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Abstract 

Standard statistical procedures often require data to be normally distributed and the results of these methods 

will be inappropriate when the assumption of normality is not satisfied. Therefore, the postulation of 

normality is strictly required before proceeding statistical analysis. Although a number of criteria’s have 

been available to assess the assumption of normality, but these tests do not have the same nature and power 

to diagnose the departures of a data set from normality, thus the choice of appropriate test always remains a 

key importance in the assessment of normality assumption. In the present study, power comparison of 

twelve standard normality tests was examined using simulated data generated from four distributions; 

Cauchy, Exponential, Weibull and Logistic under different sample sizes by using R codes. Results showed 

that under logistic distribution data, Geary test was observed most powerful test at the 5 % level of 

significance and Jarque Bera test at the 1 % level of significance. Under alternate Cauchy distribution, 

Shapiro Francia test performs well at the 5 % level of significance while at the 1 % level of significance, 

Shapiro Francia, Anderson Darling, Cramer von mises and Watson tests equally observed the power of a 

test. Shapiro Wilk test was highlighted as a more powerful test for data generated under Weibull 

distribution.  

Keywords:   Normality Tests, Power of Test. 

1. Introduction 

Many parametric methods (like correlation, regression, t – test, analysis of variance etc) 

require normality assumption. The assumption of normality is one of the most important 

assumptions of parametric procedures because of its extensive range of practical 

applications. In that respect is perhaps no distribution which is stated to be totally normal. 

The question is usually asked; however, whether or not the population from which dataset 

has been drawn can be adequately modeled with the normal distribution for the intended 

purpose.  

 

Different procedures are available for testing the assumption of normality. The 

assumption of normality can be tested subjectively, like drawing box plot and Histogram 

etc. Appearing at a histogram and making the statement, ''It looks normal to me,'' does not 

offer conclusive evidence that the normal assumption holds. A leptokurtic distribution 

looks symmetric and bell-shaped, but it is not normal in actuality. Many applications 

have underlying process distributions that are not normally distributed. The process may 

be better modeled with an Exponential, Weibull, Logistic, Cauchy and some other 

distribution. Power of test for normality is the ability of a test to detect the presence of 

mailto:fiazcsaspu@gmail.com


Fiaz Ahmad, Rehan Ahmad Khan Sherwani 

Pak.j.stat.oper.res.  Vol.XI  No.3 2015  pp331-345 332 

non-normality. Each of the tests for normality also varies in their ability to detect 

different types of departures from normality. Powerful test with large sample sizes will 

reject the normality assumption with only slight deviation from normality. This rejection 

may or may not answer the question of whether or not the normal approximation is 

adequate. 

 

Researchers developed many tests for the comparison of normality assumption in 

different years, fathers' some tests were modified for attaining better performance. 

Firstly, Pearson (1900) developed chi-square test for detection of non-normality. 

Kolmogrov and Smirnov (1933) suggested formal test for normality. The chi square test, 

based on cumulative distribution function, and can be used for any univariant 

distribution. In certain situations, chi-square test not performs well, therefore the 

Kolmogorov Smirnov test, known as (KS test) used an alternative to Chi- square test. 

After two decades, Anderson and Darling proposed their test for normality. Kuiper 

(1960) brought out the test of normality. Afterwards, Shapiro and Wilk (1965) suggested 

test of normality. In (1968), Ajne, normality test was developed. After two years later, a 

modification of Kuiper and Ajne tests was proposed by Stephens (1970). D’Agostino 

(1972) introduced another test of normality. In the same year, modification of kolmogrov 

Smirnov was proposed by Stephens. Four years later, Vasicek’s test of normality 

proposed by Vasicek (1976). Jarque and Bera designed test of normality in 1987. 

 

Noughabi et al., (2014) introduced a goodness of fit test for Rayleigh distribution which 

based on Kullback Leibler discrimination methodology. They assess the accuracy of the 

proposed test using a simulation study; critical values and power for different tests was 

calculated. The simulation study indicates that the power of the tests affected by sample 

size and types of the alternate distribution. For a uniform alternative, the proposed test 

done well than the other tests. For all other substitutes, the Anderson Darling test had the 

greatest power. The proposed test obtained the maximum power at 3m  , 10n  and

4m  , 20n  With increasing n , the optimal choice of m  increased. The use of the 

proposed test is revealed in a real example.  

