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Abstract 

In this paper we have considered several regression models to fit the count data that encounter in 
the field of Biometrical, Environmental, Social Sciences and Transportation Engineering. We have 
fitted Poisson (PO), Negative Binomial (NB), Zero-Inflated Poisson (ZIP) and Zero-Inflated 
Negative Binomial (ZINB) regression models to run-off-road (ROR) crash data which collected on 
arterial roads in south region (rural) of Florida State. To compare the performance of these 
models, we analyzed data with moderate to high percentage of zero counts. Because the 
variances were almost three times greater than the means, it appeared that both NB and ZINB 
models performed better than PO and ZIP models for the zero inflated and overdispersed count 
data. 
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Binomial;   Prediction; Zero-Inflated Poisson; Zero-inflated Negative Binomial. 

1.   Introduction 

Many outcomes in traffic accident, clinical medicine, biomedical research that are 
non-negative and discrete in nature. Thus it may be natural to model these count 
data with discrete distribution instead of continuous, which is usually being used 
as normal. The Poisson (PO) distribution has been used to model the count data 
for a long time. It has an important constraint that the mean and variance are 
equal. However, many processes in real life are over dispersed (variances are 
greater than means) and violate the underlying assumption of Poisson (PO) 
distribution. In that cases the negative binomial (NB) distribution is a natural and 
more flexible extention of the Poisson distribution and allows for over-dispersion 
compared to Poisson distribution. Several researchers have suggested to use 
the NB regression model as an alternative to the PO regression model when the 
count data are over or under dispersed.  Both Poisson  and Negative Binomial 
distribution have been used for predicting the accidents related count frequencies 
by Miaou (1994), Shankar et al. (1995, 1997), Poch and Mannering (1996), 
Milton and Mannering (1998) and Lee and Mannering (2002) among others. It is 
noted that most of the accidents data contain excess number of counts with zero. 
Unfortunately, the Poisson and NB models do not address the possibility of zero 
counts and can not fit the data properly. Then corresponding inflated models, say 
zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) are very 
useful to describe the zero inflated count data.  Both ZIP and ZINB models 
incorporate extra variation than the corresponding Poisson and NB models. The 
most appropriate reference for ZIP regression model are Lambert (1992) and Lee 
et al. (2001) and ZINB regression model are Cameron and Trivedi (1998) and 
Long (1997) among others. To select an appropriate inflated model, that is, ZIP 
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model over Poisson or ZINB model over NB, the Vuong (1989) statistics is one of 
the popular test. Beside modeling crash or accidents data, these four models 
have been used in environmental science by Warton (2005), in biomedical 
science (Yau et al. 2003) among other discipline. The main objective of this 
paper is to provide a comprehensive review of these four models and discuss 
how to fit appropriate statistical models for count data using STATA software, 
specially for the over dispersed and an excess number of counts in the data. 
 
The organization of this paper is as follows. The statistical methodology and 
goodness of fit of the models are given in section 2. To compare the performance 
of the models, an example has been illustrated in section 3. This paper ends up 
with some concluding remarks in section 4. 

2.    Methodology 

2.1  Regression Models 

In dealing with count data, for examples accident, number of ER visits, crashes 
that are non-negative and discrete in nature, it make more sense to model these 
count data using PO, NB, ZIP or ZINB distributions. Regardless of whether the 
assumed model is a PO, NB, ZIP or ZINB, it will be assumed that the 
occurrences will be independent of each other. The four types of models are 
described briefly in the following subsections. 

2.1.1  Poisson Regression 

If the variance of the counts approximately equals the mean of the count, then 
the Poisson regression model can be expressed as 
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where iy  is the number of counts  (crashes for example) for a particular period 

or region ii θ,  is the expected number of crashes per period, which can be 

modeled as 

),exp( βθ ii x′=  

where ix′  is the vector of explanatory variables and β  is the vector of unknown 

regression parameters. The main constraint in the PO distribution is that the 
mean and variance are same, that is, .)()( θ== YVYE  When there is a 

heterogeneity or over dispersion in the population, the Poisson regression does 
not work well. The following negative binomial (NB) regression model is a 
possible candidate as an alternative to PO regression. 

