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Abstract 

In the presence of heteroscedasticity, different available flavours of the heteroscedasticity consistent 

covariance estimator (HCCME) are used. However, the available literature shows that these estimators can 

be considerably biased in small samples. Cribari–Neto et al. (2000) introduce a bias adjustment mechanism 

and give the modified White estimator that becomes almost bias-free even in small samples. Extending 

these results, Cribari-Neto and Galvão (2003) present a similar bias adjustment mechanism that can be 

applied to a wide class of HCCMEs’. In the present article, we follow the same mechanism as proposed by 

Cribari-Neto and Galvão to give bias-correction version of HCCME but we use adaptive HCCME rather 

than the conventional HCCME. The Monte Carlo study is used to evaluate the performance of our proposed 

estimators.  

Keywords:   Adaptive estimator; HCCME; Leverage point; Size of test. 

1.   Introduction 

Heteroscedasticity is a common problem when estimating linear regression. It not only 

gives inefficient least squares estimates but also the inconsistent usual covariance matrix 

estimate. So it results in the inadequacy and inaccuracy of inference as the degree of 

heteroscedasticy increases. The popular White’s (1980) heteroscedastic covariance 

matrix estimator (HCCME) holds this issue and is the most commonly used covariance 

estimator. It is known as HC0. Three more improved versions of the HCCME are 

presented by Mackinnon and White (1985) and Davidson and MacKinnon (1993), which 

are known as HC1, HC2 and HC3 in the available literature. Long and Ervin (2000) 

confirmed the superb performance of HC3 by their Monte Carlo findings. Further 

valuable work is accessible in Cribari-Neto and Zarkos (1999, 2001), Cribari-Neto 

(2004), Cribari-Neto et al. (2005), Aslam and Pasha (2007), Ahmad et al. (2007), Ahmed 

et al. (2011) and Aslam et al. (2013) among many others.  

 

Ahmad et al. (2007) show that if the HCCMEs are constructed using the residuals obtained 

from some adaptive estimation method rather from, simply, the OLS method, we can lessen 

the null rejection rates. 

 

As discussed earlier that in the presence of heteroscedasticity, different available versions 

of HCCME are used, However, they can be considerably biased in small samples; see, 

e.g., MacKinnon and White (1985), Cribari-Neto and Zarkos (1999, 2001), Long and 

Ervin (2000), Cribari-Neto et al. (2005) etc. Chesher and Jewitt (1987) also report that 
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the HCCME studied by White (1980) can be severely biased in small samples. 

Substantial downward bias may exist whatever the form of heteroscedasticity when 

regression designs contain points of high leverage. They derive the proportionate bias of 

the HCCME.  Cribari–Neto et al. (2000) introduce a bias adjustment mechanism and give 

the modified White estimator that becomes almost bias-free even in small samples. Their 

numerical results report that such estimator gives less size distortion. Extending these 

results, Cribari-Neto and Galvão (2003) present a similar bias adjustment mechanism that 

can be applied to a wide class of HCCMEs including, among others, the HC0, HC1, HC2 

and HC3 estimators. According to them, this bias adjustment mechanism, that can be 

used to deliver a sequence of bias-corrected estimators where the order of the bias 

decreases as one advances in the sequence. On the basis of the numerical evidence, they 

report that the proposed estimators deliver more accurate estimates in small samples.  

 

In this paper, we follow the same mechanism as proposed by Cribari-Neto and Galvão 

(2003) to give bias-corrected version of HCCME but we use the adaptive construction of 

HCCME as given in Ahmed et al. (2013). It is also important to show that whether or not 

the corrected estimators deliver improved inference in small samples. So we evaluate 

their performance on the basis of null rejection rate (NRR) and power of test.  

2.   The Model, Conventional and Kernel HCCME 

Consider a heteroscedastic linear regression model of the form, 

 y = X +u,         (1) 

where y is an n x 1 vector of observations, X is an n x p (p < n) nonrandom matrix of 

covariates,  is a p x 1 vector of unknown regression parameters, and u is an n x 1 vector 

of random errors with zero mean and variance  having typical ith diagonal elements  

)...,,2,1(2 nii  i.e.,  }.,,,{ 22

2

2

1  ndiag   
 

When the model is homoscedastic, 0)...,,2,1( 22   nii , i.e., ,2 I  where I is an 

identity matrix of order n. 

 

The usual OLS estimator of  is given as 

 yXXX
OLS

 1)(̂ .  
 

It can be shown that 
OLS

̂ has mean  and covariance matrix, )ˆ(
OLS

Cov  , 

where  RRXXXXXX   11 )()( ,    (2) 

         .)( 1 XXXR  
            

 

In case of homoscedasticity, Eq. (2), obviously, reduces to  
12( ) .X X
  

 

Also  can consistently be estimated by  
12 )(ˆˆ  XX , 

where 
pn

uu






ˆˆ
ˆ

2
  and yXXXXIu n ))((ˆ 1  

 is the n-vector of OLS residuals. 
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Let XXXXH  1)( , where H is known the ‘Hat Matrix’. 

