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Abstract 

The main objective of this paper is to explore suitability of some entropy-information measures for 

introducing a new optimality censoring criterion and to apply it to some censoring schemes from some 

underlying life-time models. In addition, the  paper investigates four related issues namely; the  effect of 

the parameter of parent distribution on optimal scheme, equivalence of schemes based on Shannon and 

Awad sup-entropy measures, the conjecture that the optimal scheme is one stage scheme, and  a conjecture 

by Cramer and Bagh (2011) about Shannon minimum and maximum schemes when parent distribution is 

reflected power. Guidelines for designing an optimal censoring plane are reported together with theoretical 

and numerical results and illustrations. 
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1. Introduction 

Researchers conduct experiments to collect information about a phenomenon of interest. 

However, there are several statistical procedures/schemes that lead to loss of information. 

For example a sample has less information than the underlying probability model, a 

statistic has less information than the sample and censored sample has less information 

than the complete sample. The question is how to measure this loss in information and 

how to reduce it. In this paper, we are concerned with defining a suitable measure of 

information (objective function) that can select optimal progressive type II censoring 

schemes and apply it in designing  censoring schemes from some parent lifetime 

distributions. 

 

In a progressive type II censoring scheme, researchers put   units under test, decide to 

observe only       failure lifetimes and select a pre-specified censoring scheme 

1( ,..., )mR R R   that represents the number of units that will be removed, respectively, at 

the   observed failure times. The class of all possible censoring schemes is  

1

1

( , ) {( ,..., ): {0,1,..., }, }
m

m j j

j

CS m n R R R n m R n m


     .   

Assume that the life times of these units are independent and identically distributed as a 

continuous random variable X  whose pdf  and cdf  are  f  and F  respectively.  Let   

denote the parameter space and       be the parameter of the parent distribution of X . 
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Let : :j m nX  denote the thj  order statistic in a sequence of m  observations under type II 

progressive censoring scheme. Then for     (   )   the pdf  of  

1: : : :( ,..., )m n m m nX X X  at the observed sample   1: : : :( ,..., )m n m m nx x x  is given by 

: : : :

1

( ; ) ( , ) (1 ( ; )) j

m
R

R R j m n j m n

j

f x c f x F x  


  ,  1: : : :...m n m m nx x  ,  

where 
1

m

R i

i

c r


  and 
1

1

- 1 - 1-
m i

j j

j i j

r m i R n i R
i



 

      . 

 

Let Cf  denote  pdf of complete sample of order statistics 1: :( ,..., )n n nX X  when  m n  

and 1( ,..., ) (0,...,0)mC R R  . For      ,  ( )  (       )  denotes a one-stage 

censoring scheme when    {
                

              
  and its corresponding       are denote 

by  

  
( )

 {
                   

                    
  

 

The stopping rule of a progressive type II censoring experiment is         . 

Moreover, the total time on test (Cumulated time of each unit in the experiment) is  

: : : 1: : 0: :

1

( ), 0
m

m n j j m n j m n m n

j

T r X X with X



    (see e.g. Cramer (2002)). 

The problem of selecting an optimal progressive type II censoring scheme has been 

considered by several researchers.  

 

Burkschat (2008) used  ψ-optimality criterion and a partial order relation on   (   ) to 

show that  ( )     ( )         (   ).  Using this result he showed that   ( )  
minimizes  ( )   (      ).  Moreover, if the parent distribution is      (decreasing 

failure rate) then  ( ) minimizes both  ( )   (    ), and  ( )     (      ). An 

extra condition is needed for   ( ) to minimize  ( )     (    ) when distribution is 

   . He also showed that, if the parent distribution is     (increasing failure rate), then 

 ( )  minimizes ( )   (    ) . 

 

Soliman (2005), obtained MLE and Bayes estimators of reliability, hazard function and 

parameters of the Burr-XII model, using three loss functions. Based on simulation study, 

he observed that for fixed    and  ,   ( ) seems to provide the smallest variance for the 

estimates of  reliability and hazard functions. 

 

The BLUE‟s of parameters when the underlying distribution is a member of the family 
1/1 (1 ( ) ) ; 0#

{ ( ) : ( , ) ; 0, 1 ( ) 0, , 0}
1 ; 0

q

x

sign q x q
F F x q x sign q x

e q


 

 

   
      

 

had been obtained by several researches. Based on numerical approximation to 

covariance matrix and numerical search procedures among all possible schemes, it is 

conjectured that “One-stage censoring scheme is the optimal one”. Most frequently (1)R  

and ( )mR  are optimal, see e.g. Balakrishnan and Aggarawala (2000), Ng et al. (2002, 
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2004), Burkschat et al. (2006, 2007), and Balakrishnan et al. (2007). For the same family, 

Burkschat (2008) considered best linear equivariant estimation and Löwner ordering on 

mean squared error matrices. Burkschat et al. (2007) also used maximum and minimum 

eigenvalues of these matrices. In both cases, he concluded that the optimal scheme is 

either (1)R  or ( )mR  based on the value of q. 

 

For location or scale family, Balakrishnan et al. (2008) suggested the optimality criterion 

 (   )  (
 

  
    ( (   ))   where λ(.;.) is the failure rate function. They showed that 

(1)R  and ( )mR  are optimal when  (   ) is increasing and decreasing respectively. 