 

Ibrahim Al-Omari (2014) proposed three new entropy estimators which are the 

modification of the estimators propounded by Noughabi & Arghami (2011) and 

Ebrahimi, Pflughoeft & Soofi (1994). The new estimator of the continuous random 

variable is introduced by using ranked set sampling (RSS), double ranked set sampling 

(DRSS) and simple random sampling (SRS) techniques. The proposed estimators were 

compared with the estimator introduced by Vasicek’s (1976). A numerical comparison 

was regarded in terms of biased values and root mean squared error (RMSE). The result 

reveals that the new estimators done well than Vasicek estimator and has a smaller root 

mean squared error. The results also reveal that the proposed estimator which based on 

the double ranked set sampling technique is more effective than ranked set sampling and 

simple random sampling.  

 

Kohansal & Rezakhah (2014) introduced two new entropy estimators for the absolutely 

continuous random variable. Some properties of the new estimates are favored. 

Especially consistency of the first is proved. Moreover, two new tests of normality are 
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introduced which based on the new estimators. The power of these tests for normality 

was compared with the existing tests of normality. The results demonstrate that the new 

tests of normality were more reliable than the existing normality tests. Also the new 

estimator was compared with the existing estimator. By the simulation study, they 

confirmed that the proposed estimators and test statistics perform very well in estimating 

entropy and testing normality. It is also confirmed that the powers of the tests based on 

alternate distributions and sample size.  

 

Chen (2014) suggested a test statistic that based on order statistics. The main principle of 

this document was to bring the goodness-of-fit test statistic for censored sample data 

framed by order statistic. Double, left and right censoring was used, which is the 

extended form of the work Chen & Ye (2009). Havva Alizadeh Noughabi & Noughabi 

(2013) proposed new estimator for continuous random variable attained by modify the 

estimator proposed by Ebrahimi, Pflughoeft, & Soofi (1994). The modified estimator was 

more viable then the parent test with respect to mean square error. From real data 

example, it was confirmed that the proposed estimator perform well. Ramos & Burgos 

(2013) compared the power of seven normality tests using alternate Ex-Gaussian 

distribution. Among these seven, the SW, CS and C test perform better taking Ex-

Gaussian alternate distribution. They believed that Ex-Gaussian distribution is a suitable 

distribution to accommodate positively skewed distributions. A pre-assessment of the 

proposed tests by power across different types of distributions was performed via a meta-

analysis. Zhao & Xu (2012) deduced some new goodness-of-fit tests based on the 

empirical distribution function (EDF) proposed by Rubin’s. After introducing Rubin’s 

EDF, it is substituting in Kolmogorov-Smirnov, Anderson-Darling and Cramer von 

Mises statistics in the place of classical EDF. The Rubin’s EDF was based on randomized 

statistic, which drawn from the expectation and quantile as a test statistic. The proposed 

tests were persistent under straight forward hypothesis. Various comparisons of power 

was also performed to indicate that the modern tests are often additional authentic than 

the traditional ones. 

 

Zamanzade & Arghami (2012) propounded new estimator which based on the absolutely 

continuous random variable. The performance of the estimator was confirmed by a 

simulation study taking various distributions as alternate, and found that the new 

estimator performed well in testing of normality and estimating entropy. They indicate 

that for various alternate distributions, various tests based on the different entropy 

estimator performed well. A study was conducted by Razali & Wah (2011), considering 

four formal normality tests. The power of all tests also assesses by comparing the critical 

value with each test statistic. Shapiro Wilk test was more reliable and gives better results 

than the other tests. However, for small sample sizes all tests give low power. Yap & Sim 

(2011) divided the tests of normality into different categories which are chi squared tests, 

empirical distribution function tests, moments tests, spacing’s tests, regression and 

correlation tests and other special tests. They compare the power of eight different tests 

of normality via Monte Carlo simulation for various alternate distributions which are 

symmetric short-tailed, asymmetric and symmetric long-tailed distributions. They 

showed that Shapiro Wilk and D’Agostino perform well for alternate symmetric short-

tailed distributions. D’Agostino and Jarque Bera test gives better results than Shapiro 
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Wilk test for symmetric long-tailed distributions and for asymmetric alternate 

distributions, Shapiro-Wilk test perform well followed by the Anderson-Darling test. 

The research conducted by Hadi Alizadeh Noughabi & Arghami (2011) for comparison 

of power of seven normality tests. The Jarque Bera and Anderson Darling test, perform 

better if the presumed alternative distributions supported by (-∞, ∞) and are symmetric. 

