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Abstract 

One of the main differences between classical statistics and Bayesian statistics is that the latter can utilize 

prior information in a formal way. This information can be quantified in terms of a probability distribution 

which is known as the prior distribution. If there is no relevant prior information available then there are 

ways to derive a 'non-informative' prior distribution. In this study, the informative and non-informative 

prior distributions for the parameters of the Bradley-Terry model are compared through the Lindley-

Shannon information. 

Keywords: Prior distribution, non-informative prior, informative prior, paired 
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1.  Introduction 

For a Bayesian analysis, prior information in terms of probability distribution is used. If 

there is no relevant prior information available then there are ways to derive a 'non-

informative' prior distribution. In Section 2, the Bradley-Terry model for paired 

comparisons is defined. Section 3 presents the informative prior distribution for the 

parameters. Non-informative prior distribution from Jeffreys rule is derived in Section 4. 

Comparison of non-informative and informative priors through the Lindley-Shannon 

information {Lindley (1956), Shannon (1948)} is discussed in Section 5. Conclusion is 

drawn in the last Section 6. The graphs of non-informative priors are also drawn for this 

purpose in this study.  

2.   The Bradley-Terry Model for Paired Comparison 

Sometimes it may be difficult for a panelist to rank or compare more than two objects or 

treatments (m>2) at the same time especially when differences between objects are small 

or the criteria are rather subtle (m=2). For this reason paired comparison data is 

sometimes regarded as more reliable and can be obtained more readily from panelists. In 

a paired comparison trial a panelist is given a pair of objects and asked to say 'with 

respect to a given attribute' which is preferable. This is repeated for several pairs. This 

method is widely used in industry for assessing customer preference and designing 

products using trained panelists. David (1988) has a detailed survey of the literature and 

references concerning the method of paired comparisons. Further literature can be seen in 

Gilani and Abbas (2008), Abbas (2010) and Altaf, et. al (2011). 
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Let consider a paired comparison trial with 'm' treatments or objects T T Tm1 2, ,..., . There 

are 'm(m-1)2' all possible pairs of 'm' treatments. Each pair ( , )T Ti j , (i j i j m  , ,1 ) is 

ranked rij  times independently. Also let   1 2, ,..., m be the 'true' ratings (or preferences) 

of 'm' treatments on a subjective continuum. A model can be based on the idea that when 

a panelist is confronted with treatment Ti  , she responds with an 'unconscious' or 'latent' 

variable X
i
. The assumed mechanism is that she prefers treatment Ti  to treatment Tj  if 

X X
i j
 .  

 

Bradley and Terry (1952) propose a model of paired comparisons for the trial mentioned 

above. The Bradley-Terry model implies that difference between two latent variables  

( X Xi j ) has a logistic (squared hyperbolic secant) density with location parameter 

(ln ln ) 
i j
 . If 

ij
 denotes the probability P( , )X X

i j i j
    that treatment Ti  is 

preferred to treatment Tj  (i j ) when the treatments Ti  and Tj  are compared then 

 
ij


 




1

4
22sec ( / )

(ln ln )
h y dy

i j 
                         ij, i,j=1,2,...,m. 

       .
ji

i






          (1) 

The Bradley-Terry model is defined by (1) 

The following notations are used in the comparisons:  

n
ijk

 = 1 or 0 according as treatment Ti  is preferred to treatment Tj   or not in the k'th 

repetition (k=1,2,..., r
ij

) of the comparison.  

r
ij

= the number of times treatment Ti  is compared with treatment Tj .  

n n
ij ijkk
  = the number  of times treatment  Ti   is preferred  to  treatment  Tj .  

n n
i ijj i

m


  = the total number of times Ti  is preferred to any other treatment.  

It is to be noted that   n n
ijk jik
 1          and r n n r

ij ij ji ji
   . 

 

We put constraints on the parameters of the model that they are positive and they sum to 

unity, these conditions ensure that the parameters are well defined i.e. identifiable. 

 

The probability of the observed result in the k'th repetition of the pair (Ti  ,Tj ) is:  
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Hence, the likelihood function of the observed outcome x which represents the data 

{ , , }r n n
ij ij ji  of the trial is equal to  
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where ),...,2,1( 0 mii   are the treatment parameters. 

3.   The Choice of an Informative Prior Distribution 

The appropriate model of paired comparison having been selected and the likelihood 

thereby determined, it is necessary to choose a prior distribution for the parameters of the 

model. Typically this will be supposed to belong to a parametric family; when the 

problem reduced to assessing these parameters. To distinguish them from the parameters 

in the likelihood, they are termed hyperparameters. We consider the Bradley-Terry model 

having a likelihood (3). The prior is supposed to belong to the member of the Dirichlet 

family with density:  

 p( )  B a a a
m i

a

i

m

i( , ,..., )
1 2

1 1

1

 



 ,      (4) 

where  = ( , ,..., )  1 2 m  are treatment parameters, 
ii

m

 
1

1 , B a a a
m

( , ,..., )
1 2  

stands for a generalization of the beta function and a i mi( ,2,..., )1  are the 

hyperparameters. 

