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Abstract 
The ability to make use of accurately documented, local and specific, reference ranges is an 
important part of clinical work. The most readily available, often the only, routinely collected data 
is that obtained from hospital admissions. A mixture distribution approach is employed to arrive at 
reference range appropriate to particular groups of patients. A classification rule is used to 
provide a spectrum of such ranges that allows for the lack of complete separation of the 
components of the mixture, a common feature when such models are fitted to data. The results of 
analyses are given for a range of biochemical parameters; in some examples, these are shown 
separately for males and females, and for those taking, and not taking, a diuretic drug – the most 
commonly occurring drug-group in the elderly. 

1.   Introduction  
In the course of clinical decision making, reference (sometimes known as 
‘normal’, or ‘standard’) ranges are used to assess the significance of the values 
of biochemical parameters. The use of the term ‘normal’ is somewhat misleading, 
as has been pointed out by Royston 1, in that a value within the range may be 
interpreted to indicate that “individuals falling within such a range are clinically 
normal”. Unfortunately, the basis and the nature of the information upon which 
such ranges are calculated are not always available to the clinician. Many range 
are constructed from historical and ad-hoc data of unspecified, and sometimes 
unknown, origin. Another point of concern to the clinician is to know whether the 
range specified is appropriate for the assessment of an individual with specific 
characteristics (for example, of a certain age and with a particular drug regimen). 
The degree to which drug groups or their individual members influence reference 
ranges, whether this is patient specific, is valuable information to the diagnosing 
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clinician. Reference ranges of serum electrolytes, creatinine, hemoglobin, and 
liver enzymes tend to shift to lower values due to the relative shrinkage of organ 
capacity in the elderly, and so it is often the case that any apparent low values in 
this age group have no serious implications.  

These issues are especially relevant to elderly populations, where the vast 
majority have at least one clinical condition, varying degrees of change in their 
body-system functions, and to whom significant drug regimens are commonly 
administered 2. Shifts in pathological measurements caused by drug treatment 
will be specific to an individual, and any excessive deviations from drug-related 
ranges would alert physicians to search for other causes of these abnormal 
values. The identification of a healthy group of elderly individuals from which to 
collect information and then construct reference ranges can, for a variety of 
different reasons, be a difficult, almost impossible task. The most easily available 
information on the elderly is collected at hospital admission. Although this 
information will have a number of drawbacks, it does afford the possibility of 
sufficient case information to be able to construct reference ranges specific to a 
target group. Where information about a particular biochemical parameter is 
available for a group of such patients the set of measurements might, at the very 
least, be thought to have arisen from a mix of both ‘healthy’ and ‘unhealthy’ 
individuals. This paper considers one way in which this mix might be modeled in 
order to provide the clinician with an improved tool for his or her assessment.  
 
A considerable body of previous work has addressed various aspects of the 
construction of reference ranges 1-8. One of the earliest papers, by McPherson et 
al 3, demonstrated the need for a transformation of the scale of measurement for 
many biochemical parameters, before any reference range is constructed. 
Royston et al 1,6,8 in a series of papers have used low-order polynomial curves to 
produce age-specific ranges, have demonstrated the theoretical and practical 
advantages of estimating symmetric percentiles of an assumed underlying 
normal distribution, and have examined the various statistical properties of using 
the three-parameter log-normal distribution in the calculation of reference ranges 
for clinical measurements. More recently, Wright and Royston 14 have conducted 
a detailed, comparative study of statistical methods used in the determination of 
age-related reference intervals.  
 
There is also relevant work to be found in other medical research areas where 
the purpose is to establish some kind of ‘standard’. In the study of human growth, 
research is often focused upon the estimation of reference centiles of some 
characteristic of interest (birthweight, birthlength, etc., see for example Lawrence 
et al 9, Thompson and Theron 10, Cole and Green 11), to provide the clinician with 
a framework in which to assess the measurement made on a new patient.  
 
In this paper a methodology involving mixtures of distributions is employed to 
construct a spectrum of reference ranges for a parameter; obtained by fitting a 
univariate distribution model to a reduced population. The population reduction 
occurs as a result of the application, successively, of a classification rule 
designed to identify a core of values from which to derive the reference value. In 
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any study of this kind a balance needs to be struck between basing the reference 
values upon known pharmacological effects, the use of data from a very specific 
group of individuals, where inference to a wider population is not really justified, 
and the use of a more heterogeneous set of data, such as that from hospital 
admissions.  