The vasicek test of sample entropy estimator can be most powerful if the presumed 

alternatives distributions supported by (0, 1). Shapiro-Wilk and Vasicek test are most 

powerful against alternative with the support (0, ∞). If the assumed alternatives 

distributions support by (-∞, ∞) and are asymmetric than Shapiro-Wilk test is more 

powerful. Quessy & Mailhot (2011) explained the asymptotic power of seven normality 

tests. The procedures which consider in that study are based on either the empirical 

kurtosis or skewness. They compare the power of tests; Cramer-von Mises, Jarque Bera 

test, Anderson-Darling and Kolmogorov-Smirnov test. He compared the asymptotic 

relative effectiveness and local power curves of these tests in the light of a measure 

viewed by Berg & Quessy (2009). Four classes of local alternative distributions are 

considered in the present study that includes; Thadewald & Buning (2007) mixture of 

kurtosis and skewness alternatives, bimodal alternatives, heavy tailed alternatives and 

kurtosis alternatives.   

2. Methodology 

Twelve normality tests; Kolmogrove Smirnov, Lillifors, Kuiper, Cramer von mises, 

Anderson Darling, Shapiro Francia, Watson, Chi Square, Jarque Bera, Geary, D,Agostino 

D and Shapiro Wilk test are under investigation in this study. The description of each test 

is given in the next sections. In this study, compare the power of these normality tests by 

using different alternative distributions (Cauchy, Exponential, Logistic and Weibull) at 

different sample sizes (n=10, n=20, n=30, n=40, n=50, n=100, n=200 and 500).   

2.1 Kolmogrov-Smirnov test 

This is a well-known test of empirical distribution function (EDF). It is based on the 

distribution which is completely specified with known parameters. This test proposed by 

Kolmogrov and Smirnov (1933) and defined as 

  =max{(
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where    is the cumulative probability of standard normal distribution and    is the 

difference between observed and expected values. 

2.2 Lilliefors test  

This test introduced by Lilliefors (1967) and it is the modification of the Kolmogrov-

Smirnov test. Lilliefors test is suiTable when the distribution is not completely specified. 

When the original KS statistic is used in such situation, the probability of type 1 error 

tend to be smaller than the once given in the standard Table of KS (Lilliefors, 1967). 

Therefore in this situation, the Lilliefors test will be preferred over the KS test (Öztuna, 

Elhan et al. 2006). 
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2.3 Kuiper Test 

Kolmogorov–Smirnov test and Kuiper test are closely related to each other. Kuiper test 

gives most positive D+ and negative D− differences between two cumulative distribution 

functions being compared. 

 

This test was introduced by kuiper (1960), the test statistic is defined as under, 

KUI =    +    

Where    =    |  ( )     ( )|,   
  =     |  ( )     ( )| 

2.4 Cramer von Mises test 

Conover (1999) said that this proposed by Cramer, Von Mises and Smirnov. This test is a 

goodness of fit test of a hypothesized distribution function compared with the empirical 

distribution function. The test statistic is defined as 
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Where iz  is the cumulative distribution function of the specified distribution and 

 ( )i iz X X S   and X  and S is the sample mean and sample standard deviation. 

2.5 Anderson-Darling test 

Anderson Darling test gives more weight to the tails of the distribution than the Cramer 

von Mises test. Furthermore Cramer von Mises test is a distribution free test and 

Anderson Darling test makes use of the specific hypothesized distribution. It is proposed 

by Anderson and Darling (1954) and defined as follows 
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2.6 Shapiro-Francia test 

For large sample size, the computation of the inverse of the covariance matrix in Shapiro 

Wilk test is time consuming (Romao et al, 2010). Therefore a modification of the 

Shapiro-Wilk test proposed by the Shapiro and Francia (1972) and show that the power 

of this test is almost same as Shapiro and Wilk test but Shapiro Francia test is easier to 

calculate than the Shapiro Wilk test. The test statistic is defined as  
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The value of this test lies between 0 and 1. The values close to 1indicate the normality of 

the data and the value close to zero indicates the non-normality of the data. 



Fiaz Ahmad, Rehan Ahmad Khan Sherwani 

Pak.j.stat.oper.res.  Vol.XI  No.3 2015  pp331-345 336 

2.7 Watson Test 

This test introduced by Watson (1962), the test statistic is written as: 
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and in the null hypothesis  (x) represent the standardized hypothesized of normal 

distribution. 

2.8 Chi-Square Test 

For goodness of fit test it is the most popular and oldest goodness-of-fit test. This test 

proposed by Pearson (1900). It is generally used for discrete distribution only. The test 

statistic is described as  
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The Chi-Square test statistic follows a Chi-Square distribution with degrees of freedom

1n k  . Null hypothesis is rejected if the value of the test statistic is large. 

