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Abstract 

In this article an efficient class of estimators for estimating finite population variance has been proposed 

using auxiliary information in simple random sampling. The bias and mean squared error of the proposed 

estimator is obtained up to the first degree of approximation. It has been shown that the proposed estimator 

is more efficient than usual unbiased estimator, Isaki (J. Am. Stat. Assoc.78:117-123, 1983), Kadilar and 

Cingi (Appl. Math. & Comput., 173, 1047-1059, 2006) and Upadhyaya and Singh (Vikram Math. J. 19,  

14-17, 1999a). To judge the merits of the proposed estimator, we consider one numerical example. 
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1.   Introduction 

In survey sampling an attempts have been made by various researchers to improve the 

efficiency of the estimators by using the auxiliary information. In this context ratio, 

product and ratio-cum-product estimators are good examples. When coefficient of 

variation yc
 
of the study variate y  is known, Searl (1964) considered the problem of 

estimating population mean Y . Motivated by Searl (1964), Sisodia and Dwivedi (1981) 

used coefficient of variation 
xC  of the auxiliary variate x . Later many authors utilized 

this information. Singh et al. (2004) proposed ratio and product type estimators using 

coefficient of kurtosis )(2 x  of auxiliary variate x  whereas Upadhyaya and Singh 

(1999b) utilized both information coefficient of variation 
xC
 
as well as coefficient of 

kurtosis )(2 x  of the auxiliary variate x . Latter the problem of estimating finite 

population mean has been discussed by various researchers  including Singh (1967), 

Panday and Dubey (1988), Singh and Biradar (2002), Singh and Ruiz Espejo (2003), 

Tailor and Tailor (2008), Sharma and Tailor (2010), Tailor et al. (2011), Solanki and 

Singh (2013) and Tailor and Lone (2014). 

 

The problem of estimating population variance has also attracted the attentions of 

researchers in survey sampling. Das and Tripathi (1978) have discussed the problem of 

variance estimation under the situations of known population variance and coefficient of 

variation of the auxiliary variate. Das (1988) has proposed some wider classes of 

estimators for estimating finite population variance. Isaki (1983), Kadilar and Cingi 

(2006), Singh and Chandra (2008), Dubey and Sharma (2008), Gupta and Shabbir (2008), 

Singh and Solanki (2013) and Tailor and Lone (2013) and others contributed well in 

estimating the finite population variance. 
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Let  NUUUU ,...,, 21  be a finite population of N units. Let y  be the study variate and 

x  be the auxiliary variates observed on ),...,3,2,1( NiU i  , where x  is highly correlated 

with the study variate y . A sample of size n is drawn from population U using simple 

random sampling without replacement. 

 

It is also assumed that the population size N  is very large so that the finite population 

correction (FPC) term is ignored. 

 

Let us define: 

 0

22 1 eSs yy   , 
 1

22 1 eSs xx   and  21 eXx        such that  

0)()()( 210  eEeEeE , 

  *

40

1

40

2

0 1
1

)(   n
n

eE    ,

 

22

2

1
)( xC

n
eE  ,    *

04

1

04

2

1 1
1

)(  n
n

eE    , 

xC
n

eeE 2120

1
)( 

 
,   *

22

1

2210 1
1

)(   n
n

eeE , and 0321

1
)( xC

n
eeE  . 

where  
 2/

02

2/

20

qp

pq

pq



   and    q

i

N

i

p

ipq XxYy
N

 
1

1
 ;  qp ,  being non negative 

integers.  

2.   Procedure, Notations and Definitions 
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Isaki (1983) proposed the ratio estimator for 
2

yS as 
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Kadilar and Cingi (2006) considered the following ratio type estimators for 
2

yS as 
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Upadhyaya and Singh (1999a) proposed ratio estimator for 
2

yS as 
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The mean squared error of the estimators )6...,3,2,1,0( iti  
up to the first degree of 

approximation are given as 
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3.   The Proposed Class of Estimators 

We define the following class of estimators for the population variance 
2

yS as 
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It is to be noted that  21 ,WW  are suitably chosen constant, can be determined such that 

mean squared error of the estimator H  is minimum and   ,,,ba  are either constants or 

function of known parameters xC , )(2 x  and yx
 
of the auxiliary variate x . We would 

like to mention that for different values of   ,,,ba , we get seven estimators as shown 

in table 3.1. Note that in table 3.1 1t  is the estimator proposed by Isaki (1983),
 it

 5,4,3,2i  are the estimators proposed by Kadilar and Cinghi (2006),
 6t  is the estimator 

proposed by Upadhyaya and Singh 1999a). 