2.   Method 
The population P is assumed to comprise of a mixture of k sub-populations  
{P1..Pk}. The proportion of each sub-population may or may not be known. Let 

c1,..,ck denote these proportions, where ∑ =
k
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The possible presence of mis-recorded or other unusually high or low values, 
quite likely for the examples considered in this paper, makes it sensible to 
assume measurement Y to be ‘censored’ to the interval (L,U). Suppose that in a 
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These estimated characteristics can be used to partition population P into two 
groups PA(p) and PR(p), using the classification rule: 
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Assign population element ‘y’ to PA(p) if the estimated conditional probability 
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 is ≥ p for some threshold value 0 ≤ p ≤ 1; 

otherwise, assign to PR(p). In this paper sub-population Pj was chosen to be the 
largest estimated component of the mixture distribution. In all our analyses, this 
has proved pharmacologically satisfactory. At the lower end of the scale ‘p’ PA(0) 
will comprise the original population, and as ‘p’ increases the rule successively 
restricts PA(p). The nature of the subsequent change in reference range for 
successive ‘p’ provides the clinician with an additional information in the 
assessment of a new patient value.  
 
This classification rule is based upon the optimum decision rule for a Bayesian 
classifier with rejection, first introduced by Chow12,13, that assigns each 
population element to that class with maximum aposteriori probability. To allow 
the acceptance into PA(p) of population elements ‘closer-to’ PR(p), k ≠ j, Chow’s 
procedure needs to be modified to the form given above. The reason for this 
being that in general verification systems, of which this is an example, the 
classes (or sub-populations P1..Pk) may be quite close together. When this 
occurs, estimation of certain of the parameters in the mixture model will be, with 
even quite large sample size N, subject to poor precision. This could give rise to 
a considerable amount of anomalous allocation if the criterion of the maximum a 
posterior probability is used.  
 
Having established, for a given value of p, the sub-population PA(p), a single-
component model )θ;x(FA

−−
 is then fitted and the reference range (p)R α)%100(1−  

estimated for specified significance level )%.1(100 α−  These calculations produce a 
spectrum of reference values for the different values of p. At p=0, PA(0) 
comprises all the population elements and is identical to P. As p increases, 
elements not “close to” Pj are removed. A plot of (p)R α)%100(1−  against p provides 
both a summary of the particular measurement under study and a visual aid to 
the clinical interpretation of the significance of a measurement for any new 
patient.  

3.   Results 
This method of reference range construction is illustrated using hospital 
admissions data from an Exeter, UK Study 5,7. In each case the mixture model 

components };{ ⎟
⎠

⎞
⎜
⎝
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yFi θ  were chosen to be Normal ( )2
ii σ,μN  on a logarithmic scale, 

with k = 3. The choice of three sub-populations was found to be satisfactory, or 
more than so (k = 2 being sufficient), for all the biochemical parameters 
considered. Maximum Likelihood estimates of the model parameters for k=3 and 
for sub-populations PA(0.75) are given in Table 1 together with the estimated 
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95% reference ranges ( )U,95%L,95%,RR ˆˆ  derived from them, and locally used ranges 
( ).U,L locallocal   
 
An important objective of reference range determination is to try to produce 
information for the clinician as relevant as possible to a particular patient group. 
To illustrate this process summary results from a selection of such analyses are 
given in Table 2 and the accompanying Figures 1 & 2. Table 2(a) and Figure 1 
show the results of analyses applied to a reduced starting population for each of 
bilirubin, blood-sugar, and serum sodium. In each case, the population was 
reduced by removing any patient whose drug regimen or disease condition may 
have affected that particular biochemical parameter. Analyses were carried out 
for thyroxine and urea to determine separate ranges for males and females, and 
for creatinine a breakdown into those administered a diuretic drug and those not; 
the details are given in Table 2(b) and Figure 2.  
 
The results highlight a number of important issues in the construction of 
reference values. Requiring the estimated conditional probability of belonging to 
the ‘target’ sub-population to be greater than p=0.75 gives rise to an approximate 
dichotomy of the set of biochemical parameters. Those which use 70+% of the 
original population elements (namely, bilirubin, gamma glutamyl transpeptidase, 
aspartate aminotransferase, alkaline phosphatase, thyroxine, Red blood cells 
(count), and mean cell volume), and those which use approximately 40-50% 
(blood-sugar, haemoglobin, White blood cells (count), platelets, sodium, 
potassium, urea, and creatinine) to establish the reference range. These general 
reductions are what might be expected with the use of hospital admission data, 
where the methodology is trying to remove the effects of disease, etc. Another 
important factor is that the data are from an elderly population (≥ 65 years of 
age), and will reflect the complicated changes that take place in body-system 
performance as age increases. Locally-used ranges are often determined from 
healthy groups of much younger people. For example in Fig 2(b) it is seen that 
for both males and females, despite some convergence to the locally-used range 
as we increase ‘p’ and restrict the population on which the range calculation is 
based, the estimated range remains significantly wider, particularly at the upper 
limit. In the case of creatinine, Fig 2(c), both the diuretic and non-diuretic groups 
produce ranges with higher mean values for values of ‘p’ up to 0.85.  
 