2.9 Jarque-Bera test 

It is the most popular test for the goodness of the fit test in the field of economic. It is 

mostly known from the proposal of Jarque and Bera (1987). The test statistic is denoted 

by JB and defined as: 

 
2

2

1

3

6 4

bn
JB b

 
  
 
 

 

where 1b
 
and 2b  are the sample skewness and kurtosis. 

2.10 Geary test 

This test is the ratio of the mean deviation to the standard deviation. It is a lower tailed 

test is used to detect a symmetric long tailed alternative to the normality. This test 

proposed by Geary (1935) and defined as follows 
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It is the alternate of the kurtosis test. Geary shown that it is a better than Kurtosis. 
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2.11 D’Agostino D Test 

It is the extension of the Shapiro-Wilk test in which we have no need to describe the 

vector of weights a . This test is proposed by D’Agostino (1971).  
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Where n is the size of sample and 2m is the sample variance of order statistics. 

2.12  Shapiro-Wilk test 

It is a well known and powerful regression test of normality. Proposed by Shapiro and 

Wilk (1965), and its gives better results for the size of the small sample. Accurracy is 

claimed for samples size from 3 to 5000. Sample size less than three will not produce a 

Shapiro-Wilk statistic. The test statistic is defined as  
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Where  ix is the i
th

 order statistic, x is the sample mean,  ijV v be the n n  covariance 

matrix of these ordered statistic and '

1 2( , ,......., )nm m m m be the vector of expected 

values of the standard normal order statistics. The value of this test lies between 0 and 1. 

The values of 1indicate the normality of the data and the value close to zero indicate the 

non-normality of the data.  

3. Results from Simulation Study 

In this section of the simulation study, 10000 units are generated from normal distribution 

with different sample sizes n=10, n=20, n=30, n=40, n=50, n=100 n=200 and 500. 5% 

and 1% level of significance is considered. All tests are applied to the same samples with 

different sample sizes and the results obtained by simulation are summarized in Tables 

given below. The actual size of type 1 error rate and power of all the tests is estimated by 

the frequency of normally distributed populations. 

 

Table 3.1 and 3.6 represents the actual size of the tests for 5% and 1% level of 

significance respectively. Table 3.2 -3.5 and 3.7-3.10 reveal the power of the normality 

tests which consider in the present study against selected alternate distributions for 5% 

and 1% level of significance respectively. Power of these normality tests also compare by 

graphically.  
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Type 1 error rate and power of 12 normality tests which included in the present study at 

5% and 1% level of significance with different sample size and different alternate 

distributions are given as under.  

Table 3.1:   Size of the test at alpha=0.05 

Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.0498 0.0549 0.0515 0.0524 0.0519 0.0553 0.0515 0.0516 

Lillifors 0.0500 0.0517 0.0500 0.0504 0.0516 0.0535 0.0504 0.0500 

Kuiper 0.0472 0.0556 0.0501 0.0475 0.0473 0.0489 0.0551 0.0504 

Cramer von mises 0.0510 0.0530 0.0484 0.0516 0.0499 0.0491 0.0509 0.0503 

Anderson Darling 0.0516 0.0542 0.0503 0.0525 0.0497 0.0502 0.0505 0.0485 

Shapiro Francia 0.0546 0.0573 0.0505 0.0534 0.0525 0.0540 0.0492 0.0508 

Watson 0.0499 0.0527 0.0511 0.0498 0.0496 0.0490 0.0526 0.0507 

Chi Square 0.0674 0.0496 0.0544 0.0575 0.0512 0.0533 0.0512 0.0516 

Jarque Bera 0.009 0.0263 0.0313 0.0358 0.0349 0.0459 0.0440 0.0485 

Geary 0.024 0.0355 0.0356 0.0408 0.0398 0.0437 0.0484 0.0486 

D,Agostino D 0.0554 0.0556 0.0481 0.0502 0.0523 0.0518 0.0460 0.0489 

Shapiro Wilk 0.0513 0.0539 0.0511 0.0523 0.0481 0.0496 0.0452 0.0492 

Table 3.2:  Power results for different normality tests under alternate Cauchy 

distribution at (alpha=0.05) 

Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.5763 0.8392 0.9450 0.9815 0.9933 1.0000 1.0000 1.0000 

