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Abstract

A new distribution, called Odds Generalized Exponential-Pareto distribution (OGEPD) is proposed for
modeling lifetime data. A comprehensive account of the mathematical properties of the new distribution
including estimation and simulation issues is presented. A data set has been analyzed to illustrate its
applicability.
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1. Introduction

Statistical distributions are very useful in describing the real world phenomena. Though a
modest number of distributions have been developed, there are always scope for
developing distributions, studying their properties which are either more flexible or for
fitting real world scenarios. There are always urge among the researchers for developing
new and more flexible distributions. As a result, many new distributions have come up
and studied.

There are several ways of adding one or more parameters to a distribution function. Such
an addition of parameters makes the resulting distribution richer and more flexible for
modeling data. Proportional hazard model (PHM), Proportional reversed hazard model
(PRHM), Proportional odds model (POM), Power transformed model (PTM) are few
such models originated from this idea to add a shape parameter. In these models, a few
pioneering works are by Box and Cox (1964), Cox (1972), Mudholkar and Srivastava
(1993), Shaked and Shantikumar (1994), Marshall and Olkin (1997), Gupta and Kundu
(1999), Gupta and Gupta (2007) among others.

Many distributions have been developed in recent years that involves the logit of the beta
distribution. Under this generalized class of beta distribution scheme, the cumulative
distribution function (cdf) for this class of distributions for the random variable X is
generated by applying the inverse of the cdf of X to a beta distributed random variable to
obtain,

F(x)=

1 GO gt a4\ A1 gt
B(a,ﬂ)j t“(1-t)’dt; , B >0,

0
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Where G(x) is the cdf of any other distribution. This class has not only generalized the
beta distribution but also added parameter(s) to it. Among this class of distributions are,
the beta-Normal Eugene et el. (2002); beta-Gumbel Nadarajah and Kotz (2004); beta-
Exponential Nadarajah and Kotz (2006); beta-Weibull Famoye et al. (2005); beta-
Rayleigh Akinsete and Lowe (2009); beta-Laplace Kozubowski and Nadarajah (2008);
and beta-Pareto Akinsete et al. (2008), among a few others. Many useful statistical
properties arising from these distributions and their applications to real life data have
been discussed in the literature.

In the generalized class of beta distribution, since the beta random variable lies between 0
and 1, and the distribution function also lies between 0 and 1, to find out cdf of
generalized distribution, the upper limit is replaced by cdf of the generalized distribution.

Alzaatreh et al. (2013) has proposed a new generalized family of distributions, called T-X
family, and the cumulative distribution function (cdf) is defined as

Fy(x)

F(x;1,0) = jW( f(Odt, (L.1)

where, the random variable T [a,b], for —oo<a,b <o and W(F,(x)) be a function of
the cdf F,(x) so that W (F,(x)) satisfies the following conditions:

() W(F,(x)e[ab],
(i)  W(F,(x)) is differentiable and monotonically non-decreasing,

(iif) W(F,(x)) >a as x —»—o and W(F,(x)) >b as X —>o.

We have defined a generalized class of any distribution having positive support. Taking

W (F,(x)) = R (9 , the odds function, the cdf of the proposed generalized class of
’ 1-F, (%)

distribution is given by

Fg(x)

F(x;4,0) = jo R0 f (t)dt. (1.2)

The support of the resulting distribution will be that of F,(.). Here,

(0 R0 _
1-F,(x)  F(x)
only generalized but also added with some parameter(s) to the base distribution. We call
this class of distributions as Odds Generalized family of distributions (OGFD).

.1 . T
o as X—»oo (assuming 6200). The resulting distribution is not

Throughout this paper we use the following notations. We write upper incomplete

gamma function and lower incomplete gamma function as T'(p, X) :.[ww”’le’wdw and
X

7(p,X) = J.Oxwp‘le‘wdw, for x>0, p>0 respectively. The j-th derivative with respect to
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p is denoted by T'V(p,x)= j""(lnw)jwpfle*de and y9(p,x) = j:(m w) wP e "dw,
for x>0, p >0 respectively.

