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Abstract 

This paper introduces a new four parameter Rayleigh distribution which generalizes the transmuted 

generalized Rayleigh distribution introduced by Merovci (2014). The new model is referred to as 

exponentiated transmuted generalized Rayleigh (ETGR) distribution. Various mathematical properties of the 

new model including ordinary and incomplete moments, quantile function, generating function and Rényi 

entropy are derived. We proposed the method of maximum likelihood for estimating the model parameters 

and obtain the observed information matrix. Two real data sets are used to compare the flexibility of the new 

model versus other models. 

Keywords:   Exponentiated, Generating Function, Rényi Entropy, Moments of residual 

life, Order Statistics, Maximum Likelihood.  

1.   Introduction 

Burr (1942) introduced twelve different forms of cumulative distribution functions for 

modeling lifetime data. Among those twelve distribution functions, Burr-Type X and Burr-

Type XII received the maximum attention. For more detail about those two distributions 

seeJohnson et al. (1994). Recently, Surles and Padgett (2001) introduced two-parameter 

Burr Type X distribution and correctly named as the generalized Rayleigh distribution. 

 

The procedure of expanding a family of distributions for added flexibility or to construct 

covariate models is a well-known technique in the literature. In many applied sciences such 

as medicine, engineering and finance, amongst others, modeling and analyzing lifetime 

data are crucial. Several lifetime distributions have been used to model such kinds of data. 

The quality of the procedures used in a statistical analysis depends heavily on the assumed 

probability model or distributions. Because of this, considerable effort has been expended 

in the development of large classes of standard probability distributions along with relevant 

statistical methodologies. However, there still remain many important problems where the 

real data does not follow any of the classical or standard probability models. 
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Merovci (2014) introduced transmuted generalized Rayleigh (TGR) distribution. In this 

article we present a new generalization of the TGR distribution called Exponentiated 

transmuted generalized Rayleigh (ETGR) distribution.The cumulative distribution 

function (cdf) of the TGR distribution is given by 

     
       2 2

, , , = 1 exp 1 1 exp , > 0TGRG x x x x
 

      
                (1) 

where 𝛼, 𝛽 > 0, |𝜆| ≤ 1 and 𝛽 is a scale parameter, 𝛼 is a shape parameter and 𝛼 the 

transmuted parameter. The corresponding probability density function (pdf)  is given by 
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Recently, the 𝐹𝛼 distributions (or exponentiated distributions) have been shown to have a 

wide domain of applicability, in particular in modeling and analysis of lifetime data. 

 

Definition 1: Let 𝐹  be an absolutely continuous cdf with support on (𝑎, 𝑏), where the 

interval may be unbounded, and let   be a positive real number. The random variable 

𝑋 has an 𝐹𝛼 distributions if its cdf ,  denoted by, 𝐺(𝑥) is given by 

 ( ) = ( ) = ( ) , > 0, > 0.G x F x F x x
 

 

which is the  th power of the base line distribution function 𝐹(𝑥) and the corresponding 

pdf of X  is given by 

    
1

= ( ) .g x f x F x





 
 

The class of 𝐹𝛼  distributions contains certain well-known distributions for which their 

cdf’s have closed forms (see, e.g. Gupta and Kundu (1999, 2000, 2001, 2007) and 

Nadarajah (2011)). Shakil and Ahsanullah (2012) introduced some distributional properties 

of order statistics and record values from 𝐹𝛼  distributions. 

 

Recently, various generalizations have been introduced based on the above definition. 

Gupta et al. (1998) first proposed a generalization of the standard exponential distribution, 

called the exponentiated exponential (EE) distribution. Nadarajah and Kotz (2006) 

proposed the exponentiated gamma (EΓ), exponentiated Fréchet (EF) and exponentiated 

Gumbel (EGu) distributions. Ebraheim (2014) introduced exponentiated transmuted 

Weibull distribution. Huang and Oluyede (2014) introduced exponentiated 

Kumaraswamy-Dagum (EKw-D) distribution. 