Lillifors 0.5777 0.8387 0.9443 0.9812 0.9933 1.0000 1.0000 1.0000 

Kuiper 0.5875 0.8588 0.9562 0.9863 0.9961 1.0000 1.0000 1.0000 

Cramer von mises 0.6152 0.8758 0.9622 0.9896 0.9972 1.0000 1.0000 1.0000 

Anderson Darling 0.6100 0.8756 0.9649 0.9902 0.9975 1.0000 1.0000 1.0000 

Shapiro Francia 0.6382 0.8918 0.9702 0.9916 0.9979 1.0000 1.0000 1.0000 

Watson 0.6110 0.8747 0.9621 0.9892 0.9972 1.0000 1.0000 1.0000 

Chi Square 0.5333 0.7729 0.9079 0.9625 0.9839 1.0000 1.0000 1.0000 

Jarque Bera 0.4250 0.8147 0.9434 0.9814 0.9942 1.0000 1.0000 1.0000 

Geary 0.4937 0.8756 0.9711 0.9936 0.9988 1.0000 1.0000 1.0000 

D,Agostino D 0.5760 0.7701 0.8504 0.8849 0.9050 0.9516 0.9799 0.9894 

Shapiro Wilk 0.5898 0.8629 0.9571 0.9876 0.9968 1.0000 1.0000 1.0000 

Table 3.3:  Power results for different normality tests under alternate Exponential 

distribution at (alpha=0.05) 
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Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.3163 0.5729 0.7775 0.9006 0.9636 1.0000 1.0000 1.0000 

Lillifors 0.3049 0.5701 0.7778 0.8999 0.9641 1.0000 1.0000 1.0000 

Kuiper 0.3676 0.6965 0.8814 0.9642 0.9914 1.0000 1.0000 1.0000 

Cramer von mises 0.4056 0.7284 0.8956 0.9663 0.9922 1.0000 1.0000 1.0000 

Anderson Darling 0.4287 0.7744 0.9322 0.9843 0.9966 1.0000 1.0000 1.0000 

Shapiro Francia 0.4445 0.7956 0.9511 0.9903 0.9985 1.0000 1.0000 1.0000 

Watson 0.3826 0.6939 0.8676 0.9470 0.9845 1.0000 1.0000 1.0000 

Chi Square 0.3985 0.6553 0.8541 0.9542 0.9843 1.0000 1.0000 1.0000 

Jarque Bera 0.1551 0.4781 0.7266 0.8738 0.9544 1.0000 1.0000 1.0000 

Geary 0.0884 0.1985 0.2865 0.3567 0.4215 0.6382 0.8518 0.9899 

D,Agostino D 0.3746 0.7001 0.8862 0.9595 0.9879 1.0000 1.0000 1.0000 

Shapiro Wilk 0.4589 0.8331 0.9683 0.9961 0.9995 1.0000 1.0000 1.0000 

Table 3.4:  Power results for different normality tests under alternate Weibull 

(Scale=2, Shape=3) distribution at (alpha=0.05) 

Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.0480 0.0496 0.0474 0.0488 0.0533 0.0688 0.0873 0.1709 

Lillifors 0.0465 0.0472 0.0493 0.0493 0.0511 0.0694 0.0900 0.1717 

Kuiper 0.0491 0.0503 0.0476 0.0497 0.0588 0.0677 0.0879 0.1605 

Cramer von mises 0.0462 0.0492 0.0484 0.0473 0.0594 0.0706 0.1000 0.2085 

Anderson Darling 0.0430 0.0475 0.0484 0.0470 0.0607 0.0740 0.1123 0.2640 

Shapiro Francia 0.0447 0.0389 0.0404 0.0355 0.0413 0.0538 0.1011 0.3805 

Watson 0.0466 0.0496 0.0500 0.0496 0.0576 0.0672 0.0964 0.1852 

Chi Square 0.0631 0.0460 0.0537 0.0562 0.0583 0.0655 0.0711 0.1059 

Jarque Bera 0.0064 0.0151 0.0182 0.017 0.0249 0.029 0.0563 0.3289 

Geary 0.0179 0.0197 0.0198 0.0167 0.0157 0.0095 0.0049 0.0018 

D,Agostino D 0.0381 0.0374 0.0387 0.0363 0.0443 0.0621 0.1080 0.2937 

Shapiro Wilk 0.0447 0.0448 0.0504 0.0498 0.0566 0.0807 0.1589 0.5187 

Table 3.5:  Power results for different normality tests under alternate Logistic 

(Location=0, Scale=1) distribution at (alpha=0.05) 

Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.0757 0.0772 0.0915 0.1014 0.1108 0.1544 0.2518 0.4976 