2.1.2  Negative Binomial Model 

The Negative Binomial (NB) distribution can be obtained from the mixture of 
Poisson and Gamma distribution and is expressed as 
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where iy  is the number of crashes for road segment ii θ,  is the expected number 

of crashes per period, which can be expressed as 

),exp( βθ ii x′=  

The mean and variance of negative binomial distribution are respectively, 
( ) iii xyE θ=  and ( ) [ ] ( )iiiiii xyExyVar >+= )1 αθθ . Thus the NB model is also over-

dispersed and allows extra variation relative to the traditional PO model. It has 
more desirable properties than the Poisson model to describe the relationship 
between ROR crashes and geometric characteristics (Chin and Quddus 2003). 
The variance of NB is significantly greater than the mean. Here α  represents an 
ancillary or dispersion parameter which indicate the degree of over dispersion. If 

,0=α  the NB regression model reduces to traditional Poisson regression model.  
Many researchers in different fields have considered both Poisson and Negative 
Binomial  models: Miaou (1994), Karlaftis and Tarko (1998), Hauer (2001), Lee et 
al. (2002),  Byers et al. (2003), Berhanu (2004), Yau et al. (2004)  and Lord et al. 
(2005) to mention a few. However, when excess zero occur, both PO and NB 
regression models are not that useful to fit the zero inflated models. In that case 
both ZIP and ZINB models are appropriate choice. 

2.1.3  Zero-Inflated Poisson (ZIP) 

The zero-inflated Poisson model has a long history to use in the literature of 
count data to deal with an excess zeros in data. The ZIP model can be defined 
as 
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where iy  is the number of crashes for road segment ,i for a chosen time period, 

iθ  is the expected number of crashes per period, which can be modeled as 

),exp( βθ ii x′=  

where ix′  is the vector of explanatory variables and β  is the vector of 

parameters,  and )10( <<ψψ  is the probability of being in the zero crash state, 

determined by a logit model (Lambert 1992, Long 1997). That is 
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where iz′  is the vector of explanatory variables and γ  is the corresponding 

vector of parameters. The mean and variance of ZIP model are respectively, 
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Thus the ZIP model is over-dispersed and allows extra variation relative to the 
Poisson model. If ,0=ψ  the ZIP model reduces to a classical Poisson regression 

model, otherwise the variance exceeds the mean (Long 1997). Different 
researchers have used ZIP model for several purposes and times, among them, 
Mullahy (1986), Lambart (1992), Gupta et al. (1996), Lee et al. (2001), Cheung 
(2002) and Yau et al. (2003) are notable. In the case of ZIP model the dual-state 
system exists and can be described by combining the Poisson count model 
(normal-count state) and the binary process (zero state) for the ZIP model. 
Testing for overdispersion in Poisson and binomial regression models we refer 
Dean (1992) among others. 

2.1.4   Zero-Inflated Negative Binomial (ZINB) 

The zero-inflated negative (ZINB) model can be formulated as section 2.1.3. 
Following Cheung (2002), the ZINB model can be expressed as  
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where iy  is the number of crashes for road segment ii θ,  is the expected number 

of crashes per period, which can be modeled as 
),exp( βθ ii x ′=  

where ix′  is the vector of explanatory variables and β  is the vector of 

parameters, and ψ  is the probability of being in the zero crash state, determined 

by a logit model (Long 1997). That is 
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where iz′  is the vector of explanatory variables and γ  is the corresponding 

vector of parameters. The mean and variance of ZINB model are respectively, 
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Thus the ZINB model is also over-dispersed and allows extra variation relative to 
the traditional NB model. If ,0=ψ  the ZINB model reduces to a classical NB 

regression model. For ,0=α  the ZINB regression model reduces to ZIP 

regression model and for 0=ψ  and ,0=α  it reduces to a classical Poisson 

regression model. For properties and statistical inference, including the maximum 
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likelihood estimation of the parameters for ZIP or ZINB models, we refer Gupta et 
al. (1996), Lambert (1992), Long (1997) among others. The parameters of the 
models have been estimated by maximum likelihood estimation method using 
statistical software STATA 9.0. 