 

We aim in this paper to define and study the ETGR distribution. The rest of the paper is 

organized as follows. In Section 2, we define the new distribution and provide some plots 

for its pdf. Section 3 provides some statistical properties including quantile function, 

random number generation, moments, generating functions, incomplete moments, mean 
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deviasions and Rényi entropy are derived. In Section 4, the order statistics are discussed. 

In Section 5, we present the reliability function (rf), hazard rate function (hrf), reversed 

hazard rate function (rhrf), cumulative hazard rate function (chrf), moments of the residual 

life and moments of the reversed residual life. The maximum likelihood estimates (MLEs) 

for the model parameters and the observed information matrix are provided in Section 6. 

In Section 7, the ETGR distribution is applied to two real data sets to illustrate its 

usefulness. Finally, some concluding remarks are given in Section 8. 

2.   The ETGR Distribution 

The ETGR distribution and its sub-models are presented in this section. The cdf of ETGR 

(for > 0X ) is given by 

       2 2
, , , , = 1 exp 1 1 exp . F x x x

 
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              

 (3) 

 

Using the series expansion  

(1 − 𝑧)−𝑘 = ∑
Γ(𝑘 + 𝑗)

𝑗! Γ(𝑘)

∞

𝑗=0

𝑧𝑗 , 0 < 𝑧 < 1, 𝑘 > 0. 

 

The cdf of the ETGR distribution in (3) can be expressed as 
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where   is a scale parameter representing the characteristic life, ,  and   are shape 

parameters representing the different patterns of the ETGR distribution and   the 

transmuted parameter. The corresponding pdf of (4) is given by 
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 (5) 

 

Using the series expansion the pdf in (5) can be expressed in the mixture form as 
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and  
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Plots of the  pdf for selected parameter values are given in Figure 1. 

 

Figure 1:   Plots of the density function for some parameter values 

 

 

The ETGR distribution is very flexible model that approaches to different distributions 

when its parameters are changed. The subject distribution includes as special cases four 

well known probability distributions as illustrated in corollary 1. 

 

Corollary 1  If X  is a random variable with pdf  in (5), then we have the following seven 

cases. 

 

1. When =1,  we get the transmuted generalized Rayleigh distribution, TGR(

, , , x   ). 

 

2. When =1  and = 0, we get the generalized Rayleigh distribution, GR( , , x  ). 

 

3. When = =1,   we get the transmuted Rayleigh distribution, TR( , , x  ). 

 

4. When = =1   and = 0,  we get the Rayleigh distribution, R( , x ).  

3.   Statistical Properties 

The statistical properties of the ETGR distribution including quantile and random number 

generation, moments, moment generating function, incomplete moments, mean deviasions 

and Rényi entropy are discussed in this section. 

3.1  Quantile and Random Number Generation 
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The quantile function (qf), say ,qx  of X  is the real solution of the following equation 

( ) = .qF x q Then, we can write 

 
2 1/1 1 41

= ln 1 ,0 1.
2

q

q
x q




  

 

 
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      
   

 

   (7) 

 

By putting = 0.5q  in Equation (7) gives the median of X . Simulating the ETGR random 

variable is straightforward. If U  is a uniform variate on the unit interval (0,1) , then the 

random variable = qX X  at =q U  follows (5). 

3.2  Moments 

The  r th moment, denoted by , 
'

r of X  is given by the following theorem. 

Theorem 1 If X  is a continuous random variable has the ETGR ( , , , , ), x    then the r

th non-central moment of ,X  is given by  
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Proof: 

By definition 
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where    
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By substituting from Equation (10) into Equation (9), we obtain 
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Therefore, the first and second moments of the ETGR random variable can be obtained by 

setting =1,2r  respectively, in Equation (8) as follows 
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Then we can get the variance by the relation    2 2( ) = .Var X E X E X  

 

Based on the above Theorem (1) the coefficient of variation, coefficient of skewness and 

coefficient of kurtosis of the ETGR ( , , , , )x     distribution can be obtained according to 

the well-known relations. 

 

Corollary 2  Using the relation between the central moments and non-centeral moments, 

we can obtain the thn  central moment, denoted by ,nM  of a ETGR random variable as 

follows 
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3.3   Generating Function 

The moment generating function ( mgf )  of the ETGR distribution is given by the 

following theorem. 