 

In the presence of heteroscedasticity of unknown form, the OLS estimate becomes 

inefficient and its covariance matrix estimate is also inconsistent as discussed earlier. In 

this situation, White (1980) derived a covariance matrix estimator which is consistent 

under both homoscedasticity and heteroscedasticity of unknown form and thus, the idea 

of HCCME comes in. The said estimator is given as 

 RRXXXXXX   ˆ)(ˆ)(ˆ 11 ,     (3) 

 }.ˆˆ{ˆ 22

1 uudiag n  

 

In the literature, this estimator is known as HC0 and is the most commonly used by the 

practitioners. However, it can be considerably biased in small samples (Chesher and 

Jewitt, 1987). 

 

MacKinnon and White (1985) raise concerns about the performance of HC0 in small 

samples. They noted that the estimator HC0 (3) takes no account of the well-known fact 

that OLS residuals tend to be ‘too small’. One simple way to modify HC0 is to use a 

degree of freedom correction similar to the one conventionally used to obtain unbiased 

estimates of
2 . Thus, following Hinkely (1977), MacKinnon and White give 

 111 )(ˆ)()(ˆ   XXXXXXpnn       (4) 

 

This version of estimator is known as HC1. The degrees of freedom adjustment in HC1 is 

not the only way to compensate for the fact that the OLS residuals tend to underestimate 

the true errors. If there is no heteroscedasticity, it is easily seen that 

,)1()ˆ( 22
ii huE   

where hi is ith diagonal element of the above mentioned hat matrix H. 

 

Finding this fact, Horn et al. (1975) propose to use  

122 )1(ˆˆ
 hu iii  

as an ‘almost unbiased’ estimator for 
2

i . 

 

Based on this approach, MacKinnon and White (1985) propose: 

,)(ˆ)(ˆ2 11   XXXXXXHC      (5) 

where   .
1

ˆ

1

ˆˆ
22












h

u

h

u
diag

n

n

i

i           

A third deviation approximates a more complicated Jackknife (Efron, 1979) estimator 

which is used by Davidson and MacKinnon (1993) is  

 ,)(ˆ)(ˆ3 11   XXXXXXHC      (6) 
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In their work, Mackinnon and White (1985) show that HC1, HC2 and HC3 are 

asymptotically equivalent to HC0 and are expected to have superior properties in small 

samples. Long and Ervin (2000) also recommend that use of HC standard error estimates 

and by their Monte Carlo findings they report the superb performance of HC3 for small 

samples (see MacKinnon, 2011 for more discussion).   

 

So, generally, we can define HCCME as 

 
11 )(ˆ)(ˆ   XXXXXX

ii
      (7) 

     
),3,2,1,0(,ˆ  iRR i  

where ,ˆˆ  Dii

2 2

1
ˆ { }.ˆ ˆ ndiag u u  

 

While the diagonal matrices, Di’s are as follows: 

0
1

1
1

2
2

3

0 :
1: ( )
2 : {(1 )
3: {(1 )

i

i

HC ID
HC n n p ID
HC diag hD
HC diag hD







 
  
  
  

        

(8) 

 

Carroll (1982) presents an adaptive estimator for heteroscedastic linear regression model 

by following the key idea as noted by Fuller and Rao (1978) that in most of the 

heteroscedastic regression problems, the variances appeared to be smooth function of the 

design or mean response as 

)()(2   iii gg x   ,  

where g is unknown and  i  can be estimated by  

̂
OLSii xt  . 

 

Carroll (1982) presents a kernel estimator of g as  

1

2

1

ˆ ˆ( ) ( ) ,
n

i i

i i
i

s st t
g s K Ky y

v v





     
      

    
     (9) 

where v is smoothing parameter and the estimated variances are  ˆ( )ig t . Using these 

estimated variances, an estimated weighted least square estimator that is adaptive also in 

the sense of Carroll (1982). We further refer this estimator as kernel weighted least 

squares (KWLS) estimator which is defined as follows: 

 




  





i
iii

i
iiiKWLS

yXXX  ˆˆˆ 2

1

2
     (10) 

 

As it has been shown that ̂
KWLS

 is more efficient as compared to 
OLS

̂  and the 

asymptotic properties of ̂
KWLS  

can be seen by Carroll (1982). Therefore, Ahmed et al. 
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(2007) find it quite plausible to use KWLS residuals to construct new HCCMEs as 

follows:  

 
11 )(

~
)(~   XXXXXX

ii
      (11) 

     
, ( 0,1, 2,3),

i
R R i    

where ,
~~
 Dii

},...,{
~ ~~ 22

1 uu n
diag

 
and u~

2

 
denotes the KWLS squared residuals. 

While the diagonal matrices, Di’s remain the same as in (8) but the new HC estimators 

are replaced by HCK, for distinction: 

0
1

1
1

2
2

3

0 :
1: ( )
2 : {(1 )
3: {(1 )

i

i

i

HCK ID
HCK n n p ID
HCK diag hD
HCK diag hD







 
  

  
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       

(12) 

3.   Bias Correction Mechanism 

We have given Carroll’s (1982) adaptive estimator as KWLS estimator in (10). In order 

to follow the bias correction mechanism as given by Cribari-Neto and Galvão (2003), we 

rewrite (10) as 

  WyXXWX
KWLS


1

̂ ,        (13) 

where ,
)(ˆ

1
,...,

)(ˆ

1
,

)(ˆ
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21 








nsgsgsg

diagW  and )(ˆ
i
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is given in (9). 

