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Abstract 

In this paper we consider, how to find the marginal distributions of crossing time and renewal 
numbers related with two poisson processes by using probability arguments. The obtained results 
show that the one-dimension marginal distributions are N+1 order PH-distributions. 
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1.   Introduction 

Assumption: }i{Y}i{X  and  constant a be N Let  be two sequences of random 

variables. Suppose that 3...; 2, 1,  i },{Xi = are independently and identically 

distributed (i.i.d.) F(t) with mean  3...; 2, 1,  j  },{Y and  j
1 =−λ G(t)  d. i. i.  are   with mean 

1-µ . 

t}Snsup{(t)N n1 ≤=  is the counting process associated with }{Xi  
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Assume that iX , jY  are mutually independent. 

In the case of F(t) and G(t) are exponentially distributed with parameter λ and µ  

respectively, consider the following problem 
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we are interesting in finding the marginal distributions of ,  , T n
N

ξξ  Nη  and prove 

that the obtained results are (N+1) order PH-distributions 

2. Probability Arguments 

In this section, first of all one can find out the marginal distribution of random 

variables Nn
N

 and, , T ηξξ  then their probability generating function, mean and 

variance respectively . 
Since 
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The integral function is an Erlang density, it yields 
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Obviously, this is a negative binomial distribution. Thus the probability generating 
function is given by 
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In which the distribution of 




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and Newton’s binomial formula see Ref [1, 9] 

the mean and variance of the distribution  

[ ]

[ ] ( ) (2,4)                     
N

   )1(G  - )1(G  var

 (2,3)                                             
N

  )1(G E 

2

22
2

N
NN

NN

~

~  

λ

λµ
ξ

λ

λµ
ξ

ξξ

ξ

+
=′=

+
==

 

Let TΦ  (t) represent the distribution function of T, since 
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This shows that Y SY  xx xT NN21
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+=++++= Lξ  in distribution  

Therefore the L-transform of random variable 
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T ξ  is as follows 
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Taking the inverse of the L-transform one can get the density function
N
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The mean and variance of the distribution are 
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It is a geometric distribution. Therefore the probability generating function of the 
distribution is 
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3.  One Dimension Marginal Distributions as Ph-Distributions. 

A particular instance of the method of supplementary variables is known as the 
method of phases and involves ideas of remarkable simplicity which were first 
proposed by A. K. Erlang. He observed that gamma distributions, whose shape 
parameter is a positive integer, may be considered as the probability distributions 
of sums of independent, negative exponential random variables. In this manner a 
number of highly useful results for renewal processes of Erlang type can be 
derived from those of the much simpler poisson process.  
 
The basic idea of Erlang, which ultimately rests on the memoryless property of 
the negative exponential distribution, has been applied and extended by many 
authors.  
 
Most useful elementary applications are discussed in the monograph by D. R. 
Cox[4], no attempt will be made to survey the uses of the method of  phases in 
the existing literature, but we must draw attention to the paper by D. R. Cox[3] 
which introduces interesting  
 
Notion of complex-valued probabilities in an attempt to find phase 
representations for all probability distributions on the positive real line which have 
rational Laplace-stieltjes transforms. Many open questions raised there have 
essentially remained un answered up to this time, and other related to the 
numerical use and fitting of such distributions are deserving of much further 
investigation. 
 
The analytical and computational simplifications resulting from the method of 
phases are clear. They permeate the discussions of a large number of paper in 
the theory of queues and have recently been exploited in the construction of 
algorithms for certain single server queues [8]. One may anticipate that the 
method of phases will permit the algorithmic solution of a growing number of 
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system of queues, as well as an exact numerical investigation of the Less-
tractable priority queues. Instances of such results may be found in Ref. [6, 7]. 

Theorem 3.1 
N

Tξ is a (N+1) order continuous PH-distribution with represent 

(α ,T) where α =  0), ,  0, 0, (1,   L=α 2N+α =0 
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Proof   The definition and property of PH-distribution see ref [5]. For continuous 
PH-distribution its L-transform is 
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Obviously, this is the same to eq. (2.5) 

Theorem 3.2   Nη  is a N+1 order discrete PH-distribution with representation  

(α , P) where  0) ,  0, 0, (1,   L=α , and   0    2N =+α  
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Proof For discrete PH-distribution, its probability generating function 
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Same to eq. (2.11) 

Theorem 3.3   Nη  is a N+1 order discrete PH-distribution with representation  

(α , P) where  0) ,  0, 0, (1,   L=α , and   0    2N =+α  
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Proof  The conclusion may be similarly verified as theorem 3.2. Because 
negative binomial distribution is the N-fold convolution of geometric distribution it 
is also may be obtained from the convolution property of PH-distribution. 
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