 

Theorem 2 If X  is a continuous random variable has the ETGR ( , , , , ), x    then the  

moment generating function ( mgf ) of , X denoted by    = ,tX

XM t E e  is given as 

follows 

 

Proof: 

By definition 
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By substituting from Equation (8) into Equation (11), we obtain  XM t , which completes 

the proof. The measure of central tendency, measure of dispersion, coefficient of variation, 

coefficient of skewness and coefficient of kurtosis of X  can be obtained according to the 

above relation in Theorem 2. 

3.4   Incomplete Moments 

The main application of the first incomplete moment refers to the Bonferroni  and Lorenz 

curves. These curves are very useful in economics, reliability, demography, insurance and 

medicine. The answers to many important questions in economics require more than 

justknowing the mean of the distribution, but its shape as well. This is obvious not  only in 

the study of econometrics but in other areas as well. The 𝑠th incomplete moments, denoted 

by   , s t of the ETGR . .r v  is given by 
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= ,
t

s

s t x f x dx   

 

Using Equation (6) and the lower incomplete gamma function, we obtain 
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Another application of the first incomplete moment is related to the mean  residual life and 

the mean waiting time given by     1 1; = 1 / ( ; )m t t R t t     and 

      1 1; = / ; ,M t t t F t    respectively. 

 

The amount of scatter in a population is evidently measured to some extent by the totality 

of  deviations from the mean and median.  The mean deviations about the mean 

  1( = (| |))
'

X E X   and about the median     =X E X M   of X can be, used 

as measures of spread in a population, expressed by 
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from (8), 1( )
'

F   is simply calculated from (3), 1 1( )
'

   is the first incomplete moments that 

comes from (12) by setting = 1s  and =M  is the median of X . 

3.5  Rényi and q-Entropies 

Entropy refers to the amount of uncertainty associated with a random variable. The Rényi 

entropy has numerous applications in information theoretic learning, statistics (e.g. 

classification, distribution identification problems, and statistical inference), computer 

science (e.g. average case analysis for random databases, pattern recognition, and image 

matching) and econometrics, see Källberg et al. (2014). The Rényi entropy of a random 

variable X  represents a measure of variation of the uncertainty. The Rényi entropy is 

defined by  

     
1

= 1 log , > 0 and 1.I X f x dx

   



   

 

Therefore, using Equation (6), the Rényi entropy of the random variable X  is given by 

       
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                


 

But 
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 2 1 /21
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exp = .
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x k x dx k
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Then, we can write 

   
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Where 
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The q-entropy, say ( )qH X , is defined by  

 1
( ) = log 1 ( ) , > 0 and 1.

1

q

qH X f x dx q q
q




 

   

   

 
 

1

1 /2

, , =0

1
1 1/ 2 1

21
( ) = log ,

1 2

1 1

q qq

q j i
q

jik
j i k

q

H X
q

k q


  

 


 




 

  
    

  
 
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where  
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4.   Order Statistics 

If 1 2, ,..., nX X X  is a random sample of size n  from a continuous population with cdf 

 F x  and pdf   f x , and 
     1 2

, ,...,
n

X X X  be the corresponding order statistics. Then the 

pdf of 
  j

X is given by 

 
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The joint pdf of 
 :i n

X  and 
 :

, 1 ,
j n

X i j n   is given by  
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for 0 .x y     
 

The pdf of the  j th order statistics for a ETGR distribution  is given by    

 
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 = 1 .
x

xl e
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Therefore, The pdf of the largest order statistics 
 n

X  is 

      
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and the pdf of the smallest order statistics 
 1

X  is 
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The joint pdf of 
 :i n

X  and 
 :

, 1 ,
j n

X i j n   for a ETGR distribution is given by  
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where 
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y
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Then the minimum and maximum joint probability density of the ETGR distribution, 

denoted by  1: : , ,n nf x y is 
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Corollary 3 Let 1 2, ,...,  nX X X are independently identically distributed ordered random 

variables from the Exponentiated transmuted generalized Rayleigh distribution having 

median order X 1m  probability density function is given by 
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5.   Reliability Analysis 