Moreover, based on numerical study they conjectured that the optimal scheme is ( )kR  for 

some k . 

 

Oja (1981) had shown that ( )mR  minimizes marginal Shannon entropy of duration of 

experiment, i.e.  
: :: :( ) (log ( ))

m m nm m n XH X E f X   if F  has  DFR.  

 

Based on numerical searching procedure, Awad (2013) showed that the optimal scheme 

that maximizes the informational efficiency with respect to each of ten  -sup-entropy 

measures is  ( ) when the underlying distribution is a (shape parameter) Pareto 

distribution. Same result is obtained theoretically by Haj Ahmad and Awad (2009b) when 

the underlying distribution is scale-shape Pareto distribution.   

 

Cramer and Bagh (2011) showed that the best approximation to the distribution of an     

sample from any distribution is given by the first step censoring  ( ) since it minimizes 

Kullback-Liebler, (KL), divergence measure, Whereas the worst plan results from Type-

II right censoring   ( )  since it maximized KL from that distribution. 

 

Hofmann et al. (2005), introduced an asymptotic progressive censoring model, and found 

optimal censoring schemes for location-scale families based on the determinant of the 

covariance matrix of the asymptotic best linear unbiased estimators. The procedure is 

illustrated numerically when the parent distributions are Weibull and normal. It is 

observed that in many situations the obtained optimal schemes significantly improve 

upon regular Type-II right censoring. 

 

Pradhan and Kundu (2009) used ME algorithm to obtain MLE estimators of the 

parameters of generalized exponential distribution together with its       quantile. They 

applied the missing information principle based on Fisher information matrix. Moreover, 

they applied the        quantile information measure. They said that “Till date, we do not 

have any efficient algorithm to find the optimal censoring scheme in this case.” Then 

they proposed sub-optimal censoring scheme. Through a simulation study it is observed 

that the sub-optimal scheme need not be a one-step scheme. 

 

This paper aims at 

a) Suggesting an optimality criterion, based on entropy-information measure, for 

selecting an optimal progressive type II scheme. 
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b) Investigating the suitability of a collection of entropy-information measures as 

optimality functions based on the suggested criterion. 

c) Exploring the effect of the parameter of the parent distribution on the optimal 

scheme. 

d) Exploring the uniqueness of optimal censoring scheme together with being one 

stage scheme. 

e) Exploring the conjecture of Cramer and Bagh (2011) about minimum and 

maximum Shannon entropy censoring schemes when the underlying distribution 

is reflected power.  

f) Commenting on the Burkschat (2008) criterion which is based on a partial order 

relation on the space of all censoring scheme   (   ). 

 

Optimality criteria aim at minimizing cost of experimentation, duration of 

experimentation and/or  total time, variability  in  estimators, or maximizing amount of  

available information in sampling scheme. In this paper, we are concerned only with 

objective functions that are based on entropy-information measures.  

 

Let       and       be join        of a progressive type II censored sample based on a 

scheme  , and a complete sample scheme  . We classify an entropy-information 

measure   , with respect to a given censoring scheme     (   ), and a given value of  

     as follows. 

 

a) If      (    )    (    ), then    is called of  max-type,  (available information -

type) with respect to given (   ) ,   

b) If    (    )    (    )     then    is called of min-type,  (missing information -

type) with respect to given (   ),  

c) If      (    )    (    )  then    is called of equivalent-type with respect given 

(   ). 

This classification motivates the following definition of optimality criteria.   

Definition 1 

a) For a given  , the efficiency of a scheme ( , )R CS m n  with respect to *I  is  

     (   )      *
  (    )

  (    )
 
  (    )

  (    )
+.  

b) For a given  , a  censoring scheme  ( , )R CS m n  is called              within 

  (   )  if       (   )         (   )  *     (   )+  .  

c) For a given  , let      denote the              scheme  and     denote the joint 

    of  the scheme   . Then  the relative efficiency of a scheme R   with respect 

to the scheme      and the measure  *I  is   

      (   )      *
  (    )

  (    )
 
  (    )

  (    )
+  
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It is clear that        (   )    and         (   )   . A measure *I  is 

considered suitable for selecting optimal scheme if it is a function of  . Moreover, a 

scheme   may be classified as  

a) Low efficient with respect to     if       (   )  
 

 
. 

b) Almost optimal with respect to    if        (   )        and       (    )  
 

 
. 

 

The following information measures will be used in the sequel 

a)  Fisher information (1925):  2( ; ) ( log( ( , )))RFI X E f X 





  

b)  Kullback-Leibler divergence measure (1951):     (     )     
,   .

  ( ⃗   )

  ( ⃗   )
/- 

c)  Shannon entropy (1948):   (  )    ,   (  (    ))-. 

d)  Awad sup-entropy (1987):    (  )   (  )      ( ),           *  (    )+ 
 

The paper is organized as follows. Section 2 introduces some preliminary facts about 

reflected power distribution and generalized order statistics that are used in the paper.  