4.   The Choice of a Non-informative Prior Distribution 

When prior elicitation is difficult or little prior information is available, one may consider 

analysis with conventionally chosen priors that may reflect little prior information. These 

priors are known as non-informative priors or indifference or vague or reference priors. 

Berger (1985) argues that Bayesian analysis using non-informative priors is the single 

most powerful method of statistical analysis, in the sense of being the adhoc method most 

likely to yield a sensible answer. This topic has an extensive literature, eg. Jeffreys 

(1946), Bernardo (1979), Ghosh and Mukerjee (1992), Kass (1990), Clarke and 

Wasserman (1993) and Aslam (1995). 

4.1  The Non-informative Prior from 'Jeffreys Rule' 

This is defined as the density of the parameters proportional to the square root  of  the  

determinant of the Fisher information matrix. Symbolically,  let  ( ,..., ) 1 m
t
 is a 

vector of parameters, the Jeffreys prior distribution { pJ ()} is defined as: 

  pJ () det{ ( )},I         (5) 

where 'det' denotes the determinant and I() is the (m m ) Fisher information matrix  

which is obtained as: 

  I E
L

ij
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( )
ln ( )
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where E denotes expectation on data and i and j stand for rows and columns of 

determinant, respectively. 
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4.2  Properties of the Non-informative Jeffreys Prior 

The Jeffreys prior shows many nice properties that make it an attractive non-informative 

prior. The Jeffreys prior has an invariance property with respect to a one-to-one 

transformation of the parameters in the sense that we get consistent answer in any 

parameterization. The Jeffreys prior works well in one-dimensional problem but needs 

adhoc modification for multi-dimensional case as suggested by Jeffreys (1946) himself. 

Bernardo (1979) shows that Jeffreys prior is an appropriate reference prior if there are no 

parameters which are regarded as nuisance parameters and if the (joint) posterior 

distribution of all the parameters is asymptotically normal. Kass (1990) explains that a 

main feature of the Jeffreys prior is that it is a uniform measure in an information metric 

which can be regarded as the natural metric for statistical inference. Another important 

aspect of the Jeffreys prior is that it is not affected by a restriction on the parameter space. 

Some of the applications of the Jeffreys prior are given in Ibrahim and Laud (1991) and 

Poirier (1994). 

4.3  The Non-informative Jeffreys Prior for the Parameters of the Model 

The appropriateness of the Jeffreys prior requires that there should be no parameters 

which are regarded as nuisance parameters and the posterior distribution of all the 

parameters should be asymptotically normal. The likelihood function (3) of the model 

can be represented in the following form: 

  l n r
m i ii

m

ij i ji j

m

( ; ,..., ) exp ln ln( )
( )

x     
1 1 1

  
    .  (7) 

 

The likelihood function (7) belongs to the exponential family and it follows from the 

regularity conditions of Johnson and Ladalla (1991) that the posterior distribution is 

asymptotically normal. Hence, here is no parameter which is regarded as 'nuisance' so the 

Jeffreys prior is the appropriate choice of non-informative prior and hereafter will called 

NJP ((NJP stands for non-informative Jeffreys prior) distribution. 

 

The NJPs of the parameters for the case of two, three and four treatments in the model are 

derived. Some transformations and techniques are applied to understand and to find a 

simple symmetric closed form for the case of three and four treatments.  

Case (i) When the number of treatments m=2: 

In this case, the treatment parameters are 
1
 and 

2
. Consider  

1
  and  2 1  . 

Now the likelihood function for the observed outcomes x from (3) is:  

 l( ; )x  
r

n n

n n

12

12 21

12 211! ( )

! !

 
,       (8) 

which is the binomial model: n Bin r
12 12

~ ( , ) . 

 

The Fisher's information for the likelihood function (8) is obtained as: 
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The NJP { pJ ( ) } for the parameter  of the model is: 

 pJ ( )
( )


  




1

1
,    01.     (10) 

 

The graph of the NJP (10) is presented in Figure 1. 

Case (ii). When the number of treatments m=3: 

Here the treatment parameters are  1 2,  and 3 . Using the constraint   3 1 21   , 

the likelihood is:  
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A program is designed in the MAPLE package to get the NJP for an unbalanced design 

that the numbers of comparisons for each pair are not equal. We obtain the following 

form for the NJP: 

p
g
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 
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where   g r r r r r r r r r r r r( , ) ( ) ( ) ( ) ( )     
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If a balanced design is considered i.e. rij =r  (i<j=1,2,3), then 'r' can be merged in a 

normalizing constant, so the NJP is:  
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J
( , ) 

1 2

 
 


   

    

C ( )( ) ( )

( )( )( ) ( )

     

       

1 2 1 2 1 2

2

1 2 1 2 1 2 1 2

1 3

1 1 1

1
2

1
2

,  (13) 

                    
1 2

0,  ,  
1 2

1  , 

where 'C=0.052798' is evaluated by numerical integration. 