In this section we introduce the reliability function, the hazard rate function, the cumulative 

hazard rate function, reversed hazard rate, moments of the residual life and moments of the 

reversed residual life for the ETGR ( , , , , ).x     

5.1 The Reliability, Hazard Rate, Reversed Hazard Rate and Cumulative Hazard 

Rate Functions 

The rf also known as the survival function, which is the probability of an item not failing 

prior to some time ,t  is defined by ( ) =1 ( ).R x F x  The rf of the ETGR distribution, say 

( , , , , , ),R x a b    can be a useful characterization of life time data analysis. It can be 

defined as ( , , , , , ) =1 ( , , , , , )R x a b F x a b       
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     2 2
( , , , , , ) = 1 1 exp 1 1 exp .R x a b x x

 
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               

 

 

The other characteristic of interest of a random variable is the hrf. The hrf of the ETGR 

distribution also known as instantaneous failure rate, say ( ),h x  is an important quantity 

characterizing life phenomenon. It can be loosely interpreted as the conditional probability 

of failure, given it has survived to the time t . The hrf of the ETGR distribution is defined 

by ( , , , , , ) = ( , , , , , ) / ( , , , , , )h x a b f x a b R x a b          
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                 
 

It is important to note that the units for ( )h x  is the probability of failure per unit of time, 

distance or cycles. These failure rates are defined with different choices of parameters. 

 

Plots of the hazard rate function of ETGR for selected parameter values are provided in 

Figure 2. 

 

Figure 2:   Plots of the hrf for some parameter values 

 

 

Applications of hrf are quite well known in the statistical literature. Recently the rhrf also 

becomes quite popular among statisticians, see for example Gupta and Han (2001). 

Anderson et al. (1993) showed that the rhrf plays the same role in the analysis of left-

censored data as the hazard function plays in the analysis of right-censored data. The rhrf, 

being the ratio of probability density function and the corresponding distribution function, 

say   ,x  is defined by   = ( ) / ( ).x f x F x  Therefore, the rhrf is given by 
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𝜏(𝑥, 𝛼, 𝛽, 𝜆, 𝛿) =
2𝛼𝛿𝛽2𝑥exp[−(𝛽𝑥)2]{1 + 𝜆 − 2𝜆(1 − exp[−(𝛽𝑥)2])𝛼}

{1 − exp[−(𝛽𝑥)2]}{1 + 𝜆 − 𝜆(1 − exp[−(𝛽𝑥)2])𝛼}
 

 

The chrf of the ETGR distribution, say ( , , , , , ),H x a b    is defined by 

0
( , , , , , ) = ( , , , , , ) = ln ( , , , , , ),

x

H x a b H x a b dx R x a b          
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( , , , , , ) = ln 1 1 exp 1 1 exp .H x a b x x
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It is important to note that the units for ( , , , , , )H x a b    is the cumulative probability of 

failure or death per unit of time, distance or cycles. 

5.2   Moments of the Residual Life  

Several functions are defined related to the residual life. The failure rate function, mean 

residual life function and the left censored mean function, also called vitality function. It 

is well known that these three functions uniquely determine ( )F x  (see Gupta (1975), Kotz 

and Shanbhag (1980) and Zoroa et al. (1990)). Other interesting concept is the partial 

moments, defined by  

     = , for =1,2,...
k

k
t

g t x t dF x k


  

Some applications of moments in Bayesian point estimation and in management science 

problems have been mentioned by Winkler et al. (1972). Gupta and Gupta (1983) show 

that  kg x  uniquely determines ( )F x . 

Definition2  Let X  be a random variable ( . .r v ), usually representing the life length for a 

certain unit at age t (where this unit can have multiple interpretations), then the r.v. 𝑋𝑡 =

𝑋 − |𝑋 > 𝑡 represents the remaining lifetime beyond that age. 

 

Moreover, the k th moments of residual life, denoted by 

   = ( | > ), =1,2,3,...,
k

km t E X t X t k  uniquely determine ( )F x  (see Navarro et al. 