Section 3 investigates suitability of Fisher information, Kullback-Leibler divergence, 

Shannon entropy and Awad sup-modification of Shannon entropy as objective functions 

to select an optimal progressive type-II censoring scheme when the underlying 

distribution is reflected power.  It also deals with properties of  both Shannon entropy and 

its Awad  modification of progressive censoring schemes  and provides a partial proof of  

Cramer and Bagh (2011) conjecture. Moreover, it introduces Shannon maximum and 

minimum types together with Shannon equivalence of schemes at a given value of  . 

Furthermore it deals with properties of Awad-sup entropy together with equivalence of 

schemes on the parameter space. Section 4provides results of graphical and numerical 

computations and comparisons between schemes based on Shannon and Awad-sup 

entropy measures when parent distribution is reflected power. Finally, Section 5 provides 

a discussion of obtained results and conclusions of this study. 

2. Preliminaries 

Let us put  n   iid units under test that have a reflected power distribution, (    (   )), 

with parameter   of the probability density function 
1( , ) (1 ) ; 0 1, 0f x x x       , cumulative distribution function 

( , ) 1 (1 )F x x     , failure rate   (   )     
 (   )

   (   )
 

 

   
   i.e.   has IFR, and 

quantile  function 
1 1/( , ) 1 (1 )F x x     . The joint     of the progressive censoring 

scheme   (       )    (   )   is  

  (    )        ∏ (        ) (    )   
                          (1) 

 

This density is bounded if       *
 

    
          +. Under this condition 

            (    )        .       (2) 
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For the purpose of  the evaluation of the above defined information measures, notice that 

progressive type-II  order statistics are special cases  of generalized ordered statistics (see 

e.g. Kamps (1995)). The following lemma is used in the sequel. 

Lemma 1 (Kamps 1995) 

There exist  ,..., . . .
1

U U i i d
m

 uniform random variables on the interval [0,1] such that 

          (  ∏  
 

 

   
   )               in distribution. 

Corollary 1: For the progressive type II sample with scheme     (   ) from 

reflected power distribution with parameter  , there exist  ,..., . . .
1

U U i i d
m

 uniform 

random variables on the interval [0,1] such 

a)          ∏  
 

 

    
      in distribution,      (3) 

b)    (    )         ∏   
 

    
(     )

       
        in distribution    (4) 

c)     (    )  
  ( ⃗   )

  ( ⃗   )
    

  

  
 ∏  

 

(     
  
  

)
 
        in distribution   (5) 

Proof:  

a) Using Lemma 1 and quantile function of distribution it follows that 

           (  ∏  
 

 

   
   )    ∏  

 

 

    
   ,          

b) Put (3) in (1) to get 

  (    )         ∏ (∏  
 

 .    /  

    
   ) 

   ,    

Since 
,

,

1 1 1

m

i j

i j j i

bjm m
b

i i

j i i

a a 

  


   

  (    )         ∏ 
 

∑
 .    /  

   

 
   

 

   

 

   (    )         ∏   
 

    
(     )

       
     

 

c)     (    )  
  ( ⃗   )

  ( ⃗   )
 

  

  
∏ (    )

 (     ) 
    

    (    )    
  

  
 ∏ (∏  

 

 

    
   ) (     )    

   
  

  
  ∏  

 

(     
  
  

)
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Corollary 2: 

Consider the progressive type II sample with scheme     (   ) from reflected power 

distribution with parameter  . Then 

 .   .  (    )//      (  )       ( )    
 

   
 

 

 
 ∑

(     )

    

 
   ,  (6) 

  ,    (    (    ))-     .
  

  
/  ∑ .     

  

  
/ 

      ∑  *
  

  
    .

  

  
/   

     +  (7) 

Proof 

All required forms follow by  using corollary 1, the independence of the involved 

uniform random variables, and the facts  that ( log( )) 1E U   and 
1

( ) ; 1
1

E U  


  
  

3. Information Measures  of  Progressive censored scheme  

The first condition on an information (objective) function to be suitable for selecting an 

optimal censoring scheme is being a function of the censoring scheme  . This section 

aims at deciding which of the above defined information measures satisfy this first 

condition.

 
3.1 Fisher Information 

Let us investigate the suitability of Fisher information through the following 

Lemma 2: 

For any progressive type-II censoring scheme ( , )R CS m n , when the underlying 

distribution is  reflected power with parameter  , the  Fisher information 
1 2
( ; )R

m
I f 


  

Proof: 

Take the logarithm of (1), to get 

*

: : : :

1 1

log( ) log( ) (1 ) log(1 ) log(1 )
m m

R R j j m n j m n

j j

f c m R x x 
 

         

Hence  
2 *

2 2

Rf m

 


 


 , 

1 2
( ; )

m
I R 


  and 

1 2
( ; )C

n
I f 




 
 

Therefore Fisher information measure is of maximum-type but it cannot pick an optimal 

scheme since it is free of the censoring scheme  . Moreover, the efficiency of any 

scheme is 

   .  

3.2 Divergence Measures   

The Kullback-Leibler divergence measure between    and    is given (7). So, it is a 

function of     and    through        and      for          This measure looks like the 
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well-known entropy loss function, So,    (   ) may be interpreted as the total loss of 

using    as an alternative to    The symmetric form of this measure is  

 (   )  
 

 
(  (   )    (   ))       

 

 
∑ ( 

  

  

 
    

  

  
)  

 

The smaller this value is the more closely are the two schemes. So, it may be used to find 

alternative schemes of an existing traditionally used one. This type of problem will be 

fully investigated in another paper. 

