
Pak.j.stat.oper.res.  Vol.XI  No.1 2015  pp1-10 

Preservation Properties for the Discrete Mean Residual Life Ordering 

Abdulhakim Al-Babtain 
Department of Statistics and Operations Research, King Saud University 

hakim@ksu.edu.sa 
 

Abdul Hadi Nabih Ahmed 
Department of Mathematical Statistics, Cairo University, Egypt 

drhadi2010@gmail.com 

Abstract 

The purpose of this paper is to prove several preservation properties of stochastic comparisons based on the 

discrete mean residual life ordering d-MRL under the reliability operations of convolutions, mixtures. 

Finally we introduce a discrete renewal process application. 
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1. Introduction and Motivation 

Discrete lifetimes usually arise through grouping or finite-precision measurement of 

continuous time phenomena. They may also be found natural choice where failure may 

occur only due to incoming shocks. Parametric models for discrete life distributions may 

be found in Bain (1991), Adams and Watson (1989) and Xekalaki (1983). Nonparametric 

families of discrete life distributions has been considered in the reliability literature 

mainly in connection with shock models leading to various continuous-time ageing 

families see Barlow and Proschan, (1975), Among others, have studied interrelations and 

closure properties of some nonparametric ageing families of distributions having a finite 

support. Related partial orders have been considered by Abouammoh (1990).  
 

Recently, Nanda and Sengupta (2005) have discussed reversed hazard rate in discrete 

setup and obtained several interesting results. 
 

Let 𝑋 be a non-negative random variable with probability mass function (p.m.f) given by: 

𝑓(𝑥) = 𝑃(𝑋 = 𝑥), 𝑥 ∈ 𝑁 = {0,1, . . . } 
the cumulative distribution function 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑓(𝑖)

𝑥

𝑖=0

for all  𝑥 ∈ 𝑁 

and the survival function 

�̅�(𝑥) = 1 − 𝐹(𝑥) = ∑ 𝑓(𝑖)

∞

𝑖=𝑥+1

for all  𝑥 ∈ 𝑁 

 

In particular, if 𝑓(0) = 𝑃𝑟{𝑋 = 0} = 0, or a counting random variable X has a support 

on 𝑁₊ = {1,2, . . . }, we say that the discrete distribution is zero- truncated. Recently, 

Pavlova et al (2006) defined discrete hazard rate and discrete mean residual lifetime of 𝐹 

by 

ℎ𝐹(𝑥) =
𝑓(𝑥)

𝑓(𝑥) + 𝐹(𝑥)
for all    𝑥 ∈ 𝑁, and    𝑃{𝑋 ≥ 𝑥} > 0, 
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and 

𝑀𝐹(𝑥) = 𝐸(𝑋 − 𝑥 ∣ 𝑋 > 𝑥) = (
∑ �̅�(𝑖)∞

𝑖=𝑥

𝐹(𝑥)
) for all   𝑥 ∈ 𝑁,   and�̅�(𝑥) > 0. 

 

There is an abundance of literature on continuous life distributions used in modeling 

failure data. However, very little has appeared in the literature for discrete failure models. 

Discrete failure data arise in various common situations. Consider the following 

examples: 

a) A device can be monitored only once per time period and the observation are taken as 

the number of time periods successfully completed prior to the failure of the device. 

b) A piece of equipment operates in cycles. In this case the random variable of interest is 

the successful number of cycles before the failure. For instance, the number of flashes 

in a car flasher prior to failure of the device. 

c) In some situations the experimenter groups or finite precision measurement of 

continuous time phenomena. 

 

Shaked et al. (1994, 1995) state that discrete failure rates arise in several common 

situations in reliability theory where clock time is not the best scale on which to describe 

lifetime. For example, in weapons reliability, the number of rounds fixed until failure is 

more important than age in failure. They also showed the usefulness of these functions 

for modeling imperfect repair and for characterizing ageing in the discrete setting. For 

more applications of discrete models in reliability and survival analysis, see Padgett and 

Spurrier (1985) and Ebrahimi (1986). More precise concepts of discrete reliability theory 

have been settled by Salvia and Bollinger (1982), Roy and Gupta (1992) examined 

classification of discrete life distributions and they introduced the concepts of second rate 

of failure to maintain analogy with the continuous aging classes. Salvia (1996) presents 

some results on discrete mean residual life. 