(1998)). The k th moments of the residual life of ,X  say   ,km t  is given by 
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Then, we an write 
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where   1, = .a y

b
a b y e dy


 

  is the the upper incomplete gamma function. 

 

Another interesting function is the mean residual life function (MRL), defined by 

    1 = | ,m x E X x X x   and it represents the expected additional life length for a unit 

which is alive at age x . The MRL of the ETGR distribution can be obtained by setting 

= 1k  in the above equation. Guess and Proschan (1988) gave an extensive coverage of 

possible applications of the mean residual life. The MRL has many applications in survival 

analysis in biomedical sciences, life insurance, maintenance and product quality control, 

economics and social studies, Demography and product technology (see Lai and Xie 

(2006)). 

5.3  Moments of the Reversed Residual Life 

The𝐾 𝑡ℎ moments of the reversed residual life, denoted by 

    = | , =1,2,3,...,
k

kM t E t X X t k   uniquely determine ( )F x  (see Navarro et al. (1998)). 

The k th moments of the residual life of ,X  say   ,kM t  is given by 

 
 

   
0

1
= .

t k

kM t t x dF x
F t

  

 

Then, The k th moments of the reversed residual life of X  is given by 
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Body Math The mean waiting time (MWT) also known as mean reversed residual life 

function, defined by     1 = | ,M t E t X X t   and it represents the waiting time elapsed 

since the failure of an item  on condition that this failure had occurred in  0, x . The 

MRRL of the ETGR distribution can be obtained by setting = 1k  in the last equation. 

6.   Estimation and Inference 

The maximum likelihood estimators (MLEs) for the parameters of the ETGR distribution 

is discussed in this section. Consider the random sample 1 2, ,..., nX X X  of size n  from this 

distribution with unknown parameter vector 𝜃 = (𝛼, 𝛽, 𝜆, 𝛿)𝑇 . Then, the log-likelihood 

function, say ℓ = ln ℓ(𝜃), becomes 
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ℓ = 𝑛(ln 2 + ln 𝛼 + ln 𝛿 + 2 ln 𝛽) + ∑ ln 𝑥𝑖 − ∑ (𝛽𝑥𝑖)2𝑛
𝑖=1

𝑛
𝑖=1 + (𝛼𝛿 − 1) ∑ ln{1 −𝑛

𝑖=1

exp[−(𝛽𝑥𝑖)
2]} + ∑ ln{1 + 𝜆 − 2𝜆(1 − exp[−(𝛽𝑥𝑖)2])𝛼} + (𝛿 − 1) ∑ ln{1 + 𝜆 −𝑛

𝑖=1
𝑛
𝑖=1

𝜆(1 − exp[−(𝛽𝑥𝑖)2])𝛼}        (13) 

 

Equation (13) can be maximized either directly by using the R (optim function), SAS 

(PROC NLMIXED), Ox program (sub-routine MaxBFGS) or by solving the nonlinear 

likelihood equations obtained by differentiating (13). Therefore, the score vector is given 

by 𝑈(𝜃) =
𝜕ℓ

𝜕𝜃
= (

𝜕ℓ

𝜕𝛼
,

𝜕ℓ

𝜕𝛽
,

𝜕ℓ

𝜕𝜆
,

𝜕ℓ

𝜕𝛿
). Let   2

 = 1 expi iS x  
 

,

   
2 22

= ( ) expi i iP x x 


 
 

. Then,  

𝜕ℓ

𝜕𝛼
=

𝑛

𝛼
+ 𝛿 ∑ ln 𝑆𝑖

𝑛
𝑖=1 − 2𝜆 ∑

𝑆𝑖
𝛼 ln 𝑆𝑖

1+𝜆−2𝜆𝑆𝑖
𝛼

𝑛
𝑖=1 + 𝜆(1 − 𝛿) ∑

𝑆𝑖
𝛼 ln 𝑆𝑖

1+𝜆−𝜆𝑆𝑖
𝛼

𝑛
𝑖=1   (14) 