AX

In the present paper, we choose particular choice of F,(x) =1—e™ i.e. the Exponential

4
distribution and F,., (x) = 1—(Ej i.e. the Pareto distribution in (1.2). Hence, we call this
' X

distribution as Odds Generalized Exponential-Pareto distribution (OGEPD).

The paper is organized as follows. The new distribution is developed in section 2. A
comprehensive account of mathematical properties including structural and reliability of
the new distribution is provided in section 3. Maximum likelihood method of estimation
of parameters of the distribution is discussed in section 4. A real life data set has been
analyzed and compared with other fitted distributions with respect to Akaike Information
Criterion (AIC) in section 5. Section 6 concludes.

2. The Probability Density Function of the OGEPD
The c.d.f. of the OGEPD is given by the form as

F(x)

Fup () = [FFOOF, (x)dlx

4
where F(x):l—[gj and f,(x)=1e™™, so that
X

9

F.,(X;4,0,8)= .[)(:J _lﬂe_lxdx

=1-e (2.3)
Also the p.d.f. of the OGEPD is given by
A _ai X ’

f.,(X;4,6,a) = Ade x’ e (aj (2.4)

aa

with range(0, o). Figures 1- 3 show the pdfs for different A, € and a_
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Figure 1: The probability density function of the OGEPD with 6>1
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Figure 2: The probability density function of the OGEPD with 6 >1
10 6
8 — 2=1,0=02 a=1 5 —— X=11,6=09, a=1
— — A=1,6=04,a=1 — 4 — A=12,0=09, a=1
© 6 — A=1,0=06,a=1 © —— 2=13,0=09 a=1
< <
< < 3
X 4 <
= = 2
2 L 1
0 0
0.0 0.5 1.0 15 2.0 00 05 10 15 20 25 30
X X

Figure 3: The probability density function of the OGEPD with £ <1
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3. Statistical and Reliability Properties

3.1 Limit of the Probability Distribution Function

Since the c.d.f. of this distribution is F, ,(X;4,0,a) =1-¢

AGT

|imx—>a Fe,p(X;ﬂ'iev a-) = |imx—>a(1_e
ie. F,,(@=0

)=0

A
NOW [imy—. Fe p (X5 4,6,2) = limy.,. (1€ U )=1

e F,, () =1

3.2 Descriptive Statistics of the OGEPD
The mean of this OGEPD is as follows:

. A o ,15
Uy = E(X):@I x’e (aj dx
a a
Put u=x’, we get

;tezwl A

E(X) =2 [ u% « du
a a

1
ﬂ,el F(5+1,/1)

ag i)%ﬂ
aH
A
= 2F(1+1,ﬂ)
P

A

So the mean of the OGEPD is ?F(%H, A).

20
The median of the OGEPD is given by
M
O.5=_[ fo, (X 4,0,a)dx

6

! A
_ M ﬂﬁe 0-1 aH
AR o,
a a

Put u=x’ = du=&""dx, with x=0=u=2a’ and x=M =u=M". So

{553

e’ m? —gu
0'5:a_6’L‘9 e du=1-e
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gives M = a(1+|n—2)‘9

1
Hence the median of the OGEPD is a(1+ In72)6’.

The mode of the OGEPD is given as:
mode= arg max(f(x))

4
Sothat In f, ;(x)=In2+In&-FIna+(0-1)In x+i—ﬂ[§j
a

6?1},091

d
Now —In f
S 00== ="

5
ie. x=a ,
A0

So the mode of the OGEPD is a( ielj )

=0

The r'" order raw moment of the OGEPD is as follows:

/we e
Xr+¢9 le a dX
a

Put u=x’, we get

_iu
E(X' )—ii u@ea du

r
_ /19/1 F(E +1, 2/)