 

Similar to continuous distributions, discrete distributions can also be classified by the 

properties of the failure rates, the mean residual lifetimes, and survival functions of 

discrete distributions. Some commonly used classes of discrete distributions include the 

classes of discrete decreasing failure rate (d-DF R), discrete decreasing failure rate 

average (d-DFRA), discrete new worse than used (d-NWU), discrete increasing mean 

residual lifetime (d-IMRL), discrete harmonic new worse than used in expectation (d-

HNWUE), and their dual ones including the classes of discrete increasing failure rate (d-

IFR), discrete increasing failure rate average (d-IFRA), discrete new better than used (d-

NBU), discrete decreasing mean residual lifetime (d-DMRL), and discrete harmonic new 

better than used in expectation (d-HNBUE): 

 

These classes of discrete distributions have been used extensively in different fields of 

statistics and probability such as insurance, finance, reliability, survival analysis, and 

others. See, for example, Barlow and Proschan (1975), Cai and Kalashnikov (2000), Cai 

and Willmot (2005), Fagiuoli and Pellerey (1994), Hu et al. (2003), Johnson et al. (1993), 

Kijima (2003), Shaked and Shanthikumar (1994), Shaked et al. (1995), Willmot and Cai 

(2001), Willmot and Lin (2000), Willmot et al. (2005), and references therein. 
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2. Preliminaries 

In this section we present definitions, notation, and basic facts used throughout the paper. 

We use "increasing" in place of "non-decreasing" and "decreasing" in place of "non-

increasing". Let 𝑋 and 𝑌 be two non-negative random variables with F and G as their 

respective distribution functions. Let �̅�(𝑡) = 1 − 𝐹(𝑡), and �̅�(𝑡) = 1 − 𝐺(𝑡). We will 

assume that �̅�(0) = �̅�(0) = 1 in all cases. 

Definition 2.1 

The random variable 𝑋 is said to have a smaller discrete mean residual lifetime than that 

of  𝑌, written 𝑋 ≤(𝑑−𝑀𝑅𝐿) 𝑌 , if 

(
∑ �̅�(𝑖)∞

𝑖=𝑥

�̅�(𝑥)
) ≤ (

∑ �̅�(𝑖)∞
𝑖=𝑥

�̅�(𝑥)
) , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑁,                                                   (2.1) 

 

Note that, (2.1) is equivalent to saying 

(
∑ �̅�(𝑖)∞

𝑖=𝑥

∑ �̅�(𝑖)∞
𝑖=𝑥

) is decreasing in 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑁.                                               (2.2) 

Definition 2.2 

The random variable 𝑋 has a smaller discrete hazard rate than that of 𝑌, written 

𝑋 ≤𝑑−𝐻 𝑌, if 

�̅�(𝑖)

�̅�(𝑖)
is increasing in 𝑥  for all  𝑥 ∈ 𝑁. 

Definition 2.3 

The distribution 𝐹 is called discrete decreasing failure rate (discrete increasing failure 

rate) or 𝑑 − 𝐷𝐹𝑅(𝑑 − 𝐼𝐹𝑅) if its failure rate ℎ𝐹(𝑥) =
𝑓(𝑥)

𝑓(𝑥)+𝐹(𝑥)
 is non-increasing (non-

decreasing) for 𝑥 ∈ 𝑁₊ and  𝑓(𝑋) + 𝐹(𝑥) > 0. 

 

We notice that the discrete decreasing failure rate life distributions govern, 

a) In the grouped data case, the number of periods until failure of a device governed by 

a DFR life distribution. 

b) The number of seasons a TV show is run before being cancelled. Thus the d-DFD life 

distributions are of great significance in spite of their relative neglect in the reliability 

literature. 

Definition 2.4 

The distribution F is called discrete new better than used in expectation or 𝑑 − 𝑁𝐵𝑈𝐸 

(discrete new worse than used in expectation or 𝑑 − 𝑁𝑊𝑈𝐸) if 

∑ �̅�(𝑖)

∞

𝑖=𝑥

≤ (≥)�̅�(𝑥) ∑ �̅�(𝑗)

∞

𝑗=𝑥

,    for all 𝑥 ∈ 𝑁. 
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Definition 2.5 

The distribution F is called discrete decreasing mean residual lifetime or 𝑑 − 𝐷𝑀𝑅𝐿 if its 

mean residual lifetime 𝑀𝐹(𝑥) = (
∑ 𝐹(𝑖)∞

𝑖=𝑥

𝐹(𝑥)
); for 𝑥 ∈ 𝑁 is decreasing in 𝑥 ∈ 𝑁. The 

following two definitions will be used in sequel. 