𝜕ℓ

𝜕𝛽
=

2

𝛽
[𝑛 − ∑ (𝛽𝑥𝑖)2𝑛

𝑖=1 ] + (𝛼𝛿 − 1) ∑
𝑃𝑖

𝑆𝑖

𝑛
𝑖=1 − 2𝛼𝜆 ∑

𝑃𝑖𝑆𝑖
𝛼−1

1+𝜆−2𝜆𝑆𝑖
𝛼

𝑛
𝑖=1 +

𝛼𝜆(1 − 𝛿) ∑
𝑃𝑖𝑆𝑖

𝛼−1

1+𝜆−𝜆𝑆𝑖
𝛼

𝑛
𝑖=1         (15) 

𝜕ℓ

𝜕𝜆
= ∑

1−2𝑆𝑖
𝛼

1+𝜆−2𝜆𝑆𝑖
𝛼

𝑛
𝑖=1 + (𝛿 − 1) ∑

1−𝑆𝑖
𝛼

1+𝜆−𝜆𝑆𝑖
𝛼

𝑛
𝑖=1      (16) 

and 

𝜕ℓ

𝜕𝛿
=

𝑛

𝛿
+ 𝛼 ∑ ln 𝑆𝑖

𝑛
𝑖=1 + ∑ ln(1 + 𝜆 − 𝜆𝑆𝑖

𝛼)𝑛
𝑖=1 .    (17) 

 

The maximum likelihood estimator 𝜃 = (�̂�, �̂�, �̂�, 𝛿) of = ( , , , )       is obtained by 

solving the nonlinear system of equations (14) through (17). These equations cannot be 

solved analytically and statistical software can be used to solve them numerically by means 

of iterative techniques such as the Newton-Raphson algorithm. For the four parameters 

ETGR distribution all the second order derivatives exist. 

 

For interval estimation of the model parameters, we require the 4 4  observed information 

matrix, whose elements are derived in appendix A,     =  for , = , , , .rsJ J r s      

Under standard regularity conditions, the multivariate normal  
1

4 0, )N J 


(  distribution 

can be used to construct approximate confidence intervals for the model parameters. Here, 

)J (  is the total observed information matrix evaluated at .  Therefore, approximate 

100(1 )%  confidence intervals for 𝛼, 𝛽, 𝜆 and   can be determined as: 

�̂� ± 𝑍𝜙

2

√𝐽𝛼𝛼 ,     �̂� ± 𝑍𝜙

2
√𝐽𝛽𝛽 ,      �̂� ± 𝑍𝜙

2

√𝐽𝜆𝜆 and  𝛿 ± 𝑍𝜙

2

√𝐽𝛿𝛿, where 𝑍𝜙

2

 is the upper  th 

percentile of the standard normal distribution.  

7.   Applications 
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In this section we provide two applications of the ETGR distribution to two real data sets. 

The first data set, strength data, which were originally reported by Badar and Priest (1982) 

and it represents the strength measured in GPA for single carbon fibers and impregnated 

1000-carbon fiber tows. Single fibers were tested under tension at gauge lengths of 10 mm 

(data set 1) and 20 mm (data set 2), with sample sizes n = 63 and m = 74 respectively. The 

data are presented below. Several authors analyzed these data sets. Surles and Padgett 

(1998, 2001), Raqab and Kundu (2005) observed that the generalized Rayleigh distribution 

works quite well for these strength data. Kundu and Gupta (2006) analyzed these data sets 

using two-parameter Weibull distribution after subtracting 0.75 from both these data sets. 

After subtracting 0.75 from all the points of these data sets, Kundu and Gupta (2006) fitted 

Weibull distribution to both these data sets with equal shape parameters. These two data 

sets also studied by Rao (2014) to estimation of reliability in multicomponent stress-

strength based on generalized. Here I would like to mention that the exact number of (data 

set 2) is 74 instead of 69, which mentioned in Kundu and Gupta (2009). Here we used these 

data to compare the proposed ETGR model with TGR, GR and R distributions. 

 

The first data set (gauge lengths of 10 mm) from Kundu and Raqab (2009). This data set 

consists of, 63  observations: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 

2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 

2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 

3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 

3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 

4.395, 5.020. 