3.3 Entropy Measures 

In this section we investigate optimality and efficiency of progressive type-II schemes 

with respect to two entropy measures.  

3.3.1 Shannon Entropy  

Corollary 3: 

Consider the progressive type II sample with scheme     (   ) from reflected power 

distribution with parameter   .  Then 

a)  (  )      (  )       ( )    
 

   
 

 

 
∑

(     )

    

 
       (8) 

b)  (  )      (  )       ( )    
 

 
,      (9) 

c) If        *
 

    
          +  then   (  )    

 

 

 

 
 

 

 
∑

      

    

 
     (10) 

d) If       then for complete sample    (  )   (  
 

 
),    (11) 

Proof: 

Use the definitions of    and     entropy  measures together with  (6)  and (2)  to get (8) 

and (10).  In (8) and (10), put     , and                     , i.e.           

to get (9) and (11).    

 (  ) and   (  ) are functions of   through    
            .  So, it is worth 

investigating them as information functions that may be used to select optimal scheme. 

This is done in the rest of the paper. 

 

It should be mentioned that Cramer and Bagh (2011) treated reflected power distribution 

using Shannon entropy. However, the treatment and the results in this paper are 

completely different from those of Cramer and Bagh. 

Theorem 1: 

Let  (  ),    , and        denote Shannon entropy  measure, joint     of progressive type 

II censoring scheme     (   ), and joint     of complete first    order statistics 

when the parent distribution is reflected power (    (   )). Then 
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1.      (   )      (    )   (    ).     (12) 

2. The Shannon efficiency of   is     ( )  
 (    )

 (    )
  which takes value between zero 

and one. Moreover,           ( (    ))  
 

 
  and            ( (    ))  

 

 
 ∑

     

  
 

 

 

 
   . 

3. There is no scheme   that is H-equivalent to the complete scheme C. However,  if 

the true value of    
  ∑

(     )

    
 
   

   
      (   ),  then    will be the most efficient 

scheme within   (   ). 

Proof: 

Since   plays an important role in the proof, set 

 ( )   (    )   (  )      (  )       ( )    
 

 
∑

(     )

    

 

   

 

Then  
  

  
 

 

  (
 

 
∑

     

  

 
     ) which equals zero at    

 

 
∑

     

  

 
        , (say). 

Note that         . Moreover,  ( ) is increasing when        , decreasing when 

      , and the maximum value of   is  

 (    )      (  )       (    )      (       
 ) 

 

By arithmetic-geometric mean inequality applied to the sequence 

   
(     )

    
, we get        

 

 
∑

(     )

    
 (∏

(     )

    

 
   

 
   )

 

 , 

(∏
(     )

    

 

   

)
 

  (
  

∏   
 
   

)
 

   
 

(∏   )
 

  
   

 
 

(  )   
 

 

These two inequalities imply that          
   

  ,  i.e.     
        and hence  (    ) the 

maximum value of  (    ) is negative. Moreover,        ( )          ( )     . 
Hence       (   )     (    )   .  

 

Rearrange terms of  (  ) in (9), and use the fact that     ( )        to get 

 (  )      (  )   {   .
 

 
/  

 

 
  }   .  

 

Now, set    ( )   (  )   (  ), use (8) and (9) and then rearrange terms to get  

  ( )     (
  

  
)  (   ),    (

 

 
)     

 

 
*
  ∑

(     )

    

 
   

   
+- 
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Note  that  
  

  
  ,  ∑

(     )

    

 
       and  use    .

 

 
/   

 

 
   with equality       

 

 
     to get    ( )      Hence (12) follows. 

 

The second part follows by dividing the inequalities in the (12) by  (  ) and using the 

L‟Hospital rule to calculate the limits. 

 

Finally, direct differentiation shows that    ( ) has a minimum value at        . 

The minimum value is    (    )     .
  

  
/  (   )    (

  ∑
(     )

    
 
   

   
). 

 

Since   (    )   , there is no scheme   that is Shannon equivalent to the complete 

scheme C. However, if the true value of        , then the scheme   will be the most 

efficient scheme within   (   ) since it is closest to  . 

Theorem 2: 

Let   and    be two schemes from   (   ). Use standard notations of   ,    and the 

corresponding    and   . Set   (   )   (    )   (    )   Then 

(a)  (    )   (    )              
∑ (     )(

 

  
 

 

  
) 

   

∑     (
  

  
) 

   

; provided that  

∑     (
  

  
) 

        otherwise there is no    such value  (  )   (  ). 

(b) If         and  ∑    (
  

  
)    

     then 

(i)  (   )   (   )  when          

(ii)  (   )   (   )  when          

Proof 

(a) Use (8)   and the condition   ∑     (
  

  
) 

        to get 

  (    )   (     )  ⇔    .
  

  
/  

 

 
∑ (     ) (

 

  
 

 

  
)    

   ,  

 

Since,         , and      ∏   
 
   ,  part (a) follows. 

(Note that           since numerator and denominator have same sign.) 