Definition 2.6 

A probability vector 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) is said to be smaller than the probability 

vector𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑛) , in the sense of the discrete likelihood ratio order, denoted by 

𝛼 ≤𝑑−𝐿𝑅 𝛽    𝑖𝑓    
𝛽𝑖

𝛼𝑖
≤

𝛽𝑗

𝛼𝑗
    𝑓𝑜𝑟 𝑎𝑙𝑙    1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. 

Definition 2.7 

A function 𝑔: 𝑅² → [0, ∞) is said to be log-concave if 

𝑔(𝑥1, 𝑦1)𝑔(𝑥2, 𝑦2) − 𝑔(𝑥1, 𝑦2)𝑔(𝑥2, 𝑦1) ≥ 0 whenever𝑥1 < 𝑥2, 𝑦1 < 𝑦2. 
 

The reminder of this paper is organized as follows. In section 3 we present the main 

results concerning the statistical properties of the discrete mean residual life ordering, 

such as convolution, mixtures and convergence in distributions. Section 4 contains two 

results concerning discrete renewal process in connection with the orders in the paper. 

3. Main Results 

In this section we present preservation results for the discrete mean residual life ordering. 

We point out that similar results hold for both the hazard rate ordering and the likelihood 

ratio ordering. We begin by showing that the discrete mean residual life ordering is 

preserved under weak limits in distributions. 

Theorem 3.1 

The discrete mean residual life ordering (≤𝑑−𝑀𝑅𝐿) preserves the weak convergence 

property. 

Proof 

Suppose {𝐹𝑛} and {𝐺𝑛} gconverge weakly to 𝐹 and 𝐺 and that 𝐹𝑛 ≤𝑑−𝑀𝑅𝐿 𝐺𝑛. Then if 𝑦 is 

a continuity point of both 𝐹and 𝐺, it follows that 𝜇𝐹(𝑦) ≤ 𝜇𝐺(𝑦). Thus, 𝜇𝐹(𝑦) > 𝜇𝐺(𝑦) 

is possible only if 𝑦 is a discontinuity point of either 𝐹 or 𝐺. Such discontinuity points are 

at most countable, so there exist continuity points 𝑥𝑛 of 𝐹 and 𝐺 for which 𝑥𝑛 ↓ 𝑦  as 𝑛 →
∞. Consequently, appealing to the right-continuity property of distribution functions 

𝜇𝐹(𝑦) = lim
𝑛→∞

𝜇𝐹(𝑥𝑛) ≤ lim
𝑛→∞

𝜇𝐺(𝑥𝑛) = 𝜇𝐺(𝑦), 

whence a contradiction. The following result shows that the mean residual life ordering is 

preserved under convolutions. 

 

For next results we shall use the notation 𝑎𝑖 and 𝑏𝑖 to replace 𝐹(𝑖) and 𝐺(𝑖) respectively. 
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Theorem 3.2 

Let 𝑋1, 𝑋2 and 𝑌 be three nonnegative discrete random variables, where 𝑌 is independent 

of both 𝑋1, 𝑋2, also let 𝑌 have a probability mass function 𝑔. Then 𝑋1 ≤𝑑−𝑀𝑅𝐿 𝑋2 and 𝑔 

is log-concave imply that 𝑋1 + 𝑌 ≤𝑑−𝑀𝑅𝐿 𝑋2 + 𝑌  

Proof 

We have to show that 

∑ ∑ 𝑔(𝑡 − 𝑢)𝑎𝑥+𝑢
∞
𝑥=0

∞
𝑢=0

∑ ∑ 𝑔(𝑡 − 𝑢)𝑏𝑥+𝑢
∞
𝑥=0

∞
𝑢=0

≥
∑ ∑ 𝑔(𝑠 − 𝑢)𝑎𝑥+𝑢

∞
𝑥=0

∞
𝑢=0

∑ ∑ 𝑔(𝑠 − 𝑢)𝑏𝑥+𝑢
∞
𝑥=0

∞
𝑢=0

, for all 0 ≤ 𝑠 ≤ 𝑡.           (3.1) 

