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Abstract 

A new distribution, called Odds Generalized Exponential-Pareto distribution (OGEPD) is proposed for 

modeling lifetime data. A comprehensive account of the mathematical properties of the new distribution 

including estimation and simulation issues is presented. A data set has been analyzed to illustrate its 

applicability. 
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1.   Introduction 

Statistical distributions are very useful in describing the real world phenomena. Though a 

modest number of distributions have been developed, there are always scope for 

developing distributions, studying their properties which are either more flexible or for 

fitting real world scenarios. There are always urge among the researchers for developing 

new and more flexible distributions. As a result, many new distributions have come up 

and studied. 

 

There are several ways of adding one or more parameters to a distribution function. Such 

an addition of parameters makes the resulting distribution richer and more flexible for 

modeling data. Proportional hazard model (PHM), Proportional reversed hazard model 

(PRHM), Proportional odds model (POM), Power transformed model (PTM) are few 

such models originated from this idea to add a shape parameter. In these models, a few 

pioneering works are by Box and Cox (1964), Cox (1972), Mudholkar and Srivastava 

(1993), Shaked and Shantikumar (1994), Marshall and Olkin (1997), Gupta and Kundu 

(1999), Gupta and Gupta (2007) among others. 

 

Many distributions have been developed in recent years that involves the logit of the beta 

distribution. Under this generalized class of beta distribution scheme, the cumulative 

distribution function (cdf) for this class of distributions for the random variable X is 

generated by applying the inverse of the cdf of X to a beta distributed random variable to 

obtain,  
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Where G(x) is the cdf of any other distribution. This class has not only generalized the 

beta distribution but also added parameter(s) to it. Among this class of distributions are, 

the beta-Normal Eugene et el. (2002); beta-Gumbel Nadarajah and Kotz (2004); beta-

Exponential Nadarajah and Kotz (2006); beta-Weibull Famoye et al. (2005); beta-

Rayleigh Akinsete and Lowe (2009); beta-Laplace Kozubowski and Nadarajah (2008); 

and beta-Pareto Akinsete et al. (2008), among a few others. Many useful statistical 

properties arising from these distributions and their applications to real life data have 

been discussed in the literature. 

 

In the generalized class of beta distribution, since the beta random variable lies between 0 

and 1, and the distribution function also lies between 0 and 1, to find out cdf of 

generalized distribution, the upper limit is replaced by cdf of the generalized distribution. 

Alzaatreh et al. (2013) has proposed a new generalized family of distributions, called T-X 

family, and the cumulative distribution function (cdf) is defined as  
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where, the random variable ],[ baT  , for  <,< ba  and ))(( xFW   be a function of 

the cdf )(xF  so that ))(( xFW   satisfies the following conditions:   

(i) ],[))(( baxFW  ,  

(ii) ))(( xFW   is differentiable and monotonically non-decreasing,  

(iii) axFW ))((   as x  and bxFW ))((   as x .  

 

We have defined a generalized class of any distribution having positive support. Taking 
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, the odds function, the cdf of the proposed generalized class of 

distribution is given by  
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The support of the resulting distribution will be that of (.)F . Here,
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1
). The resulting distribution is not 

only generalized but also added with some parameter(s) to the base distribution. We call 

this class of distributions as Odds Generalized family of distributions (OGFD). 

 

Throughout this paper we use the following notations. We write upper incomplete 

gamma function and lower incomplete gamma function as dwewxp wp

x




 1=),(  and 

dwewxp wp
x
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0
=),( , for 0>0, px   respectively. The j-th derivative with respect to 
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p  is denoted by dwewwxp wpj
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i.e. the Pareto distribution in (1.2). Hence, we call this 

distribution as Odds Generalized Exponential-Pareto distribution (OGEPD). 

 

The paper is organized as follows. The new distribution is developed in section 2. A 

comprehensive account of mathematical properties including structural and reliability of 

the new distribution is provided in section 3. Maximum likelihood method of estimation 

of parameters of the distribution is discussed in section 4. A real life data set has been 

analyzed and compared with other fitted distributions with respect to Akaike Information 

Criterion (AIC) in section 5. Section 6 concludes. 