 

It is noted that the parameters 
1
 and 

2
 are exchangeable which is clear algebraically in 

(13). 

 

The closed forms for the marginal NJPs of 
1
 and 

2
 are intractable and we evaluate the 

marginal NJPs of 
1
 and 

2
 numerically. Thus the marginal NJP of  is: 
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Similarly, the marginal Jeffreys prior of 
2
 can be obtained. The graph of the marginal 

NJP of 
1
 is given in Figure 2. 
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We have found the marginal density of the NJP out of curiosity and to see whether we 

can believe, it is appropriate as a consequence of the NJP. In terms of calculating our 

'answer' to the overall analysis of the data, the calculation of these marginal is not 

necessary. Some transformations and techniques are used to find out a simple closed form 

for the marginal NJP of 
1
 (see Appendix 1). We conclude that although the graph of the 

marginal density of 
1
 has a simple appearance, it does not appear to be expressible in a 

closed form or have any reasonably elegant or simple characterization. 

Case (iii) When the number of treatments m=4: 

The likelihood for the case of four treatments can be written from (3). The treatment 

parameters are 1 , 2 , 3  and 4 , the NJP for the parameters 1 , 2  and 3  is derived 

with the identifiability constraint:    1 2 3 4 1    . A program similar to the case of 

3 treatments is written in the MAPLE package to obtain the NJP for a balanced design. 

The derived NJP (given in Appendix 3) has a very complicated form and does not seem 

to be easy for application.  

 

However we can determine the NJP numerically via numerical partial differentiation of 

the log likelihood function. A program for computing NJP numerically is written in the 

SAS package which can be seen in Aslam (1995).  

 

The graph of the marginal NJP (without a constant of proportionality) for the parameter 

1 , is given in Figure 3 which is obtained through the  program in the SAS package.  

                NJP FOR THE PARAMETER  OF THE MODEL WHEN M=2 

     p
J
( )  

              

               
  Figure 1 
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                  MARGINAL NJP FOR 
1
 OF THE MODEL WHEN M=3 

                       p
J
( )

1
 

                               

                                                                      1  

 Figure 2 

MARGINAL NJP FOR 
1
 OF THE MODEL WHEN M=4 

                        p
J
( )

1  

                                                 

                                                                        1  

             Figure 3 

5.   Comparison of the NJP and the Dirichlet Prior 

The NJP and the informative prior Dirichlet distribution are compared through the 

Lindley-Shannon information (LSI) {Lindley (1956) and Shannon (1948)} (see Appendix 

2 for definition of LSI). Our choice of informative prior for the parameters belongs to the 

Dirichlet family, so for comparison with NJP, we choose the Dirichlet distribution. The 

LSI of the Dirichlet distribution is computed for the values of hyperparameters from 0 to 
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5. We consider this range because the range of Lindley-Shannon information generated 

includes the LSI of the NJP in each case (m=2, 3, 4). The LSI is used because it is a 

fundamental measure of information (with an axiomatic basis of justification for its 

choice). 

(a) The number of treatments m=2 

 The LSI for the NJP (10) has the following form: 

  I dJ      

      1 1 2 1 1 2

0

1

1 1{ ( )} ln[ { ( )} ]/ / .   (15) 

 

The closed form for (14) is intractable and convergence is very slow with numerical 

integration. We use the transformation:     ( )1 1e z
 for fast convergence then the LSI 

is: 

  I
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dzJ
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/
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A closed form for the integral (16) is also intractable but numerically IJ =0.24156. The 

LSI for the informative prior beta distribution B(,) with equal hyperparameters (=

=c) from '0.1' to '5' is given in the Table given below. The LSI of the NJP corresponds to 

c=0.5 in B(c, c). We note that although the NJP satisfies an invariance property a uniform 

distribution B(1,1) has a small LSI. Generally, we can conclude that a B(c, c) prior with 

'c' between 0.5 and 1.5 represents very little prior information. This indicates that the NJP 

is a reasonable choice from the standpoint of the LSI and is compatible with other 

'similar' contenders.  