 

Or equivalently, 

|

|
∑ ∑ 𝑔(𝑡 − 𝑢)𝑏𝑥+𝑢

∞

𝑥=0

∞

𝑢=0

∑ ∑ 𝑔(𝑠 − 𝑢)𝑎𝑥+𝑢

∞

𝑥=0

∞

𝑢=0

∑ ∑ 𝑔(𝑡 − 𝑢)𝑏𝑥+𝑢

∞

𝑥=0

∞

𝑢=0

∑ ∑ 𝑔(𝑡 − 𝑢)𝑎𝑥+𝑢

∞

𝑥=0

∞

𝑢=0

|

|
≥ 0.                                 (3.2) 

 

Next, by the well known basic composition formula (Karlin, 1968, p.17, the left side of 

(3.2) is equal to 

∑ ∑ |
𝑔(𝑠 − 𝑢1) 𝑔(𝑠 − 𝑢2)

𝑔(𝑡 − 𝑢1) 𝑔(𝑡 − 𝑢2)
|

𝑢1<𝑢2 |

|
∑ 𝑏𝑥+𝑢1

∞

𝑥=0

∑ 𝑎𝑥+𝑢1

∞

𝑥=0

∑ 𝑏𝑥+𝑢2

∞

𝑥=0

∑ 𝑎𝑥+𝑢2

∞

𝑥=0

|

|
                (3.3) 

the conclusion now follows if we note that the first determinant is non-negative since g is 

log-concave, and that the second determinant is nonnegative since 𝑋1 ≤𝑑−𝑀𝑅𝐿 𝑋2. 

Corollary 3.3 

If 𝑋1 ≤ 𝑑−𝑀𝑅𝐿𝑌1 and 𝑋2 ≤ 𝑑−𝑀𝑅𝐿𝑌2 where 𝑋1 is independent of 𝑋2 and 𝑌1 independent of 

𝑌2 then the following statements hold: 

a) If 𝑋1 and 𝑌2 have log-concave probability mass functions, then 𝑋1 + 𝑋2 ≤𝑑−𝑀𝑅𝐿 𝑌1 +
𝑌2. 

b) If 𝑋2 and 𝑌1 have log-concave probability mass functions, then 𝑋1 + 𝑋2 ≤𝑑−𝑀𝑅𝐿 𝑌1 +
𝑌2. 

Proof 

The following chain of inequalities establish (a): 

𝑋1 + 𝑋2 ≤{𝑑−𝑀𝑅𝐿} 𝑋1 + 𝑌2 ≤{𝑑−𝑀𝑅𝐿} 𝑌1 + 𝑌2 
the proof of (a) is similar. 

Let 𝑋(𝜃) be a non- negative discrete random variable having distribution function 𝐹𝜃 and 

let 𝜃𝑖 be a random variable having distribution 𝐺𝑖(𝑖 = 1; 2) and support 𝑅⁺. The 

following theorem shows that the 𝑑 − 𝑀𝑅𝐿 ordering is preserved under mixtures. 
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Theorem 3.4 

Let {𝑋(𝜃), 𝜃 ∈ 𝑅+} be a family of random variables independent of 𝛩1 and 𝛩2. If 

𝛩1 ≤𝐿𝑅 𝛩2 and if 𝑋(𝛩1) ≤𝑑−𝑀𝑅𝐿 𝑋(𝛩2) whenever 𝜃1 ≤ 𝜃2, then 𝑋(𝜃1) ≤𝑑−𝑀𝑅𝐿 𝑋(𝜃2). 

Proof 

Let 𝐹𝑖be the distribution function of 𝑋(𝛩𝑖) with  𝑖 = 1, 2. We know that 

𝐹𝑖(𝑥) = ∫ 𝐹𝜃(𝑥)

∞

0

𝑑𝐺𝑖(𝜃) 

In the light of 2.2 we shall prove that 

𝛷(𝑖, 𝑘) = ∑ 𝐹𝑖(𝑘 − 𝑢)

𝑘

𝑢=0

 

is 𝑇𝑃2 in (𝑖, 𝑘). We notice that 

𝛷(𝑖, 𝑘) = ∑ 𝐹𝑖(𝑘 − 𝑢)

𝑘

𝑢=0

= ∑ 𝐹𝑖(𝑘 − 𝑢)