 

The second data set (gauge lengths of 20 mm) is also obtained from Kundu and Raqab 

(2009). These data set consists of 74  observations: 1.312, 1.314, 1.479, 1.552, 1.700, 

1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006,  2.021, 2.027, 2.055, 2.063, 2.098, 

2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 

2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 

2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 

2.880, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 

3.233, 3.433, 3.585, 3.585. 

 

In order to compare the distributions, we consider some criteria like 2  (maximized log-

likelihood), AIC  (Akaike Information Criterion), CAIC  (the consistent Akaike 

Information Criterion) and BIC  (Bayesian information criterion) for the real data set. The 

model with minimum AIC or BIC or CAIC  value is chosen as the best model to fit the 

data, where 

 = 2 2 , = 2 logAIC k BIC k n     

and 

 = 2 2 / 1 .CAIC kn n k     

where k  is the number of parameters and n  is the sample size. 

Table 1 lists the MLEs of the model parameters for ETGR, TGR, GR and R distributions, 

the corresponding standard errors are given in parentheses. In this table we shall compare 
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between the four distributions. The statistics −2ℓ̂, 𝐴𝐼𝐶, 𝐵𝐼𝐶and CAIC evaluated at the 

maximum likelihood estimates. 

Table 1: MLEs under the considered models and corresponding 2 , ,AIC BIC  and 

values CAIC  (Data set 1) 

Model   Estimates   Measures  

 �̂� �̂�     2  AIC  BIC  CAIC  

ETGR 2.4051
 

0.5347
 

0.5830  6.9503  115  122.975
 

131.5  123.6  

  0.88

 

 0.051

 

 0.207

 

 1.488

 

    

TGR 6.2143
 

0.5021  0.1207
 

 118.64  124.639
 

131.069
 

125.047
 

  1.216

 

 0.011

 

 0.369

 

     

GR 6.213  0.5145    122.626
 

126.626
 

130.912
 

126.826
 

  0.966

 

 0.024

 

      

R  0.320    187.044
 

189.044
 

191.187
 

189.11  

   0.020

 

      

 

Table 2 lists the MLEs of the model parameters for ETGR, TGR, GR and R distributions, 

the corresponding standard errors are given in parentheses. In this table we shall compare 

our new model with other sub models. 

Table 2: MLEs under the considered models and corresponding 2 , ,AIC BIC  and 

values CAIC  (Data set 2) 

Model Estimates Measures 

 �̂� �̂�     2  AIC  BIC  CAIC  

ETGR 2.1214  0.6985  0.3201  7.790  113.4  121.352  130.6  121.9  

  0.315   0.040   0.228   1.727      

TGR 5.5052  0.6245  0.3599   123.61  129.61  136.5  129.95  

  0.776   0.017   0.253       

GR 7.784  0.6445    135.202  139.202  143.811  139.371  

  1.625   0.024        

R  0.3962    188.302  190.302  192.606  190.375  

   0.023        

 

Tables 1 and 2 compare the ETGR model with the TGR, GR, and Rayleigh distributions. 

We note that the ETGR model gives the lowest values for the ,AIC BIC  and CAIC  

statistics among all fitted models. So, we conclude that the ETGR distribution provides a 
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superior fit to these data than the other models. These numerical results are obtained using 

the MATH- CAD PROGRAM. 

8.   Conclusions 

In this paper, We propose a new four-parameter distribution, called the exponentiated 

transmuted generalized Rayleigh (ETGR) distribution, which extends the transmuted 

generalized Rayleigh (TGR) distribution (Merovci, 2014). An obvious reason for 

generalizing a standard distribution is the fact that the generalization provides more 

flexibility to analyze skewed data. We derive some mathematical properties including for 

the ordinary and incomplete moments, quantile function, generating function, moments of 

the residual life, moments of the reversed residual life. We furthur study the Rényi and q-

entropies, using our model as an underlying distribution. The estimation of parameters is 

approached by the method of maximum likelihood Two numerical examples illustrate that 

the ETGR distribution can be used quite effectively to provide better fits than its sub 

models, TGR, GR, and Rayleigh distributions.  
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Appendix A 

The elements of the observed information matrix are given by 
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