(b) The number of treatments m=3 

The LSI of the NJP (13) is compared with the LSI of the prior Dirichlet distribution 

D a a a( , , )1 2 3  for equal hyperparameters ( a a a c1 2 3   ). It is found that the LSI is 

equal to 1.46817 for the NJP whereas the LSI for the prior Dirichlet distribution is given 

in the Table given below. Comparison of the LSI for a D(c, c, c) distribution with the 

value 1.46817 of the NJP indicates that the Dirichlet distribution is a reasonable choice 

when there is little prior information for the values of 'c' between 0.5 and 4. 

(c) The number of treatments m=4 

Now consider the Dirichlet distribution D(c, c, c, c) of equal hyperparameters for the case 

of m=4. The LSI for the values of 'c' from 0.1 to 5 is given in the Table. The LSI of the 

NJP is obtained to be 2.53346. This shows that the Dirichlet Distribution D(c,c,c,c) is a 

sensible choice for a non-informative prior when  c < 2.5. 



Lindley-Shannon Information for Comparison of Priors Under Paired Comparisons Model  

Pak.j.stat.oper.res.  Vol.XI  No.3 2015  pp317-329 325 

                                 LINDLEY-SHANNON INFORMATION 

                              for the Beta, Dirichlet Distributions and NJPs 

 

c 

m=2 

B(c, c) 

m=3 

D(c, c, c) 

m=4 

D(c, c, c, c) 

0.1 4.59343 8.27150 0.26069 

0.2 2.04563 4.53243 1.04444 

0.3 0.95036 2.52865 1.59304 

0.4 0.47422 1.61334 1.82118 

0.5 0.24156 1.16334 1.87040 

0.6 0.11942 0.92494 1.85005 

0.7 0.05384 0.79766 1.81554 

0.8 0.01971 0.73143 1.78927 

0.9 0.00415 0.70120 1.77780 

1.0 0.00000 0.69315 1.78103 

1.2 0.01083 0.71422 1.82174 

1.4 0.03438 0.76013 1.89110 

1.6 0.06324 0.81646 1.97452 

1.8 0.09402 0.87664 2.06360 

2.0 0.12509 0.93749 2.15379 

2.5 0.19981 1.08411 2.37169 

3.0 0.26786 1.21802 2.57070 

4.0 0.38450 1.44813 2.91349 

5.0 0.48064 1.63831 3.19717 

NJP 0.24156 1.46817 2.53346 

6.   Conclusion 

For 2 parameters case, it is concluded that a prior Beta distribution B(c, c) with 

hyperparameter 'c' between 0.5 and 1.5 represents very little prior information. This 

indicates that the NJP is a reasonable choice from the standpoint of the LSI and is 

compatible with other 'similar' contenders. When 3 parameters are considered then the 

LSI for the prior Dirichlet distribution D(c, c, c) indicates that the Dirichlet distribution is 

a reasonable choice for the values of 'c' between 0.5 and 4. For 4 parameters case, this 

shows that the prior Dirichlet Distribution D(c, c, c, c) is a sensible choice when  c < 2.5. 
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Appendix 

1. (a)  In order to try and characterize, the marginal distribution of 
1
 (14), we consider 

the implied distribution of i  (i-1, 2, 3) where i  is one of the following 

functions: 

(i)   
1 1
 ln ,  (ii) 




2

1

11












ln
( )

,  (iii)  3

1

1  ( ) ,   

where  is the cumulative distribution function of the standard normal distribution.  

It is observed that the graphs of the functions (ii) and (iii) are approximately 

normally distributed.  

(b) The marginal NJP p
J
( )
1

 is compared with the beta distribution. It is observed 

that the marginal Jeffreys prior of 
1
 approximately follows the beta distribution. 

      (c) The graphs of logarithm and reciprocal of the marginal NJP of 
1
 are drawn but 

these haven't standard (well-known) functional shape. 

2.   Lindley-Shannon Information 

Shannon (1948) has proposed the theory of information in the context of communication 

engineering. He introduces the idea that information is a statistical concept. Now 

measures of information are closely related to ideas of uncertainty and probability. 

Lindley (1956) suggests the use of information as a statistical criterion in the design of 

experiments. He explains that one of the purposes of experimentation is to gain 

knowledge about the state of nature (that is, about the parameters) without having 

specific actions in mind. The knowledge is measured by the amount of information.  

 

Let p( )  be a prior distribution, the amount of information I p{ ( )} is defined  as: 

  I p p p d{ ( )} ( )ln{ ( )}   


  ,     (2.1) 

whenever the integral exists. For any value of  for which p( ) =0, define  

p( ) ln{ p( ) } to be zero [appropriate since lim{ ln( )}
x

x x



0

0]. 

 

An alternative but equivalent form of (2.1) is 

  I p E p{ ( )} ln{ ( )}  ,      (2.2) 

where E  denotes the expectation operator with respect to . 
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3.   NJP of the Parameters for the Model When m=4 

Consider,  ti= i ;  i=1,2,3, the Jeffreys prior obtained by MAPLE package is: 
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