 

Also according to (11), when XXXR  1)(  then it can be shown that 

     ,~ 1
VyyKIyWXXWXXIu 



    (14) 

where   WXXWXXK 
1

and V = I – K is a symmetric and idempotent matrix. 

 

Now 

  }~~{)
~

(
d

uuEE  . 

 

Using (14), we have 

d

dd

IKK

KIKIVVE

})2({

)}(){(}{)
~

(


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So, we also have, 
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diiii

DIKKDDEE   

 

Thus, by (11), we have mean of our proposed HCCME as 
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Therefore, similar to Cribari-Neto and Galvão (2003), the bias function of 
~

i
 and our 

proposed HCCME can be obtained as, 

.})2({)~()(~ 
 diii

DIKKDEB
i

   (15) 

and 

        
    RDIWXXWXXWXXWXXDR

RDIKKDRB

dii

dii
i







]}}2{[{

]})2([{)(~

11

 

(16) 

 

Now again following Cribari-Neto and Galvão (2003), we give the sequence of bias-

corrected adaptive HCCME, denoted by  ( )

, 1,2,3,... , 0,1,2,3
r

i
r i   for the covariance 

matrix of ̂ , r shows the order of bias adjustment.  

 

On the basis of our proposal, we modify the recursive function, defined by Cribari-Neto 

and Galvão (2003), as follows, 

 





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


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,)(
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IKKAAM
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d
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where K is the same as defined earlier,   WXXWXXK 
1

, A is an n X n diagonal 

matrix and r = 0, 1, 2, . . . . 

 

Using the same properties as given by Cribari-Neto and Galvão (2003) about the said 

recursive function, (15) can be written as 

)()]()([

)()]()([

})2({)(~

)0()1()0(

)0()0()1(


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Similarly, (16), can be written as, 

RMMMDR
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i

dii
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By replacing with 
~

in (18), we can have an estimator of which is nearly unbiased 

as, 
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~

()]
~

()
~

([{~)
~

(~~~ )0()1()0()1(



 MMMDB iiii

i

, 

where 
~~

Dii
, 

~
)

~
()0(M  and 

~
 is given in (11). 

 

So by simplifying, 
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Similarly, we can find the bias of 
~ )1(

i
 as, 

 )}
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Now if we take 
~~

00 D , where ID 0 then by using (18), we can have that 

).()()( )1(
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0
  MBB        (22) 

 

Now by using (22) and the properties of the recursive function, we can write (21) as, 
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
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
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i
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Again applying the same procedure as given in (20) and (23), we have the second bias 

corrected estimator of  as; 

)
~
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)1( 


 MDMDB iiii

i     
(24) 

 

Repeating the same procedure, recursively, after r iteration, we have 
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Finally, we can define a sequence of estimators of  , ...,2,1,
~ )(

 r
r

i
for i = 0, 1, 2, 3, 

4, as follows; 

RR
r

i

r

i


~~ )()(
        (26) 

 

Hence we define the same sequence of bias corrected HCCME as Cribari-Neto and 

Galvão (2003) but with our new proposal of ,
~~
 Dii

 
d

uu ~~~
 where u~ denotes the 

vector of KWLS residuals. 

4.   Numerical Evaluation 

In our study, we follow the Monte Carlo scheme as used by Cribari-Neto and Galvão 

(2003). Under this scheme, the model is; 

,...,,2,1;
10

nixy iiii
       (27) 

where 1
10
 ,i are i.i.d. standard normal variables and xi are i.i.d. as U(0, 1). In other 

words,  iiiu   is normally distributed with mean zero and standard deviation, i. 

Furthermore, it is assumed that i’s are observed independent to xi.  
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The variance of error term is, 

},exp{ 2

21

2
xx iii    

where .5.2,0.2,5.1,0.1,5.0,0.021  Obviously, for 0.021  , error term becomes 

homoscedastic. 

 

The degree of heteroscedasticity is measured by )min(/)max( 22
 ii  that ranges from 

1 (a case of homoscedasticty) to over 100. The degree of heteroscedasticity will remain 

fruitful to evaluate the performance of the estimators in mild to severe heteroscedasticity. 

The sample size (n) is set to 25, 50, 100, 150, and 200. It is to be noted that Cribari-Neto 

and Galvão (2003) take smallest sample of size 50, in their study while we take 25 so as 

to assess the performance of the candidate estimators in considerably small samples. In 

order to keep the degree of heteroscedasticity same for all the sample sizes, firstly, 25 

independent xi’s are generated and then replicated twice, thrice and so on for n = 50, 100, 

150 and 200, respectively (see also Cribari-Neto, 2004, for such replications). The 

number of Monte Carlo replications is set to be 5000.  

 

For the estimation of model (27), we use the OLS and an adaptive estimator as used by 

Carroll (1982). Such adaptive estimators are more efficient to those of the OLS in the 

presence of heteroscedasticity of unknown form. The details of such estimation can also 

be found by Ahmad et al. (2007), Ahmed et al. (2011) and Aslam et al. (2013) etc. 

Cribari–Neto et al. (2000) note that gains from high-order iterations of the bias-correction 

process are negligible; two iterations in the bias-correction scheme are enough. Since we 

are dealing with numerous estimators (5 variants of already available HCCME and 5, 

according to our new proposal), therefore we limitize our numerical work for bias 

correction at just first iteration. For bias corrected HCCMEs, we use a prefix BC (Bias 

Corrected) with all the estimators. Thus, we evaluate the estimators, HC0, BCHC0, HC1, 

BCHC1, HC2, BCHC2, HC3, BCHC3 and our proposed, HCK0, BCHCK0, HCK1, 

BCHCK1, HCK2, BCHCK2, HCK3, BCHCK3.  