2.2    Selecting Appropriate Models 

2.2.1  Vuong Statistic: Selecting Inflated Model over Traditional 

A number of tests for example, likelihood ratio test, the Wald test and the score 
tests are available for testing the zero inflation in the model (for example, see van 
den Broek 1995 and Lee at al., 2004 among others). For our convenience we will 
consider Vuong statistic, which is available in STATA. To define the Vuong (V) 

statistic, suppose ( )ii xyf1  and ( )ii xyf2  denote the probability density function of 

zero-inflated model (ZIP or ZINB) and parent or traditional model (PO or NB) 

respectively and ( )ii xyF1  and ( )ii xyF2  denote their corresponding cumulative 

distribution functions. We want to test the following hypotheses 
 

0H : Two distribution functions are equivalent 

aH : Two distribution functions are different (two tailed test (two sided)) 

aH : ( )ii xyF1  is better than ( )ii xyF2  (upper tailed test (one sided)) 

aH : ( )ii xyF1  is worse than ( )ii xyF2  (lower tailed test (one sided))   (2.5) 

Now we define, 
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measurements im . Then the Vuong statistic is defined as 
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For large sample size and under the null hypothesis the statistic V has the 
asymptotic standard normal distribution. Note that Shankar et al. (1997), Carson 
and Mannering (2001) and Lee and Mannering (2002) among others have 
defined that V statistic has a t distribution instead of approximate standard 
normal. This is not a correct statement as t statistic is developed based on the 
assumption that data are from normal distribution. In the context of count data, 
the parent population is discrete and for large sample size, V has asymptotic 
normal distribution. The critical values of t statistic depend on its degrees of 
freedoms (df). For small degrees of freedoms the t distribution is leptokurtic. 
However, as the number of degrees of freedom increases, the t distribution 
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approaches the standard normal distribution. Thus to make any decision about 
the null hypothesis it is reasonable to compare the observed value of the test 
statistic with the critical value from standard normal distribution. 

2.2.2   Selecting Over Dispersed Model 

To test the whether data are over dispersed or not, we test the following 
hypothesis, 

0:0 =αH  

0≠= αaH  

The corresponding test statistic is 

.
)ˆ(

ˆ

α

α

SE
z =  

Under 0H  and for large sample size, the z has approximate standard normal 

distribution. Reject 0H  at α  level of significance if 

2/αZz >  

If we reject the null hypothesis we should accept that NB and ZINB models are 
more appropriate compare to PO and ZIP models. 

2.3    Parameter Estimation and Model Selection 

2.3.1 Parameter Estimation 

The maximum likelihood method has been considered due to limitation of the 
application of STATA, which consider the maximum likelihood estimation (mle) 
technique. To evaluate the model, it is necessary to examine the significance of 
the variables included in the model. For a better model, the estimated regression 
coefficients have to be statistically significants. Usually, the t test is used to 
determine the significance of the regression coefficients. Moreover, the intuitive 
judgment of the experimenters should be considered. 

2.3.2 Goodness of fit 

After fitting some models to the data, it is essential to check the overall fit as well 
as quality of the fit. The quality of the fit between the observed values (y) and 

predicted values )ˆ(µ  can be measured by various test statistics, however, the 

one of the useful statistic is called deviance and defined as: 
( )[ ]);(;ˆ2)ˆ:( yyLyLyD −−= µµ  

For a better model, one would expect smaller value of the ).ˆ:( µyD  For detailed 

about the fitting of a generalized linear model (GLM)s readers are refer to 
McCullah and Nelder (1987) and Agresti (2002) among others. 

2.3.3  AIC: Selecting Best Model 

Akaike's information criterion (AIC, Akaike 1973) was used to compare the 
different models. The AIC is defined as 
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,22 kLAIC +−=  

where L is the log-likelihood and k < p is the number of parameters in the model. 
For the best fitted model one must expect lowest AIC value. 