𝑘

𝑢=0

∫ 𝐹𝜃(𝑘 − 𝑢)

∞

0

𝑑𝐺𝑖(𝜃)  

=  ∫ 𝑔𝑖(𝜃) ∑ 𝐹𝜃(𝑘 − 𝑢)𝑑𝜃

𝑘

𝑢=0

∞

0

= ∫ 𝑔𝑖(𝜃)𝛹(𝜃, 𝑘)𝑑𝜃

∞

0

 

 

By assumption 𝑋(𝜃1) ≤𝑑−𝑀𝑅𝐿 𝑋(𝜃2) whenever we have  𝜃1 ≤ 𝜃2, we have 𝛹(𝜃, 𝑘) is 

𝑇𝑃2 in (𝜃, 𝑘), while the assumption 𝛩1 ≤𝐿𝑅 𝛩2 implies that 𝑔𝑖(𝜃) is 𝑇𝑃2 in (𝑖, 𝜃). Thus 

the assertion follows from the basic composition formula (see, Karlin, 1968). 

 

Let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) be less ordered than 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑛), in the sense of the 

discrete likelihood ratio ordering. We shall compare the distribution function of 

𝐹(𝑥) = 𝛼1𝐹1(𝑥) + ⋯ + 𝛼𝑛𝐹𝑛(𝑥) 

for a random variable 𝑋, and 

𝐺(𝑥) = 𝛽1𝐹1(𝑥) + ⋯ + 𝛽𝑛𝐹𝑛(𝑥) 

for a random variable 𝑌. 

Theorem 3.5 

Let 𝑋1, . . . , 𝑋𝑛 be a collection of discrete random variables with corresponding 

distribution functions 𝐹1, . . . , 𝐹𝑛 such that 

𝑋1 ≤𝑑−𝑀𝑅𝐿 𝑋2 ≤𝑑−𝑀𝑅𝐿 … ≤𝑑−𝑀𝑅𝐿 𝑋𝑛 
and let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) and 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑛) be two probability vectors with 

𝛼 ≤𝑑−𝑀𝑅𝐿 𝛽 

Then X≤_{d-MRL}Y. 

Proof 

We need to establish 

∑ ∑ 𝛽𝑖𝑎𝑡+𝑥
𝑖𝑛

𝑖=1
∞
𝑥=0

∑ ∑ 𝛼𝑖𝑎𝑡+𝑥
𝑖𝑛

𝑖=1
∞
𝑥=0

 ≤
∑ ∑ 𝛽𝑖𝑎𝑡+𝑦

𝑖𝑛
𝑖=1

∞
𝑡=0

∑ ∑ 𝛼𝑖𝑎𝑡+𝑦
𝑖𝑛

𝑖=1
∞
𝑡=0

,   for all 0 ≤ 𝑥 ≤ 𝑦.                        (3.4) 
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Multiplying by the denominators and canceling out equal terms shows that (3.4) is 

equivalent to  

∑ ∑ 𝛽𝑖𝛼𝑗

𝑛

𝑗=1

𝑛

𝑖=0

∑ 𝑎𝑢+𝑥
𝑖 ∑ 𝑎𝑣+𝑦

𝑗

∞

𝑣=0

∞

𝑢=0

 ≤ ∑ ∑ 𝛽𝑖𝛼𝑗

𝑛

𝑗=1

𝑛

𝑖=0

∑ 𝑎𝑢+𝑦
𝑖 ∑ 𝑎𝑣+𝑥

𝑗

∞

𝑣=0

∞

𝑢=0

,            (3.5) 

or when 𝑗 > 𝑖  we get 

∑ ∑ [𝛽𝑖𝛼𝑗 ∑ 𝑎𝑢+𝑥
𝑖 ∑ 𝑎𝑣+𝑦

𝑗

∞

𝑣=0

∞

𝑢=0

+ 𝛽𝑗𝛼𝑖 ∑ 𝑎𝑢+𝑥
𝑗

∑ 𝑎𝑣+𝑦
𝑖

∞

𝑣=0

∞

𝑢=0

]

𝑛

𝑗=1

𝑛

𝑖=0

 