Bias and MSE 

Following Cribari-Neto and Galvão (2003) and Cribari-Neto (2004), we compute the 

total relative bias (TRB) that is defined as 
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Second measure is the square root of total mean square error (also known as total root 

mean square error, total RMSE) ( X 5000 ). This measure is computed as the square 

roots of the sum of two individual MSE’s and then multiplied by 5000 . These quantities 

take into account not only bias, but also the variances of the different estimators. 
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Table 1 presents total relative bias (TRB) of the conventional HC estimators, HCK 

estimators, and bias corrected version of HC and HCK estimators. We see that bias 

corrected version of HC and HCK perform better than the conventional HC and adaptive 

HC estimators. We note that BCHC2, BCHC3, BCHCK2 and BCHCK3 perform better 

than HC2, HC3, HCK2 and HCK3, respectively. For example, in small sample  and for 

higher degree of heteroscedasticity (see n = 25, a1= a2 = 2.5), the TRBs for the BCHC2, 

BCHC3, BCHCK2 and BCHCK3 are 1%, 8%, 6% and 4%, respectively, while for the 

OLS, HC2, HC3, HCK2 and HCK3, the TRB are noted to be 113%, 4%, 35%, 18% and 

58% respectively. Similar is the situation for the large samples. However, with the 

increase in sample size, the TRB decreases, as evident. For (n = 100, a1= a2 = 1.5), the 

TRB is 97%, 1%, 7%, 3% and 10%, respectively for OLS, HC2, HC3, HCK2 and HCK3 

and the TRB for BCHC2, BCHC3, BCHCK2 and BCHCK3 is 0.07%, 0.2%, 1% and 1%, 

respectively. We observe that among the conventional HC estimators, HC2 performs well 

in terms of TRB while, in the adaptive estimators, BCHCK2 takes this stand. We further, 

note that among all the estimators, under consideration, generally, BCHCK2 outperforms 

in terms of TRB. Its unmatched performance can also be compared if a researcher do not 

consider the severe heteroscedasticity then he might be using the OLS estimators with 

119% TRB as compared to BCHCK2 with just 0.1% TRB (see n = 200, a1= a2 = 2.5). 

Even for moderate heteroscedasticity ( = 6.44, 16.34), BCHCK2 performs superbly in 

terms of less bias.  

 

Table 2 presents total RMSE (X 5000 ), of the conventional HC estimators, HCK 

estimators, and the bias corrected version of HC and HCK estimators. We note that, in 

case of homoscedasticty, all the estimators behave in the same manner in terms of total 

RMSE. It means that RMSE for BCHC and BCHCK is almost equal to that of HC and 

HCK for all the sample sizes when there is no heteroscedasticity. We report that the bias 

corrected version of HC and HCK perform better than its counterparts. For example for 

the severe heteroscedasticity and small sample (see n = 25, a1= a2 = 2.0), the RMSE for 

OLS, HC2, HC3, HCK2 and HCK3 is 442.49, 538.53, 490.50 and 612.46, respectively, 

while for BCHC2, BCHC3, BCHCK2 and BCHCK3, the RMSE is 457.76, 476.57, 

429.59 and 434.17, respectively. We note that the bias corrected version of adaptive 

HCCME performs better than the other estimators in terms of RMSE. As sample size 

increases, the total RMSE tends to decline and for large sample (n = 200, a1= a2 = 2.5, 

λ=105.22), all of the estimators behave in the same fashion. 
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Table 1:   Total Relative Bias of the HCCME, Bias Corrected HCCME, Adaptive 