T a’ A n
(—)°
a
AAr
=23 r(£+1,,1j. (3.5)
20 0

Now variance of the OGEPD is

{elr(g +1,1)—e* (F(% +1, l)j }

2

' 2
My =y — My =

AN |m
SN
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Now the 3" and 4" central moments of the OGEPD are

! o 3
My = g — 3oy + 244
3 3
= oG 1,2) -3 T 41 )T +14) + 267 (L 41,2
3 0 0 0 0
19
' [ a2 4
My = My —ALa3py + 64000 =314
4 2 4
= :;{eir(; +1,1) - 4e“1"(% +1, /1)1“(% +1L,A)+ 6e3‘"1"(§ +1, /1)(1“(; +1, /1)) — 3" (1"(;' +1, /1)) }
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Figure 4. Mean, median, mode and variance of the OGEPD

The Skewness ( g,) of the OGEPD is given by

2

_Hs _
gl - 3
Hs

2
3 2 1 1 °
e T(C+L ) -3 T(E+LAT(=+L )+ 234 T(=+1, 4
{ (9 ) (6’ ) (9 ) ( (9 )]}

{elr(z +1,1)-e* (F(; +1, /’t)) }

The Kurtosis (g, ) of the OGEPD is given by

4 3 1 2 1 2 1
e’ T(=+1LA)—4e*T(E+L (= +1L 4 +6e“1"+1,ﬂ(1"+1,ﬂj —3e“(l‘+1,/1j
(0 ) (0 ) (9 ) (9 ) (0 ) (0 )

_ M
gz_’uz: ) 1 2
2 y; 24
e'T'+LA)-e"|T(—=+1L2
{ (9 ) ((0 ))}
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Moment Generating Function(MGF):
M, (t) = E(e”)

+ oo — ...
3! r!

2\ 2 3v 3 r r
=E{1+tX+tX X tXx + }

© ¢
=;ﬁar

© r AAl
=zt_le a r(gu,zj (3.6)

Characteristic Function(CF):
¥y (1) = E(€™)

=242 2 =343 3 Higs r
=E{1+itX+'tX+ltx+ ItX+ }
! 3! r!

SR

(i) e’a’ r(éu,x} 3.7)

0 | o _|
< (9p]
| 0 _
N
a ™ v W
g g [ — s
= 1 © -
I Z
) g - S
p— m —
0
4 p— o —
< 5 T T T T T T T
0.5 1.0 15 2.0 0.5 1.0 1.5 2.0
0 0

Figure 5: Skewness and Kurtosis of the OGEPD with different values of 8
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Cumulant Generating Function(CGF):

Skewness

15

1.0

0.5

0.0

Ky (1) = Ine (M (1)

= t"e*a" (r
= Ine Z—I r F _+1,l (3-8)
= rl 10 o
o
N 9
o
i . 24
D
IS _
=)
X o
| [ — stcuness] " [ — oo
| o _|
T T T T T © 5 T T T T
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
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Figure 6: Skewness and Kurtosis of the OGEPD with different values of 1

Mean Deviation:

The mean deviation about the mean and the mean deviation about the median is defined

by

and

MD, = j:|x— | (x)dx

MD,, = [[x—M|f (x)dx

respectively, where g =E(X) and M = Median(X) denotes the mean and median
rspectively. The measures MD,, and MD,, can be calculated using the relationships

MD, = j:’|x— 4| (x)dx
= L“(ﬂ— x) f (X)dx + _[:(x— 20) f (x)dx
= 1F () = [ X ()0 — pefl = F (u)}+ [ ¥F (x)0x

= 2ﬂF(ﬂ)—2ﬂ+2fxf (x)dx
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and
= j:|x—|v||f(x)dx
= ['(M =% £ (0 [ (x= M) F (x)elx
= MF(M)—Lfo (X)cx M L~ F (M)}+ [ xF (x)dx
= 2MF(M)—M —Lfo (x)e+ [ X ()dx
= —p+2 j;xf (x)dx
Now