 

(b) Note that   (   )  
 

 
∑  (     )(

 

  
 

 

  
) 

    ∑     (
  

  
) 

    and the condition 

       is equivalent to                  . Hence  

  (   )  *  
      

 
+∑    (

  

  
)
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Since ∑     (
  

  
) 

     , the required results follows. 

Remark 1: 

Mathematica10 code is used to illustrate Theorem 2. From the obtained output it is 

observed that 

1) When            ,  (*     +   )   (*     +   )  even though ∑     (
  

  
) 

      . 

Therefore the condition on equivalence of the two schemes (Theorem 2), that 

∑     (
  

  
) 

      is sufficient but not necessary. 

2) There  may be more than two schemes that are Shannon equivalent at the same value 

of  . For example, at             *     +  *     +   ( ), and at           ,  

*     +  *     +   ( ). This means that even if  ( ) or   ( ) are minimum or 

maximum Shannon plans, then they may not be unique.  

Corollary 4: 

(a)            (  ( )    )   (  ( )   )            
(   )∑    

 

     
 
     

∑       .  
   

     
/ 

     

 

(b)  (  ( )  )   (  ( )  )            
(   )∑   

 

     
 
   

∑      .  
   

     
/ 

   

,    

Proof:  

Set    ( )  and    ( ), then  the condition       holds. So, apply part (b)  of  

Theorem 2  to   and    , then  rewrite  
     

     
   

   

     
 ,  

     

     
   

   

     
 and 

   .
     

     
/       (  

   

     
), to get (a) . Part (b) follows from (a) when     and 

   . 

Corollary 5: 

If      ( )          ( )  then 

a)              (   appeared in conjecture of  Cramer and Bagh (2011)) 

b) ∑     (
  

  
) 

       

c)       

d)  ( ( )  )   ( ( )  )  when      

e)  ( ( )  )   ( ( )  )  when          
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So, this provides a proof of the second part of Cramer and Bagh (2011) conjecture, i.e. 

“In particular,   ( ) yields a smaller entropy than   ( ) for      
(   )∑

 

     
 
   

∑    .  
   

     
/ 

   

 

(   )       .  For     ;   ( ) leads to a smaller entropy than  ( ) ” 

Remark 2: 

1) Part (b) of Theorem 2 shows that  if        then it is not necessarily true that  S 

is more informative than R  as it may be concluded from the partial order relation 

given by Burkschat (2008).   

2) For      the curves of  (  ( )   )     (  ( )   )  concaves downward and 

intersect at        and the entropy curve of any  other scheme  (    )   is also 

concaves downward and will intersect  each of   (  ( )   )      (  ( )   ) at 

      ( )  and       ( )  respectively. There is always a scheme   such that 

 (    ) is either less than or greater than  (  ( )    )   (  ( )    ).  This 

remark supports the second part of Cramer and Bagh (2011) conjecture. 

3.3.2. Awad sup-entropy AH 

Theorem 3 

Let   (     ),    , and      denote  Awad modification of Shannon entropy  measure, 

joint     of progressive type II censoring scheme     (   ), and joint     of 

complete first   order statistics when the parent distribution is reflected power 

(    (   )). Set      *
 

    
        +, and      

  ∑
(     )

    
 
   

   
 . Assume that 

   . Then      (   )  

a) A scheme R is A-equivalent to the complete scheme  at         

b)     (     )    (     )   when         ,  but 

  (     )    (     )    when         . 

Proof: 

It is obvious that   (     )       and        (   )    (     )    since each is 

the negative of the expected value of logarithm of  a plausibility function which is 

bounded between zero and one.  

Set     ( )    (     )    (     ). The forms of    (     )    and     (     )  in 

(10) and (11), imply that  

   ( )   (   ),    
 

 
*
  ∑

(     )

    
 
   

   
+- ;    . 
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Hence    ( )    when   
  ∑

(     )

    
 
   

   
     .  Hence part (a) is proved. 

So,     ( )  (   ),  
    

 
  -, and hence part (b) follows since     and       . 

Remark 3: 

1) Theorem 3 implies that         (   ) Awad sup- entropy is of maximum 

type when           , of minimum type when          , and equivalent type 

when       . 

2) A scheme R is equivalent to the complete scheme   at        . It is interesting 

to note that this point is also the point at which   is  the most Shannon efficient 

scheme within the class    (   ).  

3)   (     ) is defined when     but   (     ) is defined when   (   ) 

where      *  (      )        +   . 

4)         (     )     , and          (     )      

5)          (     )    ∑
(     )

    

 
      , and            (     )      

6) Direct differentiation implies that   (     )          (     )  are increasing 

and concave downward functions in  . 

Theorem 4: 

1.            (     )    (     )         ∑  (      )(
 

    

 
    

  

    
)       

2. If                  ; then    (     )    (     ) . 

3. There are no pairs of single stage schemes that are   -equivalent. 

4.     ,    (  ( )   )    (  ( )   ) 

Proof: 

Set    (   )    (     )    (     ). Then, use (10) to get 

  (   )  
 

 
∑ (     )(

 

  
 

 

  
) 

   . Hence, first part follows. 

The second part follows from the first one and the condition                  . 

For the third part, by contradiction, assume that there is a           such that 

  ( ( )   )    ( ( )   ). 