HCCME and Bias Corrected Adaptive HCCME 

n a1, a2  OLS HC2 BCHC2 HC3 BCHC3 HCK2 BCHCK2 HCK3 BCHCK3 

25 

0.0 1.00 0.0014 0.0078 0.0044 0.2590 0.0356 0.0170 0.0016 0.2694 0.0280 

0.5 2.54 0.3638 0.0207 0.0097 0.2708 0.0372 0.0218 0.0085 0.3002 0.0250 

1.0 6.44 0.7026 0.0324 0.0142 0.3088 0.0607 0.0610 0.0085 0.3735 0.0311 

1.5 16.34 0.9351 0.0414 0.0160 0.2942 0.0378 0.0729 0.0446 0.4166 0.0247 

2.0 41.46 1.0738 0.0414 0.0077 0.3217 0.0546 0.1238 0.0563 0.4999 0.0289 

2.5 105.22 1.1287 0.0418 0.0099 0.3495 0.0768 0.1766 0.0611 0.5810 0.0392 

50 

0.0 1.00 0.0019 0.0055 0.0047 0.1222 0.0119 0.0076 0.0029 0.1244 0.0099 

0.5 2.54 0.3654 0.0084 0.0072 0.1182 0.0036 0.0076 0.0076 0.1305 0.0096 

1.0 6.44 0.7078 0.0153 0.0038 0.1310 0.0069 0.0231 0.0100 0.1643 0.0123 

1.5 16.34 0.9645 0.0167 0.0123 0.1575 0.0251 0.0614 0.0163 0.2180 0.0180 

2.0 41.46 1.1115 0.0186 0.0119 0.1643 0.0262 0.0866 0.0175 0.2555 0.0186 

2.5 105.22 1.1579 0.0229 0.0125 0.1423 0.0028 0.0822 0.0336 0.2580 0.0291 

100 

0.0 1.00 0.0017 0.0068 0.0066 0.0633 0.0084 0.0074 0.0062 0.0639 0.0079 

0.5 2.54 0.3688 0.0069 0.0077 0.0685 0.0099 0.0120 0.0082 0.0740 0.0102 

1.0 6.44 0.7103 0.0112 0.0095 0.0552 0.0069 0.0046 0.0082 0.0712 0.0061 

1.5 16.34 0.9692 0.0078 0.0007 0.0687 0.0024 0.0252 0.0095 0.0989 0.0099 

2.0 41.46 1.1189 0.0091 0.0007 0.0721 0.0027 0.0389 0.0090 0.1179 0.0093 

2.5 105.22 1.1869 0.0101 0.0041 0.0792 0.0079 0.0578 0.0072 0.1410 0.0074 

150 

0.0 1.00 0.0108 0.0104 0.0103 0.0477 0.0111 0.0107 0.0101 0.0480 0.0109 

0.5 2.54 0.3689 0.0076 0.0081 0.0482 0.0091 0.0113 0.0090 0.0521 0.0098 

1.0 6.44 0.7141 0.0042 0.0006 0.0435 0.0018 0.0101 0.0053 0.0545 0.0056 

1.5 16.34 0.9726 0.0048 0.0007 0.0463 0.0019 0.0188 0.0074 0.0671 0.0076 

2.0 41.46 1.1241 0.0071 0.0045 0.0434 0.0030 0.0229 0.0067 0.0743 0.0069 

2.5 105.22 1.1902 0.0067 0.0027 0.0466 0.0011 0.0348 0.0051 0.0888 0.0052 

200 

0.0 1.00 0.0010 0.0046 0.0046 0.0324 0.0050 0.0048 0.0045 0.0326 0.0049 

0.5 2.54 0.3680 0.0020 0.0009 0.0288 0.0004 0.0015 0.0015 0.0314 0.0017 

1.0 6.44 0.7132 0.0048 0.0024 0.0295 0.0017 0.0046 0.0023 0.0375 0.0024 

1.5 16.34 0.9760 0.0035 0.0050 0.0392 0.0057 0.0189 0.0064 0.0549 0.0065 

2.0 41.46 1.1274 0.0057 0.0027 0.0331 0.0018 0.0187 0.0040 0.0569 0.0041 

2.5 105.22 1.1950 0.0053 0.0014 0.0382 0.0024 0.0294 0.0035 0.0695 0.0035 
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Table 2:  Total Relative MSE of the HCCME, Bias Corrected HCCME, Adaptive 

HCCME and Bias Corrected Adaptive HCCME 

n a1, a2  OLS HC2 BCHC2 HC3 BCHC3 HCK2 BCHCK2 HCK3 BCHCK3 

25 

0.0 1.00 11.84 17.73 18.17 21.41 18.71 18.66 18.46 22.55 18.90 

0.5 2.54 23.22 34.82 35.85 42.35 37.11 37.30 36.16 45.67 37.06 

1.0 6.44 63.17 79.96 82.51 97.63 85.71 87.20 81.39 107.78 83.13 

1.5 16.34 169.64 183.88 190.00 223.50 197.58 204.86 185.14 254.18 188.10 

2.0 41.46 433.62 442.49 457.76 538.53 476.57 490.50 429.59 612.46 434.17 

2.5 105.22 1086.21 1114.33 1156.90 1359.79 1207.41 1249.31 1069.31 1565.72 1077.16 