X

I:xf (x)dx = i:(:i Exae_{aj dx

Put u=x’, we get

1 /1
jxf(x)dx—ii e+ du
a

1 A
/ﬂtel F(5+1’ ag )

Thus

_((*y0 _
MDH=2ﬂ[1—e“(a) ”} 2 2—r(— 1’1“
2 a’

(3.9)

and
A 0
MD, = —u+222rt 1, M (3.10)
20 0 a
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Conditional Moments:

The residual life and the reversed residual life play an important role in reliability theory
and other branches of statistics. Here, the r-th order raw moment of the residual life is
given by

4, (t)

r —_ l © r
E[(X —t)" | X >t]_ﬁ—(t)jt (x—t)" f (x)dx
== /w J‘t(x )" x" e Ea dx
a e ag

Put u=x’ = du=&’?dx, with x=t=u=t and Xx=co=>uU=o0

So,
A w —iu
ﬂr(t)=Tt9jt6(u9—t) e 2 du
a’e @’
ﬂ /1
:#ﬁj Z( 1)'r u9trJ e« du
af’e:e = J
- 92( 1)r t— ’.[ u9e " du
a’e EaRE J
al oo’
- MZ( nir 94 rd 41,2
ot = 0 a
e i A

The ' order raw moment of the reversed residual life is given by
m, (t) = E[(t— X)" | X <t]——j(t x)" f(x)dx

Now,
/1

A
Ade I(t X) x e & dx

L:(t—x)r f (x)dx =

Put u=x’ = du=&’"dx, with x=a=u=a’ and x=t=u=t’
A

A 40 1 -—u
[t f(x)dx:ligfe(t—uﬂ)fe " du

/1e
a’

I Z( 1)r u9trJ e 2’ du
J

et - 0 1
S22 v flute
i=0 .
J
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Thus,
2 0 _Lu
m, (t) = Ae - ( 1)r t"™ ’j u 2’ du
0 2t D70
a [1—e 1 i
j A’
Z( 1)'r g1 & r( +1,1)— r(—+1 =)
—A(= )‘9—1) o
1-e j /1"
L- Moments:

Define X, be the k™ smallest moment in a sample of size n. The L-moments of X are
defined by

r-1
A :12(—1)kr—1 E[X,..} r=12.
<o K

Now for OGEPD with parameter 4, € and a, we have

e[, J= WI:X[F(X)]”[l—F(X)T"dF(X)

T ol Xg[i‘elm l]l“teﬂ([:j lj]f-"e‘@g dx

So the first four L- Moments are,
ae’ 1
A= E[Xm] = _1r(§+l:ﬂ~)
ﬁ?
1 1
A = EE[Xzzz - 12] F(g +1,4)—— F(g +1,24)
/19 20
1
/13 = 5 E[sts —2)(2:3 + er]
ae e
=— F( +1,4)— 3 F( +1 2/1)+2—F(—+1 31)
/19 0 29 0 3¢ o
1
Ay = Z E[XA:A —3)(3:4 +3X5— xr4]

ﬂ. }, 2]. 3&

== r(—+1 2)-65 r( +12/1)+1o—r(— 1,31) - 5—r( +1,42)
i@ 20 0 319 9 40 0
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Quantile function:

Let X denote a random variable with the probability density function 4. The quantile
function, say Q(p), defined by F(Q(p)) = p is the root of the equation

A 0_.0
—5Q(p?-a?)

l-e? =p

So,
Qun:aa—ﬁigiﬁv (3.11)

3.3 Bonferroni curve, Lorenz curve and Ginis index
The Bonferroni and Lorenz curves are defined by

B(p) =~ [ (x)clx (3.12)
pu
and
L(p)=+ [ (x)olx (3.13)
IL[ a
respectively, or equivalently by
B(p) = — ['F* (x)dx (3.14)
pue
and
L(p) == ["F(x)ox (3.15)
IL[ a

respectively, where x=E(X) and g=F"(p). The Bonferroni and Gini indices are
defined by