2.4 Model Assessment: Prediction 

Our main objective is to compare the models (PO, ZIP, NB and ZINB) in the 
sense of better prediction. We will fit the models and then predict the number of 
crashes. For a better model, one would expect the predicted frequencies should 
be close to corresponding observed frequencies. Since the theoretical 
comparison is hard to make, a numerical comparison using a real data set are 
given in the following section. 

3  Example 

3.1  Data Description 

To demonstrate the performance of the models, we consider two years of run-off-
road (ROR) crash data (2000-2001) which encompassing 588 centerline miles in 
the rural south region of Florida State Highway System classified as Principal 
Arterial only. The data was collected from two data sources. The first is the crash 
data which were extracted from the Florida Department of Transportation (FDOT) 
Crash Analysis Reporting System (CARS). This database contains a great deal 
of data regarding the drivers or pedestrians, conditions of the vehicles, 
contributing causes, weather condition, lighting condition, etc. The second source 
of data includes all of the roadway geometric and traffic related features, which 
were extracted from the Roadway Characteristics Inventory (RCI) database also 
maintained by the FDOT.  The Civil and Environmental Engineering Department 
at the Florida International University (FIU) has developed a Dynamic 
Segmentation (DYSEG) program. The DYSEG combines both databases: Crash 
Analysis Reporting System (CARS) and Roadway Characteristics Inventory 
(RCI). This is a database program that allows the user to filter necessary 
variables. One of the advantages of this program was that it allowed for the user 
to segment the entire State Highway System by section in equal lengths of 
similar geometric and traffic characteristic. The study area includes all of the 
counties in Florida that encompass the rural south region. There are several 
segment lengths are available (one mile, one and half and two). However, this 
paper consider only one and half segment length to accomplish the objective of 
the paper. The choice of one and half mile segment give us the excessive 
segments with zero ROR crashes. There are several variables to be considered, 
however, to compare the models, we have chosen only endmilepost (end mile 
post), lanewidth (width of the travel lane measured in feet), medwidth (the width 
of the median measured in feet), nolanes (no of lanes), pavecond (rating of the 
pavement condition ranging from 1, very poor to 5, very good), surwidth (the 
width of the entire pave roadway surface measured in feet), adt (the average 
annual daily traffic is total traffic volume on a roadway segment for one year 
divide by 365 days. This is measured vehicles per day). These variables include 
both roadway related variables and traffic related variables. For detailed about 
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the data and their properties we refer Gonzalez (2004). After fitting several 
models, we found that these variables are statistically significant to predict the 
number of crashes. We have created different data sets by deleting zero ROR 
crashes from 392 to 250. The summary statistics of the four set of data (number 
of crashes) are given in table 3.1. From the summary table it appears that all 
data sets are overdispersed. Thus one might expect that both NB and ZINB 
would possibly be better models to predict the ROR crashes. 

Table 3.1: Summary Statistics 

 Data 250 Data 275 Data 325 Data 392 

% of zero 10.0 18.2 31.0 43.0 

Mean 2.33 2.12 1.79 1.48 

Variance 6.66 6.50 6.08 5.49 

Skewness 3.03 3.04 3.14 3.35 

Kurtosis 16.28 16.55 17.62 19.58 

3.2   Model Fitting 

There are four sets of data and we have fitted 4 different models for each data 
set. To save the space of the paper, the STATA output have not provided here, 
however, they are available from the author upon request. The total 16 possible 
models and the summary of statistical analysis have been given in Table 3.2. 

3.2.1  Model fitting to Data Set 250  

There are 10% zero ROR crashes in this data set. From Table 3.2, we observed 
that all models (PO, ZIP, NB and ZINB) are approximately and equivalently 
significant. In PO regression model, there are five explanatory variables 
(lanewidth, nolanes, pavecond, surwidth and adt) which have significant effect on 
the ROR crashes. For ZIP model, four explanatory variables (maxspeed, 
pavecond, surwidth and adt) are statistically significant for PO part and three 
explanatory variables (lanewidth, pavecond and adt) are statistically significant 
for logit part. Four explanatory variables (nolanes, pavecond, surwidth and adt) 
are statistically significant for the NB regression model. For ZINB model, four 
explanatory variables (nolanes, pavecond, surwidth and adt) are statistically 
significant for NB part and three explanatory variables (nolanes, pavecond and 
adt) are statistically significant for logit part. Vuong statistics suggested for 
traditional models instead of zero inflated models. The over dispersion 
parameters are statistically significant which indicated that over dispersion in the 
data.  The deviance and AIC supported for both NB and ZINB models to fit the 
ROR crash data. The differences of observed and the mean predicted 
proportions for number of crashes is presented in Figure 3.1. This figure 
supported for both PO and NB models. Thus when the data have smaller amount 
of zeros, it make more sense to use PO or NB regression models. However, 
since the data is over dispersed, we have suggested for NB regression model. 