Lillifors 0.0749 0.0767 0.0943 0.0997 0.1106 0.1594 0.2492 0.5064 

Kuiper 0.0755 0.0823 0.1005 0.1138 0.1250 0.2093 0.3281 0.6422 
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Cramer von mises 0.0810 0.0911 0.1139 0.1288 0.1348 0.2141 0.3514 0.6870 

Anderson Darling 0.0798 0.1011 0.1280 0.1450 0.1507 0.2499 0.4035 0.7642 

Shapiro Francia 0.0968 0.1432 0.1820 0.2155 0.2448 0.3762 0.5681 0.8735 

Watson 0.0807 0.0867 0.1114 0.1261 0.1270 0.2187 0.3656 0.7064 

Chi Square 0.0827 0.0640 0.0688 0.0813 0.0777 0.0910 0.1200 0.2163 

Jarque Bera 0.0260 0.0946 0.1435 0.1893 0.2238 0.3731 0.5787 0.8885 

Geary 0.0484 0.1095 0.1589 0.1987 0.2384 0.3937 0.6127 0.9164 

D,Agostino D 0.0991 0.1357 0.1580 0.1781 0.1841 0.2296 0.2584 0.2875 

Shapiro Wilk 0.0816 0.1137 0.1475 0.1754 0.1939 0.3078 0.4944 0.8392 

Table 3.6:   Size of the test at alpha=0.01 

Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.0079 0.0097 0.0111 0.0088 0.0094 0.0122 0.0105 0.0109 

Lillifors 0.0106 0.0091 0.011 0.0081 0.0096 0.0117 0.0092 0.0096 

Kuiper 0.0099 0.0105 0.0109 0.008 0.0105 0.012 0.0093 0.0116 

Cramer von mises 0.0098 0.0091 0.0112 0.0081 0.0118 0.0112 0.0106 0.0121 

Anderson Darling 0.0097 0.0099 0.0114 0.0082 0.0122 0.0109 0.0119 0.0110 

Shapiro Francia 0.0118 0.0085 0.0111 0.0098 0.0121 0.0105 0.0108 0.0117 

Watson 0.0097 0.0096 0.0109 0.0076 0.0114 0.0115 0.0112 0.0112 

Chi Square 0.0114 0.0117 0.0094 0.0094 0.0110 0.0114 0.0108 0.0095 

Jarque Bera 0.0024 0.0100 0.0149 0.0163 0.0184 0.0184 0.0163 0.0161 

Geary 0.0056 0.0081 0.0082 0.0090 0.0112 0.0113 0.0091 0.0128 

D,Agostino D 0.0133 0.0096 0.0102 0.0089 0.0114 0.0095 0.0095 0.0105 

Shapiro Wilk 0.0120 0.0081 0.0099 0.0090 0.0106 0.0095 0.0101 0.0113 

Table 3.7: Power results for different normality tests under alternate Cauchy 

distribution at (alpha=0.01) 

Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.4366 0.7519 0.8909 0.9576 0.9843 0.9999 1.0000 1.0000 

Lillifors 0.4439 0.7483 0.8926 0.9563 0.9841 0.9999 1.0000 1.0000 

Kuiper 0.4609 0.7842 0.9261 0.9727 0.9908 0.9999 1.0000 1.0000 

Cramer von mises 0.4832 0.8046 0.9342 0.9768 0.9939 0.9999 1.0000 1.0000 

Anderson Darling 0.4910 0.8092 0.9364 0.9789 0.9936 1.0000 1.0000 1.0000 

Shapiro Francia 0.4912 0.8191 0.9378 0.9801 0.9937 1.0000 1.0000 1.0000 

Watson 0.4805 0.8017 0.9357 0.9784 0.9942 0.9999 1.0000 1.0000 

Chi Square 0.3633 0.6847 0.8405 0.9286 0.9674 0.9997 1.0000 1.0000 

Jarque Bera 0.3382 0.7655 0.9184 0.9704 0.9904 1.0000 1.0000 1.0000 
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Geary 0.3593 0.7994 0.9449 0.9846 0.9969 1.0000 1.0000 1.0000 

D,Agostino D 0.4391 0.6929 0.7854 0.8408 0.8758 0.9417 0.9698 0.9876 

Shapiro Wilk 0.4753 0.7912 0.9244 0.9751 0.9925 1.0000 1.0000 1.0000 

Table 3.8: Power results for different normality tests under alternate Exponential 

distribution at (alpha=0.01) 

Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.1340 0.3128 0.5247 0.7308 0.8520 0.9987 1.0000 1.0000 