B=1-[B(p)dp (3.16)
and
G=1-2[L(p)dp (3.17)

By using Eq. 3.11, we calculate Eq. 3.14 and 3.15 as
P4 _p,. In@@-x)
[Freodx=a[ (1-—==-)%dx
a a A
In(1-x)

Now, put u = (1—- ), we get

VF*umx:ﬂﬁ{ﬂi+Lz—ma—p»—ﬂ1+Lz—ma—mﬂ
" e 0
So,

B(p) = ae T {y(%ﬂ,ﬂ—ln(l— p))—;/(%Jrl,/%—ln(l—a))} (3.18)

put’
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and

L(p) =" {y(%u,z—m(l— p))—y(%+1,i—|n(l—a))} (3.19)

pA’

Integrating Egs. 3.18 and 3.19 with respect to p, we can calculate the Bonferroni and
Gini indices given by Egs. 3.16 and 3.17, respectively, as

B=1- aeil [Ey(%+1,ﬁ—ln(l— p))dp—y(%u,z—ln(l—a))} (3.20)
put’
and
. 2aet[p 1 1
G=1-== { jo 7(5+1,}L—|n(1— p))dp—y(5+l,/1—ln(1—a))} (3.21)
pA?

3.4 Order Statistics
Suppose X, X,, X5,y X is a random sample from Eqg.2.4. Let
X1y X gy Xgyreens Xy » denote the corresponding order statistics. It is well known that

the probability density function and the cumulative distribution function of the k™ order
statistic, say Y = X, , are given by

0= i F R FOT 1)
_ n! 1_6_/{[96_1] 7 e_/{[z)g_l] 7 @ ya—le_lujﬁ
(k=1)!(n—k)! a’
_ n! l@e’l 0111 _ _){[gjﬁ_l] 7 _l[(éf_l] 7 _l(%je (3 22)
T k-DI(n—K)! a’ ° ° ° |
and

R (1) = Z[T Fl-FoI

5[ AT el 629

3.5 Entropies

An entropy of a random variable X is a measure of variation of the uncertainty. A popular
entropy measure is Renyi entropy (Renyi 1961). If X has the probability density function
f(x), then Renyi entropy is defined by

Ha () = ﬁm{(jf /() (3.24)
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where >0 and B =1. Suppose X has the probability density function Eq.2.4. Then,
one can calculate

B0

(ﬂﬂ)ﬂew J“X’Xﬂ(g_l)e af dX

00 Y _
Lf (x)dx = T
Put u=x’ = du=6&’"dx, with x=a=u=a’ and x=co=>u=w
So

X

j:fﬁ(x)dx:%

1
_(10)Pe? F(ﬂ—§+9.ﬂﬂj
- &iﬁg (iﬁjﬂ_zi

0 ﬂ7£+£71 —%u
u
J

a
B-1
0 PP-11-BaAB
-4 e(ﬁ_zl)e F[ﬂ—§+%,ﬂﬁj
ﬂ 0 0
So Renyi entropy is
B
0 P-1y1-BalB
Ho(B)= {20 & € r[ﬂ—ﬁ+1,w)
1-p ﬂ(ﬁf%g) 0 6
51
(B2 )
:—M—|n9+ﬂ+|na—#mmilnr(ﬂ—ﬁﬁ,wj (3.25)
0 1-B 1-B 1-B 0 0

Shannon measure of entropy is defined as
H(f)=E[-In f(x)]:-j:f(x) In f (x)dx
=—InA0-A1+6In a—(9—1)j: In xf (x)dx+aigfx9 f (x)dx
4.0