Examination of Table 1 indicates that the biochemical parameters divide into four 
broad groups: those where the estimated range falls within the locally-used one 
(gamma glutamyl transpeptidase, thyroxine, White blood cells, platelets, and 
potassium); those with a significant shift to a lower mean value (asparatate 
aminotransferase, haemoglobin, and Red blood cells); those with a higher mean 
value (alkaline phosphatase, mean cell volume, urea, and creatinine); and, 
bilirubin, blood-sugar, and sodium, where the calculated interval covers the local 
range. The reduced population analyses, carried out for this final group, maintain 
the same picture, except in the case of sodium, where the values are very close 
to hose of the local range, at p=0.75; see also Figure 1. The four main groups 
mirror very well expected changes with ageing, with a less active bone marrow 
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resulting in lower values of haemoglobin and Red blood cells, and declining renal 
function resulting in higher values of creatinine and to some degree urea, with 
osteoporotic changes accounting for higher values of alkaline phosphatase.  
 
Although the analyses, in Table 2(b), for urea and creatinine, stratified by sex 
and diuretic-group respectively, indicate certain changes from those reported I 
Table 1, the ranges are still shifted to higher mean values compared to those of 
the local ranges. The case of thyroxine is more complicated, since the female 
group is seen, in Figure 2(a), to ‘validate’ the local range, whilst in the male group 
many more patient values are rejected, and an estimated range produced which 
is in agreement at the lower end but with a very significantly reduced upper 
boundary.  

4.   Conclusion  
We have demonstrated how reference ranges can be determined from 
observational data that is inevitably going to consist of measurements from a 
collection of sub-populations in which the individuals are subject to a variety of 
different influences. For example, factors such as sex, age, and major drug-class 
regimen must be taken into account in the assessment of unusual or significant 
clinical measurements. At the same time the methodology needs to be flexible 
enough to be able to commend itself to simple clinical use, otherwise it will 
remain a somewhat academic exercise. The use of reference range plots such 
as we have illustrated enables the clinician to make a more informed 
interpretation of biochemical results that are presented. The ability to be able to 
focus attention onto groups of individuals with particular characteristics is 
important. This requires the availability of large, regularly updated databases, 
such as hospital-based sets of the kind used in this paper. The obvious 
disadvantage in using hospital admission data is that the patient set is, by 
definition, an ill population; although, not uniformly so across all biochemical 
parameters. However this drawback must be balanced against the need to have 
sufficient amount of data available, to properly focus the relevance of any 
reference range, in the way that the methodology in this paper has been able to 
do.  
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Table 1:  Estimated reference ranges ( )U,95%L,95%,RR ˆˆ , calculated using )σ,μN( ∗∗ ˆˆ , 
the fitted distribution for sub-population PA(p = 0.75), and locally used 
ranges ( ).U,L locallocal  The population proportion PA(p = 0.75) / PA(p = 0) 
is shown.  
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Table 2a:  Maximum Likelihood Estimates for the single-component (with 
standard errors) and three-component models, in each case natural 
log scales have been used. 
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Table 2b:  Maximum Likelihood Estimates for the single-component (with 
estimated standard errors) and three-component models; in each 
case natural log scales have been used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Mixture Distributions and the Construction of Reference Ranges for Biochemical parameters  

Pak.j.stat.oper.res.   Vol.III  No.1 2007   pp19-30 29

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  A graph of { }pp);(ˆˆ
U,95%L,95% R(p),R  for (a) bilirubin, (b) blood sugar, 

and (c) sodium. In each case the straight-line denote, respectively, 
the lower and upper locally-used reference bounds.  
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Figure 2:  A graph of { }pp);(ˆˆ
U,95%L,95% R(p),R  for (a) thyroxine and (b) urea, 

with separate plots shown for males [+] and females [x], and (c) 
creatinine, stratified by whether or not (+, x) the patient was 
receiving a diuretic drug. In each case the straight-line plots denote, 
respectively, the lower and upper locally-used reference bounds. 