Applications of some discrete regression models for count data 

Pak. j. stat. oper. res.   Vol.II  No.1 2006   pp1-16 9

 

Table 3.2: Summary of the fitted Models 

Data Characteristics Model 

Poisson ZIP NB ZINB 

250 Log-Likelihood -443.87 -447.00 -493.55 -435.90 

 Deviance 887.35 894.0 879.09 871.79 

 DF 244 241 244 240 

 ML R2  0.56 0.57 0.36 0.36 

 AIC 899.74 912.00 891.09 891.79 

 Over Dispersion   α̂ =0.128(0.007) α =0.114(0.010) 

 Vuong Statistics  z =0.47(0.32)  z =1.31(0.10) 

275 Log-Likelihood -472.17 -470.43 -463.67 -457.83 

 Deviance 944.24 940.86 927.33 915.66 

 DF 270 267 269 264 

 ML R2  0.62 0.61 0.30 0.42 

 AIC 954.34 956.86 939.33 937.66 

 Over Dispersion   α =0.165(0.002) α̂ =0.136=(0.006) 

 Vuong Statistics  z =1.57(0.06)  z =1.65(0.05) 

325 Log-Likelihood -546.66 -534.98 -526.53 -526.65 

 Deviance 1093.33 1069.96 1053.06 1053.31 

 DF 319 313 319 318 

 ML R2  0.62 0.57 0.33 0.33 

 AIC 1105.33 1093.96 1065.06 1067.31 

 Over Dispersion   α̂ =0.338(0.000) α̂ =0.329(0.000) 

 Vuong Statistics  z =1.72(0.04)  z =0.23(0.41) 

392 Log-Likelihood -627.98 -597.11 -588.07 -581.35 

 Deviance 1255.97 1194.23 1176.14 1162.70 

 DF 385 382 384 383 

 ML R2  0.61 0.51 0.28 0.31 

 AIC 1269.97 1214.23 1192.14 1180.70 

 Over Dispersion   α̂ =0.587(0.000) α̂ =0.405(0.000) 

 Vuong Statistics  z =3.24(0.00)  z =2.79(0.003) 

 
NB: The P-values of the tests are presented within parenthesis 
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Figure 3.1: Difference between observed and predicted proportions for number of 
crashes  

3.2.2  Model fitting to Data Set 275 

There are 18% zero ROR crashes in this data set. In PO regression model, there 

are four explanatory variables (nolanes, pavecond, surwidth and adt) which have 

significant effect on the ROR crashes. For ZIP model, four explanatory variables 

(maxspeed, pavecond, surwidth and adt) are statistically significant for PO part 

and two explanatory variables (lanewidth, pavecond) are statistically significant 

for logit part. Four explanatory variables (nolanes, pavecond, surwidth and adt) 
are statistically significant for the NB regression model. For ZINB model, four 

explanatory variables (nolanes, pavecond, surwidth and adt) are statistically 

significant for NB part and four explanatory variables (nolanes, pavecond, 

surwidth and adt) are statistically significant for logit part. Both Vuong statistic 

and the scale parameter of 0.129 (significant) suggested for ZINB model. The 

deviance and AIC supported for ZINB model only to fit the ROR crash data. The 
differences of observed and the mean predicted proportions for number of 

crashes is presented in Figure 3.2. This figure is also supported for ZINB model. 
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Figure 3.2: Difference between observed and predicted proportions for number of 
crashes  