50 

0.0 1.00 4.09 6.03 6.10 6.61 6.14 6.17 6.16 6.77 6.20 

0.5 2.54 9.49 11.82 12.00 13.00 12.09 12.27 12.12 13.55 12.19 

1.0 6.44 28.85 27.14 27.57 29.85 27.81 28.61 27.75 31.77 27.88 

1.5 16.34 79.12 64.81 65.94 71.52 66.57 68.94 65.39 77.03 65.63 

2.0 41.46 204.51 155.28 158.11 171.28 159.67 165.06 153.97 185.00 154.32 

2.5 105.22 515.77 381.93 388.92 419.36 392.68 406.11 375.74 454.10 376.19 

100 

0.0 1.00 1.45 2.08 2.10 2.19 2.10 2.11 2.11 2.21 2.11 

0.5 2.54 4.15 4.19 4.22 4.40 4.23 4.27 4.24 4.50 4.25 

1.0 6.44 13.71 9.49 9.56 9.92 9.58 9.71 9.58 10.22 9.59 

1.5 16.34 38.26 22.78 22.98 23.89 23.03 23.48 22.88 24.80 22.90 

2.0 41.46 99.36 54.84 55.34 57.49 55.47 56.75 54.82 60.06 54.85 

2.5 105.22 248.82 132.76 134.02 139.26 134.34 137.20 131.67 145.54 131.71 

150 

0.0 1.00 0.78 1.13 1.13 1.17 1.13 1.14 1.14 1.17 1.14 

0.5 2.54 2.62 2.27 2.29 2.36 2.29 2.31 2.30 2.39 2.30 

1.0 6.44 8.93 5.12 5.15 5.29 5.16 5.23 5.18 5.42 5.18 

1.5 16.34 25.16 12.26 12.33 12.65 12.34 12.51 12.30 12.99 12.30 

2.0 41.46 65.47 29.62 29.79 30.54 29.82 30.28 29.60 31.43 29.60 

2.5 105.22 164.19 71.12 71.55 73.35 71.63 72.71 70.76 75.61 70.77 

200 

0.0 1.00 0.51 0.73 0.74 0.75 0.74 0.74 0.74 0.76 0.74 

0.5 2.54 1.92 1.47 1.48 1.51 1.48 1.49 1.48 1.52 1.48 

1.0 6.44 6.64 3.32 3.33 3.40 3.34 3.37 3.34 3.45 3.34 

1.5 16.34 18.71 7.93 7.97 8.13 7.97 8.07 7.97 8.31 7.97 

2.0 41.46 48.74 18.63 18.71 19.06 18.72 18.98 18.66 19.53 18.66 

2.5 105.22 122.36 46.51 46.73 47.62 46.75 47.43 46.46 48.86 46.46 



Munir Ahamed, Muhammad Aslam 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp389-405 400 

Null Rejection Rate 

In our numerical work, we test H0: 1
1
   against H1: 1

1
   at nominal level 1%, 5% 

and 10 % of significance, respectively. Table 3, 4 and 5 present the estimated null 

rejection rates (NRR, in percentage) based on t-ratios using the estimated variances of ̂ 1
 

(from all the variance estimators under consideration). Under the stated null hypothesis, 

the limiting distribution of t-statistic is N(0, 1) and this test is performed by using the 

critical values of this limiting distribution which is then compared to the absolute values 

of the said test statistic (see Cribari-Neto, 2004 and Ahmad et al., 2007, 2011, for more 

details). Although, we present the NRRs at nominal levels of significance (LOS) at 1%, 

5% and 10% but in our discussion, we just discuss them at 5% LOS. It is just because the 

performance can be observed in the same fashion for the other two LOSs’. So Table 3 

will be discussed only. 

 

Table 3 represents the NRR for the conventional HC estimators, HCK estimators and bias 

corrected versions of HC and HCK estimators. This table shows that under 

homoscedasticity, the tests based on OLS variance estimators performs quite well as 

expected but they become too liberal as the degree of heteroscedasticity increases so as 

invite to other variance estimators to handle the situation. When we compare KWLS and 

all the other weighted HCCMEs’ in the case of homoscedasticity, they are too liberal as 

compared to the OLS estimators. Obviously, it shows that the OLSE is the best choice 

when dealing homoscedasticity. If we take a moderate case of heteroscedasticity in small 

sample ( n = 25, a1  = a2 = 1.5,  = 16.34), the NRR is 20.18%, 10.72%, 8.42%, 9.46% 

and 7.42% respectively, for, the OLS HC2, HC3, HCK2 and HCK3, while the figures are 

10.60%, 10.06%, 9.92% and 9.58% respectively, for BCHC2, BCHC3, BCHCK2 and 

BCHCK3. We note that only BCHC2 performs better than its competitors. But bias 

corrected version of adaptive HCCME performs better than the  conventional HCCME 

and its bias corrected versions. It shows the same reflection as verified by Ahmad et al. 

(2007) that the adaptive HCCM estimators show better size performance than the 

conventional HCCM estimators. For example for large sample size and severe degree of 

heteroscedasticity, ( see n = 150, a1  = a2 = 2.5,  = 105.22), the NRR for OLS HC2, HC3, 

BCHC2 and BCHC3 are 23.90%, 6.54%, 6.16%, 6.44% and 6.44% respectively, whereas 

the NRR for BCHCK2 and BCHCK3 are 5.72% and 5.72%, respectively. Among all the 

bias corrected estimators, the size distortion in BCHCK3 is smallest for all sample sizes 

and all degree of heteroscedasticity. However, the difference becomes insignificant as 

sample size increases. 

5.   Conclusion 

It is common to use the HCCMEs to draw correct inference about the regression 

parameters of a linear regression model with heteroscedastic errors. However, these 

estimators can be considerably biased in small samples. Available literature suggests 

some bias corrected mechanism for these estimators. We use the same mechanism but 

instead of using the OLS residuals, we propose to use the residuals obtained from the 

adaptive estimation. Our proposed estimators display less bias and also perform 

considerably well in the testing of hypothesis. 