This implies that ∑ (     )(
 

 
 
( )  

 

 
 
( ))

 
          (13) 
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On the other hand, it is clear that 

 

 
 
( )  

 

 
 
( )  {

 

     
 

 

     
               

                                          
,  and 

(     )(
 

  
( )  

 

  
( ))  {

   
   

     
                 

                                          
  (14) 

 

It is clear that (13) contradicts (14). So, the required result is obtained. 

 

Finally, for the last part, 

  (  ( )   )    
 

 

 

 
 

 

 
∑

     

       

 
      

 

 

 

 
 

 

 
(   ),   (15) 

  (  ( )   )    
 

 
∑

     

       

 
      

 

 

 

 
 

 

 
∑

     

       

 
       (16) 

 

The required result follows since      ∑
     

       

 
    (   ) . 

Remark 4: 

1. It is interesting to note that the condition on equivalence of a pair of censoring 

schemes  is free of the parameter   . This means that if the condition   

∑  (      )(
 

    

 
    

  

    
)    holds then the two schemes   and   are 

   equivalent  for all  . 

2. For a given      if      is a measure of maximum type  with respect to   then    is 

more informative than   . Otherwise if it is a measure of minimum type with 

respect to   then scheme   is  more informative than  .  

3. Table 2 reports all   -equivalent pairs of schemes when          and 

         . For these values of n and m , it is interesting to note that there 

are no pairs of    equivalent schemes other than those reported  in  Table 2.   

Corollary 6:  

     (   ) &   ; 

  (  ( )   )    (     )    (  ( )   ) 

Proof 

Note that       (   )       , and                      . (17) 

Hence,     
    (   )

     

  
 

     

     
              and     

    (   )

     

  
 {
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Now using the form of   (     ), (15) and (16),  it follows that  

       (   )   (     )    
 

   
 

 

 
∑

      

       

 
      (  ( )   ), 

       (   )   (     )    
 

 

 

 
 

 

 
(   )    (  ( )   ), 

 

Hence,      (   )  

  (  ( )   )    (     )    (  ( )   ). 

Remark 5: 

It is interesting to note that, this result neither implies   ( )  nor   ( ) is the optimal 

scheme since the decision depends on the entropy AH being min- or max- type with 

respect to these schemes and the parameter  . In our terminology the scheme whose 

entropy is the closest to the entropy of the complete sample is the optimal one.    

5.   Numerical Computations  

To explore the Cramer and Bagh (2011) conjecture and illustrate the use of the obtained 

theoretical results we have developed a Mathematica10 code to do all necessary 

illustrations. Typical part of output of this code is reported in the appendix that includes 

the following parts; 

1. Table 1 reports the values of Shannon entropy in vicinity of   , (that appeared in  

conjecture of Cramer and Bagh  (2011)),  i.e. at               for all 

schemes in   (   ), where          Note that (    is the same for all schemes in 

  (   )). From Table 1 we observe  that   

a) At     there is only one pair of schemes *     +     *     + that are 

Shannon equivalent. These two schemes are minimum Shannon plan, i.e. 

such a plan is not unique. 

b) For  the scheme  *     +,  (    )   (  )    (    )  

c) For  the scheme  *     +,  (    )   (  )    (    ) . Same holds for 

each of the following schemes *     + *     + *     + *     + 

d) For the scheme {3,  1,  1},  (    )    (    )    (  ). At      this 

scheme is the unique maximum Shannon plan. It is also not one stage 

scheme. 

e) For the schemes *     +  and *     +,    (    )      (    )   (  ) 

f) For all other schemes in CS(3,8) that are not mentioned above,  the above 

inequalities in (a)  of scheme *     + hold. 

g) When    is close enough to       the minimum scheme when      is 

*     + while it is *     + when       On  the other hand, the maximum 

scheme is *     +  when      , while it is  *     + when      .   

h) This indicates how the minimum and maximum schemes are very sensitive 

to the value of the unknown parameter of the parent distribution.   
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2. Table 2  reports all pairs of schemes (   ) such that R and S are A-equivalent for 

   ( )    and    takes all possible values between 2 and    .  

3. Table 3 reports values of    and      (    )  at which          ( )  
  ( )  is minimum  and the   efficiency of the scheme is greater than      
    . At the same values of   ,  each of  those schemes  is   equivalent to the 

complete scheme  . It is observed that total number of schemes is  126  out of 

which only 13 schemes can lead to   efficiency more than           and 

the values of     belongs to the sub- parameter space [1.5954, 1.64563].  This 

suggests that if someone has prior information that the value of   is in this sub-

space, and he is planning to put 10 units under test and to observe only 5  failure 

times, then he may only take into consideration these 13 schemes. 

4. Figure 1a provides   typical plots  of  (   ) ,  (   ),     (   ), and     , 

while  figure 1b provides   typical plots  of   (   ) ,A (   ),     (   ), and 

     when   *         +. It is seen from Figure 1b that the curves of (   ) , 

and A (   )  intersect  at exactly one point. This means that the censoring 

scheme may be minimum, maximum or equivalent type based on value of  . 