3.2.3  Model fitting to Data Set 325 

There are 31% zero ROR crashes in this data set. In PO regression model, there 

are five explanatory variables (lanewidth, nolanes, pavecond, surwidth and adt) 
which have significant effect on the ROR crashes. For ZIP model, seven 

explanatory variables (endmilepost, lanewidth, medwidth, nolanes, pavecond, 

surwidth and adt) are statistically significant for PO part and three explanatory 

variables (maxspeed, medwidth, pavecond) are statistically significant for logit 

part. Four explanatory variables (nolanes, pavecond, surwidth and adt) are 

statistically significant for the NB regression model. For ZINB model, three 
explanatory variables (maxspeed, pavecond, and adt) are statistically significant 

for NB part and only pavecond is statistically significant for logit part. Vuong 

statistic suggested for ZIP and NB models. However, the scale parameter of 

0.338 is statistically significant and indicating substantial overdispersion in the 

zero-counts. Thus we might select the NB model. The deviance and AIC also 

supported for NB model to fit the ROR crash data. The differences of observed 
and the mean predicted proportions for number of crashes is presented in Figure 

3.3. This figure also supported for NB model. 
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Figure 3.3: Difference between observed and predicted proportions for number of 
crashes  

3.2.4  Model fitting to Data Set 392 

There are 43% zero ROR crashes in this data set. In PO regression model, there 

are six explanatory variables (endmilepost, medwidth, nolanes, pavecond, 
surwidth and adt) which have significant effect on the ROR crashes. For ZIP 

model, six explanatory variables (lanewidth, medwidth, nolanes, pavecond, 

surwidth and adt) are statistically significant for PO part and two explanatory 

variables (lanewidth and adt) are statistically significant for logit part. Six 

explanatory variables (endmilepost, medwidth, nolanes, pavecond, surwidth and 

adt) are statistically significant for the NB regression model. For ZINB model, 
three explanatory variables (pavecond, surwidth, and adt) are statistically 

significant for NB part and three variables (nolanes, surwidth, adt) are statistically 

significant for logit part. Both Vuong statistics have suggested for ZIP and ZINB 

models. However, the scale parameters of 0.587 and 0.405 are statistically 

significant and indicating substantial overdispersion in the zero-counts. Thus we 

might select the ZINB model. The deviance and AIC are also supported for ZINB 
model only to fit the ROR crash data. The differences of observed and the mean 

predicted proportions for number of crashes is presented in Figure 3.4. This 
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figure also indicated to select ZINB model. For this data one might consider ZINB 

model than the ZIP model in the sense of better zero prediction. 
 

 
 
Figure 3.4: Difference between observed and predicted proportions for number of 
crashes 

4   Concluding Remarks 

This paper provides both methodological and empirical analysis of ROR (run-off-
road) crash data which collected on arterial roads in the rural area of south 

region of the Florida State. We have fitted several popular regression models, 

Poisson (PO), Negative Binomial (NB), Zero-Inflated Poisson (ZIP) and Zero-

Inflated Negative Binomial (ZINB) to predict the ROR crashes. We consider 
moderate (10%) to high (43%) number of zeros in the models. A total of Sixteen 

different statistical models were fitted in this paper. All fitted models include 
significant explanatory variables. Based on deviance and AIC, it appeared that 

both NB and ZINB models performed better than PO and ZIP models 

respectively. The empirical study of this paper revealed that if the over-dispersion 

and zero-inflation of ROR crashes is found to be moderate to high, both NB and 
ZINB models are potential alternatives to PO and ZIP regression models. 

Poisson regression models serve well under nearly homogeneous condition, 
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while NB models serve better while data are over dispersed.  However, for an 

excess number of zero counts, one might consider both ZIP and ZINB regression 
models. It is important to note that the same set of variables or same model may 

not necessarily be statistically significant for another data sets with the same set 

of variables. For an applied research, it is advisable to fit data and then conclude 

based on the findings of the analysis. For a definite statement about the best 
fitted model, one needs more data and more analysis. Hopefully the present 

analysis can provides some insights to model other kind of count data, for 
instance, ER visit, clinical epidemiology, biometrical and environmental data. 
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