A New Bias Corrected Version of Heteroscedasticity Consistent Covariance Estimator 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp389-405 401 

Table 3:  Estimated Null Rejection Rates of the t Tests,  = 1% (HCCME and Bias 

Corrected HCCME, Adaptive HCCME and Bias Corrected Adaptive 

HCCME) 

n a1, a2  OLS HC2 BCHC2 HC3 BCHC3 HCK2 BCHCK2 HCK3 BCHCK3 

25 

0.0 1.00 1.66 2.56 2.78 1.86 2.68 2.74 2.78 1.98 2.70 

0.5 2.54 2.88 3.00 3.08 2.10 3.02 3.08 3.10 2.22 3.08 

1.0 6.44 6.00 4.02 4.10 3.10 3.92 3.94 4.06 2.98 3.84 

1.5 16.34 9.54 4.40 4.44 3.44 4.30 4.04 4.16 3.00 4.02 

2.0 41.46 13.08 4.70 4.60 3.46 4.26 3.50 3.62 2.48 3.54 

2.5 105.22 14.88 4.88 4.82 3.60 4.60 3.00 3.34 2.34 3.04 

50 

0.0 1.00 1.52 1.86 1.84 1.64 1.84 1.92 1.92 1.64 1.90 

0.5 2.54 3.24 2.30 2.30 1.94 2.30 2.32 2.32 1.94 2.32 

1.0 6.44 5.42 2.60 2.56 2.04 2.52 2.20 2.24 1.84 2.22 

1.5 16.34 7.72 2.50 2.50 2.08 2.42 2.06 2.16 1.72 2.12 

2.0 41.46 10.76 2.38 2.34 2.04 2.24 1.72 1.84 1.30 1.82 

2.5 105.22 12.42 2.86 2.78 2.28 2.66 1.30 1.44 1.00 1.44 

100 

0.0 1.00 1.04 1.34 1.36 1.16 1.34 1.36 1.36 1.18 1.36 

0.5 2.54 2.54 1.64 1.64 1.50 1.64 1.64 1.64 1.46 1.64 

1.0 6.44 4.92 1.88 1.84 1.72 1.84 1.84 1.84 1.66 1.84 

1.5 16.34 7.04 1.70 1.68 1.48 1.68 1.40 1.42 1.22 1.42 

2.0 41.46 9.62 1.82 1.80 1.64 1.78 1.32 1.42 1.14 1.42 

2.5 105.22 11.88 1.90 1.88 1.72 1.88 1.16 1.24 0.96 1.24 

150 

0.0 1.00 1.10 1.26 1.24 1.18 1.24 1.26 1.26 1.20 1.26 

0.5 2.54 2.86 1.66 1.66 1.50 1.66 1.64 1.66 1.48 1.66 

1.0 6.44 4.60 1.16 1.14 1.06 1.14 1.10 1.12 1.02 1.12 

1.5 16.34 7.80 1.24 1.22 1.14 1.22 1.10 1.14 1.04 1.12 

2.0 41.46 9.60 1.30 1.28 1.20 1.28 0.98 1.02 0.92 1.00 

2.5 105.22 12.44 1.56 1.56 1.48 1.54 1.12 1.14 1.02 1.14 

200 

0.0 1.00 0.90 0.92 0.92 0.86 0.92 0.92 0.92 0.88 0.92 

0.5 2.54 2.54 1.34 1.34 1.26 1.34 1.32 1.32 1.26 1.32 

1.0 6.44 5.20 1.42 1.42 1.34 1.42 1.36 1.36 1.22 1.36 

1.5 16.34 7.36 1.30 1.30 1.16 1.30 1.14 1.16 1.06 1.16 

2.0 41.46 10.40 1.28 1.26 1.24 1.26 1.06 1.06 1.00 1.06 

2.5 105.22 11.46 1.42 1.38 1.30 1.38 1.00 1.06 0.90 1.06 
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Table 4:  Estimated Null Rejection Rates of  the t Tests,   = 5% (HCCME and 

Bias Corrected HCCME, Adaptive HCCME and Bias Corrected 

Adaptive HCCME) 