From  the  curve of     (   ), the partition points  of parameter space are  

*
    

    
 
   

   
+, i.e. If   

    

    
 then the scheme   has low    efficiency which is 

less than 
 

 
    , otherwise the efficiency is more than 0.5.  The   efficiency is 

one at exactly one value of    
   

   
. If    is to the left of the previous value  then 

the scheme is minimum type and if it is  to the right then the scheme is maximum 

type. Furthermore the    efficiency starts decreasing for   
   

   
. 

5. Figure 1c: provides typical plots of A-entropies and A-efficiencies of 

 ( )  ( )        *         +. It is observed from these tables and solutions for 

cut points of the obtained curves that each of   ( )  ( )       , has  -efficiency 

equals one at   
  

  
 
  

  
      

    

    
  respectively. In addition, among these three 

schemes, the most informative scheme is  ( )  when   (         ),    when 

  (               ), otherwise it is  ( )  

4. Conclusions and Recommendations 

In this paper, it is proved that  

a) Any two one-stage censoring schemes           from   (   ) are not Awad 

sup-entropy equivalent. However, they are Shannon equivalent at a single value 

of    

b) Any  schemes           from   (   ) may be Awad equivalent for all values of 

      However, they may be Shannon equivalent at a single value of  . 

Moreover, for a given value of    there may  exist more than two schemes that are 

H-equivalent.   

c) Each scheme R is Awad equivalent to C  at the single value 

     
  ∑

(     )

    
 
   

   
  . 



On Optimal Designs of Some Censoring Schemes 

Pak.j.stat.oper.res.  Vol.XII  No.1 2016  pp1-23 17 

There is no scheme    that  is Shannon equivalent to the complete scheme    

However,    is the most H-efficient scheme  when       , in the sense  that the 

minimum distance between the curves of  (   )  and  (   ) occurs at       

d)         (   )      (    )   (    ).  

However,       (   )       (     )    (     )   when         ,  but 

  (     )    (     )    when         . 

e)               (   )       ( ( ))    ( )    ( ( )). However, this 

does not mean that   ( )  is the most informative scheme, and it also does not 

mean that  ( ) is the least informative one within the class   (   ). To be more 

specific, let    (  (   )  { ( )   ( )}) then it is clear that   

a) If        ( ), then  ( ) is of maximum type and it is  the A-optimal 

scheme  within the class   (   ). 

b) If       ( ), then  ( ) is of minimum type, and it is the A-optimal scheme  

within the class   (   )  

c) If            ( ) , then   is maximum type  while  ( ) is minimum 

type, and the A-optimal scheme is either  ( )          within the class 

(  (   )  { ( )   ( )})   

d) If     ( )        , then   is minimum type  while  ( ) is maximum type, 

and the A-optimal scheme  either  ( )          within the class 

(  (   )  { ( )   ( )})   

f) Concerning Shannon  entropy it is observed that 

1. The value of    that in Cramer-Bagh (2011) conjecture is the point at 

which  ( )       ( ) are   Shannon entropy equivalent.  

2. The maximum and minimum Shannon entropy schemes are sensitive to 

the value of the parameter  . They need not be unique, neither being 

 ( ) or  ( ). 

g) The suggested definition of efficiency that is based on classifying schemes 

as being of maximum, minimum, or equivalent type seems to be more 

appropriate than that definition that just compares the values of the entropy 

in the schemes without taking this issue into consideration.  

h) At the design stage of a progressive censoring plan one may take into 

consideration the following remarks. 

1) If someone observed failure times of   units out of the   units that 

under test, then it seems reasonable to claim that any scheme with 

efficiency less than     is a scheme with low efficiency. In such case,  

it is not preferable to use censoring  since any inference based on low 

efficient scheme will not be beneficial. 
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2) A prior information (from past experience or a pilot study on complete 

samples) about the possible value of the unknown parameter is very 

helpful in selecting optimal scheme, since optimal schemes are 

sensitive to the values of  . 

3) Since, for a given  , there may be no A- or H-equivalent scheme, one 

may find an equivalent or almost efficient scheme for some     in the 

vicinity of the prior value of   and searches for a most efficient 

scheme.  

4) The researcher is advised to find all equivalent schemes to the selected  

optimal one  and then to use his judgment based on practical situations 

and objectives of his experiment to use the most appropriate one. 

Finally for a given underling distribution, one may construct tables that report       
                             (   ) that are greater that    . All equivalent 

schemes should be grouped. Based on such a table, the researcher may use the prior 

subspace of values of    to select m,  n and R that may lead to efficiency greater than 

m/n. If there is no scheme with efficiency greater than m/n, it is advised to use censoring. 
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Appendix 

Table 1:  Shannon entropy in vicinity of            ;                 

   (      )  (    )  (      ) 