2.   The Probability Density Function of the OGEPD 

The c.d.f. of the OGEPD is given by the form as  
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Also the p.d.f. of the OGEPD is given by  
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with range( 0, ). Figures 1- 3 show the pdfs for different  ,   and a . 
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Figure  1:   The probability density function of the OGEPD with 1>  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2:   The probability density function of the OGEPD with 1>  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3:   The probability density function of the OGEPD with 1<  
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3.   Statistical and Reliability Properties 

3.1   Limit of the Probability Distribution Function 

Since the c.d.f. of this distribution is 
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3.2   Descriptive Statistics of the OGEPD 

The mean of this OGEPD is as follows: 
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The median of the OGEPD is given by  
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gives 
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The mode of the OGEPD is given as:  

mode= arg max(f(x))  

So that 



 









a

x
xaxf pe ln1)(lnlnln=)(ln .   

Now 0=
1

=)(ln 1

.


 




x

ax
xf

dx

d
pe   

i.e. 





1

1
= 







 
ax , 

So the mode of the OGEPD is .
1

1













 
a   

The r
th

 order raw moment of the OGEPD is as follows: 

dxex
a

e
XE a

x

r

a

r






 )(
1=)(






  

Put xu = ,  we get 

dueu
a

e
XE

u
a

r

a

r 






 

=)(  

           

1

)(

)1,(

=
















r

a

r

a

e
 

 .1,= 







 




 rae
r

r

       (3.5) 

 

Now variance of the OGEPD is    
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Figure  4:   Mean, median, mode and variance of the OGEPD 

 

 

The Skewness ( 1g ) of the OGEPD is given by  
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The Kurtosis ( 2g ) of the OGEPD is given by  
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Figure  5:   Skewness and Kurtosis of the OGEPD with different values of   
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Figure  6: Skewness and Kurtosis of the OGEPD with different values of   

 

 

Mean Deviation:  

The mean deviation about the mean and the mean deviation about the median is defined 

by  
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and  
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Conditional Moments:  

The residual life and the reversed residual life play an important role in reliability theory 

and other branches of statistics. Here, the r-th order raw moment of the residual life is 

given by  
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 order raw moment of the reversed residual life is given by  
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Thus,  

   

dueut

j

r

ea

e
tm

u
a

j
t

a

jrj
r

ja

tr











 



 



1)(

][1

=)(
0=

1))((

 

 














 )1,()1,(1)(

1

=
0=

1))((








 







a

tjja
t

j

r

e

e
j

j
jrj

r

ja

t
 

 

L- Moments:  

Define nkX :  be the thk  smallest moment in a sample of size n. The L-moments of X are 

defined by  
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Quantile function:  

Let X  denote a random variable with the probability density function 4 . The quantile 

function, say )( pQ , defined by ppQF =))((  is the root of the equation  
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3.3   Bonferroni curve, Lorenz curve and Ginis index 

The Bonferroni and Lorenz curves are defined by  
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and  
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3.4   Order Statistics 

Suppose nXXXX ,......,,, 321  is a random sample from Eq.2. 4 . Let 

)((3)(2)(1) ,......,,, nXXXX , denote the corresponding order statistics. It is well known that 

the probability density function and the cumulative distribution function of the thk  order 

statistic, say )(= kXY , are given by  

  

  )()(1)(
)!(1)!(

!
=)( 1 yfyFyF

knk

n
yf

knk

Y

 


 









  


































































































a

y

kn

a

y
k

a

y

ey
a

ee
knk

n 1
1

1

1

1
)!(1)!(

!
=  









 


































































































a

y

kn

a

y
k

a

y

eeey
a

e

knk

n
1

1

1
1 1

)!(1)!(

!
=  (3.22) 

and  

  jnj
n

kj

Y yFyF
j

n
yF











 )(1)(=)(

=

 

          










































































1)(1

=

1=




a

y
jn

j

a

y
n

kj

ee
j

n
    (3.23) 

3.5   Entropies 

An entropy of a random variable X is a measure of variation of the uncertainty. A popular 

entropy measure is Renyi entropy (Renyi 1961). If X has the probability density function 

f(x), then Renyi entropy is defined by  
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Odds Generalized Exponential-Pareto Distribution: Properties and Application 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp257-279 271 

where 0>  and 1 . Suppose X has the probability density function Eq.2.4. Then, 

one can calculate  
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So Renyi entropy is  
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Shannon measure of entropy is defined as  
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Also     
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3.6   Reliability and related properties 

The Reliability function of the OGEPD is given by  
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and the Hazard rate of the OGEPD is given by 
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For 0> , 1> , 0>a  and 0>x ,  0<)(ln
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So, the distribution is log-concave. Therefore, the distribution posses Increasing failure 

rate (IFR) and Decreasing Mean Residual Life (DMRL) property. 