≤ ∑ ∑ [𝛽𝑖𝛼𝑗 ∑ 𝑎𝑢+𝑦
𝑖 ∑ 𝑎𝑣+𝑥

𝑗

∞

𝑣=0

∞

𝑢=0

𝑛

𝑗=1

𝑛

𝑖=0

+ 𝛽𝑗𝛼𝑖 ∑ 𝑎𝑢+𝑦
𝑗

∑ 𝑎𝑣+𝑥
𝑖

∞

𝑣=0

∞

𝑢=0

]                                                       (3.6) 

 

Now, for each fixed pair (𝑖, 𝑗) with 𝑖 < 𝑗 we have 

𝛽𝑖𝛼𝑗 ∑ 𝑎𝑣+𝑦
𝑖 ∑ 𝑎𝑢+𝑥

𝑗

∞

𝑢=0

∞

𝑣=0

+ 𝛽𝑗𝛼𝑖 ∑ 𝑎𝑣+𝑦
𝑖 ∑ 𝑎𝑢+𝑥

𝑖

∞

𝑢=0

∞

𝑣=0

− 𝛽𝑖𝛼𝑗 ∑ 𝑎𝑢+𝑥
𝑖 ∑ 𝑎𝑣+𝑦

𝑖

∞

𝑣=0

∞

𝑢=0

− 𝛽𝑖𝛼𝑗 ∑ 𝑎𝑢+𝑥
𝑗

∑ 𝑎𝑣+𝑦
𝑖

∞

𝑣=0

∞

𝑢=0

= (𝛽𝑖𝛼𝑗 − 𝛽𝑗𝛼𝑖) [∑ 𝑎𝑣+𝑦
𝑖 ∑ 𝑎𝑢+𝑥

𝑗

∞

𝑢=0

∞

𝑣=0

− ∑ 𝑎𝑢+𝑥
𝑖 ∑ 𝑎𝑣+𝑦

𝑗

∞

𝑣=0

∞

𝑢=0

],                                                                    (3.7) 

which is nonnegative because both terms are nonnegative by assumption. This completes 

the proof. 

 

In any attempt to construct new discrete mean residual life ordered random variables 

from known ones, the following theorem might be used. 

Theorem 3.6 

Let 𝑋1, 𝑋2, . .. and 𝑋1, 𝑋2, . .. are sequences of independent random variables with 

𝑋𝑖 ≤𝑑−𝑀𝑅𝐿 𝑌𝑖and 𝑋𝑖, 𝑌𝑖 have log- concave probability mass functions for all 𝑖, then 

∑ 𝑋𝑖

𝑛

𝑖=1

≤𝑑−𝑀𝑅𝐿 ∑ 𝑌𝑖

𝑛

𝑖=1

 ,   𝑛 = 1,2, . . . . 

Proof 

We shall prove the theorem by induction. Clearly, the result is true for 𝑛 = 1. Assume 

that the result is true for 𝑝 = 𝑛 − 1, this means that 

∑ 𝑋𝑖

𝑛−1

𝑖=1

≤𝑑−𝑀𝑅𝐿 ∑ 𝑌𝑖

𝑛−1

𝑖=1

 ,                                                                                      (3.8) 
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Note that each of the two sides of (3.8) has log-concave probability mass function (see, 

e.g., Karlin, 1968, p.128). Appealing to Corollary 3.3, the result follows. 

Remark 3.7 

Similar results hold if the discrete mean residual life ordering is replaced by the discrete 

hazard rate ordering in Theorem 3.2 and its corollary, Theorem 3.4 and Theorem 3.5. To 

demonstrate the usefulness of the above results in recognizing discrete mean residual life 

ordered random variables, we consider the following. 

Example 3.8 

Let 𝑋𝑝 denote the convolution of n geometric distributions with parameters 𝑝1, 𝑝2, … , 𝑝𝑛 

respectively. Assume without loss of generality that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛. Since geometric 

probability mass functions are log-concave, Theorem 3.5 implies that 𝑋𝑝 ≤𝑑−𝑀𝑅𝐿 𝑋𝑞 

whenever  𝑃𝑖 ≥ 𝑞𝑗,𝑖 = 1,2, . . . , 𝑛. 