n a1, a2  OLS HC2 BCHC2 HC3 BCHC3 HCK2 BCHCK2 HCK3 BCHCK3 

25 

0.0 1.00 6.60 7.70 7.86 6.20 7.64 7.84 7.98 6.38 7.74 

0.5 2.54 9.22 7.90 8.14 6.34 7.92 8.08 8.36 6.50 8.10 

1.0 6.44 13.88 9.44 9.40 7.66 9.10 9.12 9.34 7.32 9.06 

1.5 16.34 20.18 10.72 10.60 8.42 10.06 9.46 9.92 7.42 9.58 

2.0 41.46 24.68 10.86 10.62 8.56 10.20 8.76 9.24 6.56 8.98 

2.5 105.22 27.40 10.96 10.74 8.58 10.32 7.82 8.20 6.16 8.02 

50 

0.0 1.00 5.52 6.24 6.34 5.70 6.30 6.32 6.44 5.70 6.34 

0.5 2.54 9.78 7.34 7.36 6.58 7.34 7.36 7.38 6.48 7.30 

1.0 6.44 13.72 7.62 7.50 6.56 7.44 7.10 7.26 6.30 7.24 

1.5 16.34 17.98 7.36 7.32 6.40 7.12 6.48 6.68 5.76 6.62 

2.0 41.46 22.50 8.12 8.06 7.16 7.92 6.42 6.82 5.46 6.74 

2.5 105.22 24.36 7.64 7.46 6.76 7.40 5.66 6.06 4.70 6.02 

100 

0.0 1.00 5.42 6.14 6.18 5.62 6.18 6.18 6.18 5.68 6.18 

0.5 2.54 9.12 6.18 6.18 5.68 6.18 6.14 6.14 5.62 6.14 

1.0 6.44 12.98 6.36 6.28 5.80 6.26 6.14 6.24 5.56 6.20 

1.5 16.34 16.64 5.84 5.74 5.40 5.72 5.28 5.48 4.74 5.44 

2.0 41.46 20.44 5.96 5.92 5.60 5.88 5.08 5.22 4.82 5.16 

2.5 105.22 23.78 6.20 6.12 5.88 6.12 5.28 5.54 4.70 5.54 

150 

0.0 1.00 5.66 5.98 5.96 5.60 5.96 5.96 5.98 5.60 5.98 

0.5 2.54 9.14 5.94 5.94 5.62 5.94 5.92 5.92 5.52 5.92 

1.0 6.44 12.98 5.76 5.74 5.42 5.72 5.54 5.66 5.26 5.66 

1.5 16.34 17.72 6.24 6.20 5.82 6.14 5.78 5.86 5.52 5.86 

2.0 41.46 21.02 5.98 5.92 5.68 5.90 5.38 5.48 5.10 5.46 

2.5 105.22 23.90 6.54 6.44 6.16 6.44 5.54 5.72 5.10 5.72 

200 

0.0 1.00 4.48 4.72 4.72 4.52 4.72 4.74 4.74 4.54 4.72 

0.5 2.54 8.20 5.34 5.34 5.14 5.34 5.28 5.28 5.08 5.28 

1.0 6.44 12.98 6.08 6.04 5.90 6.02 5.94 5.98 5.80 5.98 

1.5 16.34 16.90 5.74 5.74 5.56 5.72 5.46 5.52 5.26 5.52 

2.0 41.46 21.34 5.86 5.84 5.70 5.84 5.50 5.66 5.24 5.62 

2.5 105.22 22.98 5.98 5.90 5.68 5.90 5.36 5.48 5.06 5.48 
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Table 5:  Estimated Null Rejection Rates of the t Tests,   = 10% (HCCME and 

Bias Corrected HCCME, Adaptive HCCME and Bias Corrected 

Adaptive HCCME) 

n a1, a2  OLS HC2 BCHC2 HC3 BCHC3 HCK2 BCHCK2 HCK3 BCHCK3 

25 

0.0 1.00 11.98 13.70 13.76 10.92 13.42 13.64 13.78 11.12 13.50 

0.5 2.54 16.00 14.28 14.40 11.50 13.96 14.20 14.50 11.50 14.14 

1.0 6.44 21.48 14.90 14.82 12.46 14.54 14.36 14.68 11.86 14.30 

1.5 16.34 28.60 16.70 16.32 13.84 15.92 14.88 15.56 12.42 15.18 

2.0 41.46 33.44 17.04 16.64 13.92 16.16 14.08 15.02 11.18 14.64 

2.5 105.22 35.78 16.68 16.30 13.72 15.78 12.60 13.72 9.92 13.30 

50 

0.0 1.00 11.10 11.84 11.90 10.88 11.80 11.86 11.96 10.92 11.82 

0.5 2.54 15.30 12.34 12.36 11.50 12.28 12.16 12.22 11.24 12.14 

1.0 6.44 21.16 12.92 12.88 11.74 12.76 12.50 12.76 11.32 12.52 

1.5 16.34 26.42 13.06 12.82 11.48 12.68 11.94 12.22 10.40 12.14 

2.0 41.46 31.54 13.38 13.26 12.00 13.14 11.32 11.98 10.18 11.86 

2.5 105.22 33.18 13.16 12.96 11.78 12.76 10.80 11.44 9.34 11.38 

100 

0.0 1.00 10.44 10.86 10.86 10.24 10.82 10.82 10.84 10.24 10.82 

0.5 2.54 15.84 11.32 11.26 10.56 11.24 11.26 11.32 10.46 11.26 

1.0 6.44 20.04 11.72 11.70 11.06 11.66 11.42 11.50 10.72 11.48 

1.5 16.34 24.36 11.12 11.04 10.58 11.04 10.54 10.66 9.82 10.62 

2.0 41.46 28.56 11.42 11.36 10.68 11.30 10.46 10.74 9.50 10.74 

2.5 105.22 32.86 11.48 11.36 10.84 11.36 9.98 10.42 9.22 10.40 

150 

0.0 1.00 11.12 10.94 10.94 10.70 10.94 10.94 10.94 10.68 10.94 

0.5 2.54 15.26 11.38 11.38 11.06 11.38 11.30 11.32 10.92 11.32 

1.0 6.44 20.68 11.46 11.40 10.78 11.36 11.20 11.26 10.44 11.26 

1.5 16.34 25.68 11.82 11.80 11.36 11.72 11.42 11.48 10.98 11.48 

2.0 41.46 29.14 10.98 10.86 10.46 10.82 10.00 10.24 9.54 10.22 

2.5 105.22 32.08 11.98 11.92 11.52 11.90 11.00 11.28 10.44 11.28 

200 

0.0 1.00 9.06 9.18 9.18 8.90 9.18 9.18 9.18 8.90 9.18 

0.5 2.54 14.28 10.32 10.26 9.98 10.26 10.22 10.24 9.94 10.22 

1.0 6.44 19.98 11.04 10.96 10.70 10.96 10.88 10.98 10.50 10.98 

1.5 16.34 25.44 10.82 10.76 10.60 10.76 10.46 10.56 10.20 10.56 

2.0 41.46 28.82 11.62 11.58 11.24 11.58 10.92 11.16 10.70 11.14 

2.5 105.22 31.86 11.02 11.00 10.66 10.98 10.30 10.50 9.94 10.50 
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