For 0> , 1<<0  , 0>a  and 0>x ,  0>)(ln
2

2

xf
dx

d
. 

So, the distribution is log-convex. Therefore, the distribution posses Decreasing failure 

rate (DFR) and Increasing Mean Residual Life (IMRL) property. 
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Figure  7:   Hazard rate and Reversed Hazard Rate of the OGEPD with 1>  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  8:   Hazard rate and Reversed Hazard Rate of the OGEPD with 1<  
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Expected Inactivity Time (EIT) or Mean Reversed Residual Life (MRRL) function is 

defined as  
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Figure  9:   Mean Residual Life (MRL) and Expected Inactivity Time (EIT)  

of the OGEPD with 1>  

 

 



Odds Generalized Exponential-Pareto Distribution: Properties and Application 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp257-279 275 

1 3 5 7 9 11

0

20

40

60

80

0.01,  0.9,  a 1
0.02,  0.9,  a 1

0.03,  0.9,  a 1

t

e
x

t

1 3 5 7 9 11

0

2

4

6

8

t

e
x

t

0.01,  0.9,  a 1
0.02,  0.9,  a 1

0.03,  0.9,  a 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  10: Mean Residual Life (MRL) and Expected Inactivity Time (EIT)  

of the OGEPD with 1<  

3.7   Stress-Strength Reliability 

The Stress-Strength model describes the life of a component which has a random strength 

X that is subjected to a random stress Y. The component fails at the instant that the stress 

applied to it exceeds the strength, and the component will function satisfactorily 

whenever YX > . So, Stress-Strength Reliability is )<(= XYPR . 

 

Let ),,( 111 aOGEPDX :  and ),,( 222 aOGEPDY :  be independent random variables. 
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Also if 21 = aa , then  
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4.   Maximum Likelihood Method of Estimation of the Parameters 

Using the method of Maximum Likelihood Estimation (MLE), we estimate the 

parameters of the OGEPD. 
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Then the logarithm of likelihood is  
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Estimation of the parameters   and   are to be done by solving the two equations using 

numerical method. 

5.   Data Analysis 

In this section, we fit the odds generalized exponential-pareto model to a real data set 

obtained from Linhart and Zucchini (1986). The data set consists of failure times of the 

air conditioning system of an airplane and which is given as 1, 3, 5, 7, 11, 11, 11, 12, 14, 

14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62, 71, 71, 87, 90, 95, 120, 120, 225, 246 and 261. 

Histogram shows that the data set is positively skewed. Lee et al. (2007) fitted this data to 

the Beta Weibull distribution (BW). We have fitted this data set with the Odds 

Generalized Exponential-Pareto distribution. The estimated values of the parameters are 

0.03661283=̂ , 0.8305798=̂ , 1=â , log-likelihood = 150.8575  and AIC =307.715 . 

Histogram and fitted exponential pareto curve to data have been shown in Figure 11. 

Table 1:    Summarized results of fitting different distributions to data set of Linhart 

and Zucchini (1986)  

        Distribution           Estimate of the parameter                                      Log-likelihood                 AIC 

BW           1.798=ˆ0.667,=ˆ0.132,=ˆ3.087,=ˆ cba          151.076                310.152  

          OGEPD        1=ˆ0.8305798,=ˆ,0.03661283=ˆ a                150.8575              307.715  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:   Plots of the fitted pdf and estimated quantiles versus  

observed quantiles of the OGEPD 
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6.   Concluding Remark 

In this article, we have studied a new probability distribution called Odds Generalized 

Exponential-Pareto Distribution. This is a particular case of T-X family of distributions 

proposed by Alzaatreh et al. (2013). The structural and reliability properties of this 

distribution have been studied and inference on parameters have also been mentioned. 

The advantage is that the distribution has only three parameters that are to be estimated. 

The appropriateness of fitting the Odds Generalized Exponential-Pareto distribution has 

been established by analyzing a real life data set.  
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