Example 3.9 

Let 𝑋𝑝 be as described in Example (3.7). An application theorem (3.4) immediately 

yields 

∑ 𝛼𝑖𝑋𝑝𝑖

∞

𝑖=1

≤𝑑−𝑀𝑅𝐿 ∑ 𝛽𝑖𝑋𝑝𝑖

∞

𝑖=1

 

for every two probability vectors 𝛼 and 𝛽 such that 𝛼 ≤𝑑−𝑀𝑅𝐿 𝛽. Another application of 

Theorem 3.4 is contained in: 

Example 3.10 

Let 𝑋𝑝 and 𝑋𝑞 as be given in Example 3.7 for 0 ≤ 𝜃1 ≤ 𝜃2 ≤ 1 and 𝜃1 + 𝜃2 = 1, we 

have 

 𝜃1𝑋𝑝 + 𝜃2𝑋𝑞 ≤𝑑−𝑀𝑅𝐿 𝜃2𝑋𝑝 + 𝜃1𝑋𝑞. 

 

It is remarkable that the above example can be generalized to higher dimensions, with 

obvious modifications in 𝛼 and 𝛽. 

 

Let 𝐹𝑡(𝑥) =  (
𝐹(𝑥+𝑡)

𝐹(𝑡)
) be the conditional reliability of a unit of age 𝑡, then we have the 

following characterization of 𝑑 − 𝐷𝑀𝑅𝐿 distributions. 

Theorem 3.11 

𝐹 ≥𝑑−𝑀𝑅𝑙 𝐹𝑡 for all 𝑡 ≥ 0 if and only if 𝐹 is 𝑑 − 𝐷𝑀𝑅𝑙. 

Proof 

Observe that 𝐹 ≥𝑑−𝑀𝑅𝑙 𝐹𝑡 if and only if 

∑ 𝐹𝑡(𝑘)∞
𝑘=𝑥

𝐹𝑡(𝑥)
≤

∑ 𝐹(𝑘)∞
𝑘=𝑥

𝐹(𝑥)
, 
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but the latter is equivalent to 𝜖(𝑡 + 𝑥) ≤ 𝜖(𝑥) that is 𝜖(𝑡) is decreasing. This completes 

the proof. 

4. A discrete renewal process application 

Let (𝑁𝐹(𝑡), 𝑡 ≥ 0) and (𝑁𝐺(𝑡), 𝑡 ≥ 0) denotes two renewal processes having inter-arrival 

distributions 𝐹 and  𝐺 , respectively. 

Theorem 4.1 

 If 𝐹 ≥𝑑−𝑀𝑅𝑙 𝐺, then 𝑁𝐹(𝑡) ≥𝑑−𝑉 𝑁𝐺(𝑡). 

Proof 

The Theorem follows by mincing the elegant proofs of Lemma 8.5.5 and theorem 8.6.4 

of Ross (1984) and the fact that 

𝐸 ( ∑ 𝑋𝑖

𝑁𝐹(𝑡)+1

𝑖=1

) = 𝐸( 𝑋1 ∣∣ 𝑋1 > 𝑡 ) ≥ 𝐸( 𝑌1 ∣∣ 𝑌1 > 𝑡 ) = 𝐸 ( ∑ 𝑋𝑖

𝑁𝐺(𝑡)+1

𝑖=1

) 

where (𝑋𝑖) and (𝑌𝑖) are two sequences of independent identically distributed random 

variables having F and G as their respective distributions. 

 

A version of the arguments used to prove corollary 3.16 and Theorem 3.17 in chapter (6) 

of Barlow and Proschan (1975) can be used to show that the following are valid. 

Corollary 4.2 

Let 𝐹 ≥𝑑−𝑀𝑅𝑙 𝐺, and 0 ≤ ℎ(1) ≤ ℎ(2) ≤ ⋯, then 

∑ ℎ(𝑛)𝐹(𝑛)(𝑡)

∞

𝑛=1

≤ ∑ ℎ(𝑛)𝐺(𝑛)(𝑡)

∞

𝑛=1

. 

Theorem 4.3 

If 𝐹 ≥𝑑−𝑀𝑅𝑙 𝐺, 𝑐(𝑘) is convex increasing and𝑐(0) = 0, then 

∑ 𝑐(𝑘)

∞

𝑘=0

𝑃(𝑁𝐹(𝑡) = 𝑘) ≤ ∑ 𝑐(𝑘)

∞

𝑘=0

𝑃(𝑁𝐺(𝑡) = 𝑘), 

for an application of Theorem 4.2 in minimizing the expected shortage in spare part one 

may consult Barlow and Proschan (1975). 
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