 

(8.01888) (0.03387) (0.05143) (0.06863) 

50 
116.05310 0.13531 0.13362 0.12747 

(5.19113) (0.02719) (0.04399) (0.03368) 

100 
108.16250 0.11077 0.11784 0.11017 

(3.18452) (0.01944) (0.03099) (0.02812) 

Table 2:   MLE and variances for the different values of θ, λ, a and b 

(θ, λ, a, b)  n ̂  ̂  â  b̂  

(100, 0.1, 0.1, 0.1) 

20 
0.12729 133.27437 0.12940 0.13805 

(0.06160) (4.40349) (0.05355) (0.06860) 

50 
0.12255 123.70440 0.12153 0.12404 

(0.03967) (3.42400) (0.04452) (0.03190) 

100 
0.11591 109.72504 0.11035 0.11547 

(0.02945) (2.65382) (0.02974) (0.02654) 

(0.1, 100, 0.1, 0.1) 

20 
0.12863 0.13705 125.40299 0.13707 

(0.06191) (0.03442) (6.84961) (0.06826) 

50 
0.12030 0.12189 123.29934 0.12640 

(0.03884) (0.02541) (5.92897) (0.03296) 

100 
0.11545 0.11119 108.76204 0.11607 

(0.02883) (0.01930) (4.10896) (0.02700) 

(0.1, 0.1, 100, 0.1) 

20 
0.12962 0.13828 0.12931 135.38948 

(0.06025) (0.03408) (0.05395) (8.72897) 

50 
0.12254 0.12514 0.12404 124.02699 

(0.03974) (0.02575) (0.04628) (3.98361) 

100 
0.11788 0.11305 0.11271 114.50213 

(0.03011) (0.01976) (0.02989) (3.46003) 

(0.1, 0.1, 0.1, 100) 

20 
119.03190 0.13571 0.14701 0.13405 

(8.01888) (0.03387) (0.05143) (0.06863) 

50 
116.05310 0.13531 0.13362 0.12747 

(5.19113) (0.02719) (0.04399) (0.03368) 

100 
108.16250 0.11077 0.11784 0.11017 

(3.18452) (0.01944) (0.03099) (0.02812) 
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Table 3:  Skewness and Kurtosis for the distribution using different parametric 

values 

Parametric Space 
a  = 0.2, b = 0.5,      

λ = 0.1, θ = 0.1 

a  = 0.2, b = 0.1,      

λ = 0.1, θ = 1 

a  = 0.9, b = 0.9,  

λ = 0.1, θ = 10 

a  = 2, b = 2,  

λ = 10, θ = 10 

Coefficient of 

Skewness 
0.30 0.63 0.83 0.14 

Coefficient of 

Kurtosis 
3.71 4.08 3.26 4.31 

 

We have used the real life data set regarding the breaking strengths of 64 single carbon 

fibers of length 10, presented Lawless (2003) for the analysis in the following table.  

Table 4:   MLE and variances for θ, λ, a and b using real life data set 

Parameters ̂  ̂  â  b̂  

MLE and variances 
18.4721 3.8731 0.9848 0.5781 

(3.1269) (1.8673) (0.3919) (0.2170) 

7.   Discussion and Conclusion 

The aim of this paper is to introduce a new distribution named beta exponentiated gamma 

distribution and to discuss its properties. The maximum likelihood estimates for the 

parameters of the distribution has been obtained. Tables 1-2 show that the estimated 

values of the parameters converge to the true values as sample size increases. The larger 

choice of the true parametric values inflates the variances associated with the estimates of 

each parameter; however this is natural consequence of the lager values of the 

parameters. Keeping the value of one of the parameter specified, the smaller choice of 

other parametric values imposes a positive impact on the estimation of the specified 

parameter. On the whole, the proposed estimators are consistent and can be used in 

various real life situations. The table 3 suggests that the distribution is positively skewed 

and leptokurtic under different parametric values. In addition the newly introduced 

distribution is much more flexible than its available counterparts, so it will be very useful 

for modeling failure time data. The flexibility of the beta exponentiated gamma model, 

however, occurs at the cost of its increased complexity, but a comprehensive 

programming in different computer software can tackle with these complexities. In future 

this work can be extended by considering the analysis of the distribution under censored 

samples. 
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