 

Expressing (3.1) in terms of se' , we have  
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Taking expectation on both sides to (3.2), we get the bias of the estimator H  up to the 

first degree of approximation as 
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Squaring and taking expectations on both sides to (3.2), we get the mean squared error of 

the estimator H , up to the first degree of approximation as 
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The mean squared error of the estimators H   is minimized when 
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Putting (3.5) in (3.4), we get the minimum mean squared error of the estimator H as 
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where EDC ,, and F  have their usual meanings. 

Table 3.1:   Some known members of H   

VALUES OF CONSTANTS 
ESTIMATORS 

a                 b                              1W        2W  

0                  1           -           -          1           0 
0                  1           -           -          1           0 
1                 xC         -           -          1           0 

1                 )(2 x     -           -          1           0 
)(2 x          xC         -           -          1           0 

xC             )(2 x      -           -          1           0 

1              )(2 x     -           -          1           0 

0t (Usual unbiased estimator) 

1t   (Isaki 1983) 

2t  (Kadilar and Cingi 2006)  

3t  
(Kadilar and Cingi 2006)  

4t  (Kadilar and Cingi 2006) 

5t  
(Kadilar and Cingi 2006) 

6t  (Upadhyaya and Singh 1999) 

6. Efficiency comparisons of the estimator H  with the estimators it (i=0, 1, 2,…, 6) 

From (3.7) and (2.10), it is observed that the proposed estimator would be more efficient 

than  

(i) Usual unbiased estimator 
2
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(iii) Kadilar and Cingi (2006) estimators 3t  
if 
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(vi) Upadhyaya and Singh (1999a) 6t  if 
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It follows from (6.1) to (6.7) that the proposed class of estimator is more efficient than 

usual unbiased estimator, Isaki (1983) estimator, Kadilar and Cingi (2006) estimators and 

Upadhaya and Singh (1999a) estimator. 

7.   Empirical Study 

To exhibit the performance of the suggested class of estimators in comparison to other 

estimators, we consider a natural population from [Singh (2003), p.1111-1112]. The 

description of population is given below 

:y  Amount (in $000) of real estate farm loans in different states during 1997,
 

:x Amount 

(in $000) of non-real estate farm loans in different states during 1997. 

Table 7.1 

40 =3.5822, 
04 =4.5247, 

22 =2.8411, 
21 =0.9387, 

12 =1.0982,  

03 =1.5936, Y =555.43, X =878.16, 
xC =1.2351, yC =1.0529, n =10 

 

Percent Relatives Efficiencies of 
2

yS , it (i=1, 2,…, 6) and H  with respect to 
2

yS  

 Estimators      PRE                  Estimators      PRE              

  0t                   100.00                       4t                    156.0172                   

  1t                    156.0173                5t                    156.0176                               

  2t                    156.0157                   6t                    156.0179                

3t                156.0168       H                   163.8827 
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8.   Conclusion 

In table 7.2, it is observed that the proposed estimator is more efficient than usual 

unbiased estimator, Isaki (1983) estimator, Kadilar and Cingi (2006) estimators and 

Upadhaya and Singh (1999a) estimator. Section 6 deals with the theoretical efficiency 

comparisons of considered estimators and provided the conditions under which the 

proposed estimator H  has  less mean squared error in comparisons to usual unbiased 

estimator 0t , Isaki (1983) estimator 
1t , Kadilar and Cingi (2006) estimators 

)5,4,3,2( iti  
and Upadhaya and Singh (1999a) estimator 6t . Thus the proposed 

estimator is recommended for use in practice if the conditions defined in the section 6 are 

satisfied. 
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