— 2 00 KX
Now (9—1)] Inxf(x)dx:wj Inxx’ e 2’ dx
a a a

_ax° w _ L7 Inu na|
Put u = = ,(9—1)ja In xf (x)dx = (0 -1)e L[Tﬂna—?}e du

— (9—1)6'1 1"(1)(1,2,)+(9—1) |ﬂa—@|nﬂ« = H|:|na_g+e/lr(l) (1,/1):|
0 0 0 A
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Also aigj:x‘9 f(x)dx =e*T(2, 1)

(0-1)

0
So H(f)=-Ini0—-A+0lna— {In%+e‘1“(1)(1,2,)}+e*1“(2,2,)

In 2 NG —Hl)el r® (1, 1) +eT(2, 4) (3.26)

H(f):—i—ln0—7+lna

3.6 Reliability and related properties
The Reliability function of the OGEPD is given by

N
R(X)=1-F(x)=e
and the Hazard rate of the OGEPD is given by

f(t)
1-F(t)

(3.27)

r(t) =

{+

20 o

A e

20 .,
= ?tg ! (3.28)

16 Me*[@ﬁl]

Now f(x)=—-x
a

0
ie. Inf(X)=i+n@-0na+(@-1)In x+z—z(fj
a

_ 0-1
So,ilnf(x):e—l—m;
dx X a
d? 6-1 A0(6-1)x"? 1 A2
—Inf(x)=- -~ =—(0-1)(=+
Ve (X) v 0 ( )(X2 0 )

2

For A>0,6>1,a>0and x>0, %Inf(x)<0.
X

So, the distribution is log-concave. Therefore, the distribution posses Increasing failure
rate (IFR) and Decreasing Mean Residual Life (DMRL) property.

2

For 1>0,0<6d<1,a>0and x>0, %Inf(x)>0.
X

So, the distribution is log-convex. Therefore, the distribution posses Decreasing failure
rate (DFR) and Increasing Mean Residual Life (IMRL) property.
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Mean Residual Life (MRL) function is defined as

- j 1-j j J ﬂ“tg
e (t)= Z( i1 9 rd i, 2
_H40 1" a’
a0 170 : 20
e J
1 at? ) &
=— tr(l,—-) - F( 1,—) | (3.29)
_afgt a /19 0 a
e
25 5
2.0 4 i leisa:
— A=1,0=15a=1

_ 15 - 3
g 2

1.0 2

r=1,0=11, a=1
05 AT oc1s act 1
0.0 0
1 3 5 7 9 1 5 9 13 17 21
t t

Figure 7. Hazard rate and Reversed Hazard Rate of the OGEPD with € >1

3.0 5
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Figure 8: Hazard rate and Reversed Hazard Rate of the OGEPD with £ <1
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Reversed Hazard rate:

_ f()
w(X) = %

-1
- AOx e (3.30)

a’ (1—el[[:jgl])

Expected Inactivity Time (EIT) or Mean Reversed Residual Life (MRRL) function is
defined as

e (t)=E(t—X|X <t)

2 1 _ i - : 0
=% (i1t a—{r(iﬂ,z)—r(iu,/lg)}
,;{(Lj ,1] j=0 - /'Lé 9 9 a.
1-e ° ]
B e’ At? a 1 1 . at’
=——|{T Q) -TQ,— )} -—F{ G +1L,A)-T( +1,—)} | (3.31)
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Figure 9: Mean Residual Life (MRL) and Expected Inactivity Time (EIT)
of the OGEPD with 6>1
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Figure 10: Mean Residual Life (MRL) and Expected Inactivity Time (EIT)
of the OGEPD with <1

3.7 Stress-Strength Reliability

The Stress-Strength model describes the life of a component which has a random strength
X that is subjected to a random stress Y. The component fails at the instant that the stress
applied to it exceeds the strength, and the component will function satisfactorily
whenever X >Y . So, Stress-Strength Reliability is R = P(Y < X).