Lillifors 0.1324 0.3331 0.5406 0.7190 0.8518 0.9987 1.0000 1.0000 

Kuiper 0.1863 0.4634 0.7368 0.9089 0.9621 1.0000 1.0000 1.0000 

Cramer von mises 0.2008 0.4858 0.743 0.8948 0.9633 0.9998 1.0000 1.0000 

Anderson Darling 0.2146 0.5465 0.8016 0.9405 0.9818 1.0000 1.0000 1.0000 

Shapiro Francia 0.2107 0.5762 0.8289 0.9508 0.9877 1.0000 1.0000 1.0000 

Watson 0.1907 0.4457 0.7039 0.8637 0.9417 0.9998 1.0000 1.0000 

Chi Square 0.1265 0.4151 0.6517 0.7872 0.8691 0.9977 1.0000 1.0000 

Jarque Bera 0.0841 0.3572 0.5819 0.7586 0.8747 0.9993 1.0000 1.0000 

Geary 0.0358 0.1102 0.1764 0.2343 0.2829 0.4828 0.7419 0.9756 

D,Agostino D 0.1783 0.4572 0.6857 0.8537 0.9357 0.9999 1.0000 1.0000 

Shapiro Wilk 0.2346 0.6292 0.8733 0.9715 0.9942 1.0000 1.0000 1.0000 

Table 3.9:  Power results for different normality tests under alternate Weibull 

(Scale=2, Shape=3) distribution at (alpha=0.01) 

Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.0087 0.0096 0.0086 0.0087 0.0131 0.0152 0.0194 0.0468 

Lillifors 0.0093 0.0091 0.0077 0.0092 0.0105 0.0149 0.0212 0.0483 

Kuiper 0.0101 0.0105 0.0092 0.011 0.0119 0.0135 0.0181 0.0462 

Cramer von mises 0.0098 0.0084 0.0085 0.0102 0.0133 0.0159 0.0246 0.0672 

Anderson Darling 0.0089 0.0089 0.0086 0.0102 0.0143 0.0161 0.0295 0.0996 

Shapiro Francia 0.0085 0.0059 0.0061 0.0068 0.0072 0.0093 0.0190 0.1253 

Watson 0.0095 0.0098 0.0080 0.0102 0.0132 0.0158 0.0236 0.0570 

Chi Square 0.0134 0.0138 0.0110 0.0102 0.0125 0.0159 0.0167 0.0281 

Jarque Bera 0.0018 0.0053 0.0078 0.0090 0.0106 0.0105 0.0128 0.0660 

Geary 0.0029 0.0044 0.0039 0.0028 0.0031 0.0020 0.0011 - 

D,Agostino D 0.0087 0.0050 0.0065 0.0068 0.0072 0.0107 0.0245 0.0974 

Shapiro Wilk 0.0082 0.0072 0.0071 0.0092 0.0091 0.0157 0.0369 0.2139 

Table 3.10:  Power results for different normality tests under alternate Logistic 

(Location=0, Scale=1) distribution at (alpha=0.01) 
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Normality Tests n=10 n=20 n=30 n=40 n=50 n=100 n=200 n=500 

Kolmogrove 

Smirnov 
0.0158 0.0219 0.0243 0.0281 0.0301 0.0560 0.0988 0.2602 

Lillifors 0.0197 0.0213 0.0260 0.0276 0.0294 0.0511 0.0886 0.2517 

Kuiper 0.0165 0.0283 0.0311 0.0403 0.0403 0.0845 0.1544 0.4245 

Cramer von mises 0.0201 0.0251 0.0335 0.0422 0.0504 0.0874 0.1765 0.4721 

Anderson Darling 0.0218 0.0307 0.0420 0.0505 0.0606 0.1076 0.2064 0.5455 

Shapiro Francia 0.0269 0.0498 0.0738 0.102 0.1118 0.2116 0.3735 0.7488 

Watson 0.0193 0.0254 0.0323 0.0407 0.0505 0.0956 0.1874 0.5011 

Chi Square 0.0146 0.0165 0.0166 0.0197 0.0204 0.0229 0.035 0.0757 

Jarque Bera 0.0094 0.0526 0.095 0.1364 0.1498 0.2801 0.4596 0.8135 

Geary 0.0114 0.0412 0.0658 0.0926 0.111 0.2211 0.4127 0.7967 

D,Agostino D 0.0309 0.0473 0.068 0.0798 0.0812 0.1133 0.1400 0.1641 

Shapiro Wilk 0.0253 0.0391 0.0623 0.0801 0.0901 0.1709 0.3160 0.7054 

 

Under alternate Cauchy distribution almost all tests perform well at different sample 

sizes. By increasing sample size, power of all tests also increased. However Shapiro 

Francia gave maximum power followed by Cramer von mises test, Watson test and 

Anderson Darling test. For small sample size, Jarque Bera and Geary test and for large 

sample size D’ Agostino D test had low power respectively (Table 3.2). Results of the 

power of the normality tests under alternate exponential distribution is given in Table 3.3. 