{0,  0,  5} -2.15633 -2.41488 -2.68608 

{0,  1,  4} -2.05564 -2.29813 -2.55855 

{0,  2,  3} -1.95494 -2.17335 -2.4176 

{0,  3,  2} -1.87135 -2.0496 -2.26691 

{0,  4,  1} -1.87405 -1.97201 -2.13542 

{0,  5,  0} -2.4054 -2.26248 -2.26419 

{1,  0,  4} -2.01811 -2.23766 -2.48268 

{1,  1,  3} -1.91741 -2.11288 -2.34173 

{1,  2,  2} -1.83381 -1.98913 -2.19104 

{1,  3,  1} -1.83652 -1.91154 -2.05955 

{1,  4,  0} -2.36787 -2.20201 -2.18832 

{2,  0,  3} -1.89836 -2.06171 -2.269 

{2,  1,  2} -1.81476 -1.93796 -2.1183 

{2,  2,  1} -1.81746 -1.86037 -1.98681 

{2,  3,  0} -2.34882 -2.15083 -2.11559 

{3,  0,  2} -1.83652 -1.91154 -2.05955 

{3,  1,  1} -1.83922 -1.83394 -1.92805 

{3,  2,  0} -2.37058 -2.12441 -2.05683 

{4,  0,  1} -1.95971 -1.87413 -1.91435 

{4,  1,  0} -2.49106 -2.1646 -2.04312 

{5  0,  0} -2.90193 -2.41488 -2.18561 

R Maximum  {2,1,2} {3,1,1} {4,0,1} 

H maximum -1.81476 -1.83394 -1.91435 

R minimum {5,0,0} {5,0,0} & {0,0,5} {0,0,5} 

H minimum -2.90193 -2.41488 -2.68608 

Table 2:   Pairs of AH-equivalent Schemes 

n m R S 

7 3 (2,0,2) (0,3,1) 

8 3 (3,0,2) (1,3,1) 

 4 (0,2,0,2) (0,0,3,1) 

9 3 (2,1,3) 

(4,0,2) 

(0,4,2) 

(2,3,1) 

 4 (0,3,0,2) 

(1,2,0,2) 

(0,1,3,1) 

(1,0,3,1) 

 5 (0,0,2,0,2) 

(2,0,0,0,2) 

(2,0,0,1,1) 

(2,0,0,2,0) 

(0,0,0,3,1) 

(0,2,0,1,1) 

(0,2,1,0,1) 

(0,2,1,1,0) 

10 3 (3,1,3) 

(5,0,2) 

(1,4,2) 

(3,3,1) 

10 4 (0,2,1,3) 

(0,4,0,2) 

(3,2,0,1) 

(0,0,4,2) 

(0,2,3,1) 

(0,2,4,0) 
 

n m R S 

10 4  (3,0,1,2) 

(3,1,0,2) 

(3,1,1,1) 

(3,1,2,0) 

(1,3,0,2) 

(2,2,0,2) 

 (0,3,2,1) 

(0,4,1,1) 

(0,5,0,1) 

(0,5,1,0) 

(1,1,3,1) 

(2,0,3,1) 

 5 (0,0,3,0,2) 

(0,1,2,0,2) 

(1,0,2,0,2) 

(3,0,0,0,2) 

(3,0,0,1,1) 

(3,0,0,2,0) 

(0,0,1,3,1) 

(0,1,0,3,1) 

(1,0,0,3,1) 

(1,2,0,1,1) 

(1,2,1,0,1) 

(1,2,1,1,0) 

 6 (0,0,0,2,0,2) 

(0,2,0,0,0,2) 

(0,2,0,0,1,1) 

(0,2,0,0,2,0) 

(0,0,0,0,3,1) 

(0,0,2,0,1,1) 

(0,0,2,1,0,1) 

(0,0,2,1,1,0) 
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Table 3:  Values of   at which "ΔHRC = H(R) - H(C)"              and the 

efficiency of the scheme is greater than           

Schemes             ( )  ( ) Efficiency  

{0,0,0,0,5} 7.27812 1.64563 -16.1624 -8.88423 0.549687 

{0,0,0,1,4} 7.44015 1.63897 -16.1465 -8.70633 0.539209 

{0,0,1,0,4} 7.56516 1.62944 -16.1239 -8.55871 0.53081 

{0,0,0,2,3} 7.63269 1.62897 -16.1227 -8.49004 0.526588 

{0,1,0,0,4} 7.66571 1.61873 -16.0985 -8.43281 0.523825 

{1,0,0,0,4} 7.74905 1.60762 -16.0723 -8.32328 0.517864 

{0,0,1,1,3} 7.75752 1.61944 -16.1002 -8.34268 0.518172 

{0,1,0,1,3} 7.85786 1.60873 -16.0749 -8.21708 0.511173 

{0,0,0,3,2} 7.86895 1.6123 -16.0834 -8.2144 0.510739 

{0,0,2,0,3} 7.89851 1.60611 -16.0688 -8.17028 0.508457 

{1,0,0,1,3} 7.94099 1.59762 -16.0489 -8.10788 0.505199 

{0,0,1,2,2} 7.99348 1.60278 -16.061 -8.06748 0.502304 

{0,1,1,0,3} 7.99857 1.5954 -16.0437 -8.0451 0.50145 
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Figure 1a: Plots of Shannon entropies and efficiency  of reflected power model when   *         +  

         Legend:  Censored,         Complete,       Efficiency,            m/n 

                                         
 

 
 

Figure 1b: Plots of Awad entropies and efficiency of reflected power model when   *         +.  

         Legend:  Censored,         Complete,       Efficiency,            m/n 
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Table 1 c: Plots of A-entropies and A-efficiencies of  ( )   ( )        *         +.  
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