Let X :OGEPD(4,,6,,8,) and Y :OGEPD(4,,6,,a,) be independent random variables.
Then Stress-Strength Reliability

R=P(Y < X)
= j:Gy(x) f (x)dx
= I; 1_9_12[[‘"ij 2_1] /1102?% X91—1e_j1[:1jgl dx
8,

=1- _/114919:“12 J.x glle_ﬁ[:ljgl ) dx
8,

If 6 =6,=0,then
M,%2.,0
Y+ - —(—9+a—9)x
R :1—%";}9_18 4 % dx
8

/’lleﬁl+/12

g+ (%)" )
Dot 2 ()’
a2

=1- e
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Also if a, =a,, then
R=1- !
Aty
= /12
At

4. Maximum Likelihood Method of Estimation of the Parameters

Using the method of Maximum Likelihood Estimation (MLE), we estimate the
parameters of the OGEPD.

Since

X

a0e ., X
o

f.,(x4,0,a) = X

The Likelihood function is given by
L(x;4,0,a) = Hf (%)

= H /we* X! 1o o

A X_g
ln@n ” f[ 0-1q K = (4.32)
Then the logarithm of likelihood is
InL(x;4,6,a)=nInA+nIn@+ni—nélIn a+(0—1)2|n X; —ig X!
i=1 a i

Here the likelihood function will be maximized at & = X, - the smallest order statistic in
the given Samp|e of size n. The MLEs of 4 , @ are the roots of

olnL(x;4,6,8) olnL(x;4,6,8)
=0 and =0,
oA 00
Now
olnL(x; 4,80, a)
00033 =0
Y n
ieA=——7— (4.33)
1%
24| -
-1\ a
and

aInL(ge/lé’a) nInp+ZInx—ﬂ,Z( j ( j 0
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Now put the values of A in the above equation we get,

DX ? X;
2] )
LR A (4.34)

g—nln P+ Inx ———

EOE

i=1

Estimation of the parameters A and @ are to be done by solving the two equations using
numerical method.

5. Data Analysis

In this section, we fit the odds generalized exponential-pareto model to a real data set
obtained from Linhart and Zucchini (1986). The data set consists of failure times of the
air conditioning system of an airplane and which is given as 1, 3, 5, 7, 11, 11, 11, 12, 14,
14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62, 71, 71, 87, 90, 95, 120, 120, 225, 246 and 261.
Histogram shows that the data set is positively skewed. Lee et al. (2007) fitted this data to
the Beta Weibull distribution (BW). We have fitted this data set with the Odds
Generalized Exponential-Pareto distribution. The estimated values of the parameters are

A =0.03661283, 9 =0.8305798, 4 =1, log-likelihood =—150.8575 and AIC =307.715.
Histogram and fitted exponential pareto curve to data have been shown in Figure 11.

Table 1: Summarized results of fitting different distributions to data set of Linhart
and Zucchini (1986)

Distribution Estimate of the parameter Log-likelihood AIC
BW 4=3.087,b=0.132,6 = 0.667,1 =1.798 ~151.076 310.152
OGEPD 1 =0.03661283,0 =0.8305798,4 =1 —150.8575 307.715
S 2
o N °
—] g § |
(0] =
8. 1 % o °
2 ©° 3 9 °
g R o S
5 3 3 S
S o]
e e o |
— [ Te)
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Figure 11: Plots of the fitted pdf and estimated quantiles versus
observed quantiles of the OGEPD
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6. Concluding Remark

In this article, we have studied a new probability distribution called Odds Generalized
Exponential-Pareto Distribution. This is a particular case of T-X family of distributions
proposed by Alzaatreh et al. (2013). The structural and reliability properties of this
distribution have been studied and inference on parameters have also been mentioned.
The advantage is that the distribution has only three parameters that are to be estimated.
The appropriateness of fitting the Odds Generalized Exponential-Pareto distribution has
been established by analyzing a real life data set.
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