Shapiro Wilk test performed well under this alternate distribution for small and moderate 

sample sizes. Shapiro Francia, Anderson Darling and Cramer von mises test also perform 

well but it had slightly low power than Shapiro Wilk test. Greay test did not perform well 

among its competitors and generate low power for small and moderate sample sizes while 

for large sample sizes it provides better results. All the normality tests did not perform 

well at different sample sizes under Weibull distribution with scale parameter 2 and 

shape parameter 3 at 5% level of significance. For sample size 500, Shapiro Wilk, 

Shapiro Francia and Jarque Bera had better results than the other tests. Under this 

alternate distribution, Geary test also did not perform well and had low power for all 

sample sizes. 

 

At five percent level of significance, when the alternate distribution is logistic, all tests 

had low power and not perform well for small and moderate sample sizes. For large 

sample size Geary test performed well and had maximum power than its competitors 

while the Chi Square test also had low power of the test. Jarque Bera test had provided 

better results followed by Shapiro Francia, Shapiro Wilk, Anderson Darling and Watson 

test. Table 3.6 showed the actual size of the type 1 error rate at one percent level of 

significance. It is clear from the results that less powerful test surrounded by those 

normality tests is the Jarque Bera test. It performed well only for the sample size 20. For 

the sample size less than 20 it had lowest significance level than the actual and for the 

sample size greater than 20 it had larger significance level than the actual. All other test 

almost had actual size of the test whatever the sample size. 
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For one percent level of significance under alternate Cauchy distribution, Shapiro 

Francia, Anderson darling, Cramer von mises and Shapiro Wilk test have better results. 

For moderate and large sample sizes almost all tests perform well and gives maximum 

power. For the small sample size 10, Jarque Bera and Geary test had low power than the 

other test but for the sample size larger than 10 it has better results than the D’ Agostino 

D test and Chi Square test (Table 3.7). Under alternate Exponential distribution at 1% 

level of significance, Shapiro Wilk test perform well and gives better results and than the 

other test and Geary test is the less powerful test. Geary test also gives better results for 

the large sample size but its power remains low among all other test whatever the sample 

size (Table 3.8).  

 

Table 3.9 showed the power of the tests under alternate Weibull distribution for different 

sample sizes at 1% level of significance. It is clear that all tests had low power for all 

sample sizes considered in the study. By increasing sample sizes, power of all tests also 

increases except the Geary test. For large sample size, Shapiro Wilk test gives better 

results followed by Shapiro Francia test. In Table 3.10, power of 12 different normality 

test under alternate Logistic distribution at 1% level of significance with location 

parameter 0 and scale parameter 1 was provided. The power of all test remain very low 

for small and moderate sample sizes and for large sample size few tests had better results. 

Under this alternate distribution Jarque Bera test is the most powerful test for moderate 

and large sample sizes followed by Geary test, Shapiro Francia test and Shapiro Wilk 

test.  

Conclusion 

A comprehensive study of the power of accessible normality tests has been performed 

and observed that the power of these tests has been affected by changing the sample size, 

level of significance and alternate distribution. By increasing the sample size and level of 

significance, power of these tests also increased. In general, Shapiro Francia test leads 

under alternate Cauchy distribution at 5% and 1% level of significance followed by 

Watson test and Anderson Darling test. Under alternate Exponential distribution Shapiro 

Wilk test had better results followed by Shapiro Francia, Anderson Darling and Cramer 

von miss a test at both levels of significance. When the alternate distribution is Weibull, 

performance of almost all tests was low, whatever the sample size. However, Shapiro 

Wilk test slighltly had better results than the other studied tests. Under alternate Logistic 

distribution, all tests had low power for small sample sizes but for moderate and large 

sample sizes Geary test perform well followed by Jarque Bera test, Shapiro Francia test 

and Shapiro Wilk test at the 5% level of significance. At the 1% level of significance 

under Logistic alternate distribution, Jarque Bera test performed well and had a 

maximum power among its competitors. Secondly, Geary test, Shapiro Francia test and 

Shapiro Wilk test also give better results. Finally, it is concluded that Shapiro Wilk and 

Shapiro Francia test performed well and had better results in almost all cases except the 

alternate Logistic distribution.   
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