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Abstract 

In this paper, Bayesian and non-Bayesian estimators have been obtained for two generalized exponential 

populations under joint type II censored scheme, which generalize results of Balakrishnan and Rasouli 

(2008) and Shafay et al. (2013). The maximum likelihood estimators (MLEs) of the parameters and Bayes 

estimators have been developed under squared error loss function as well as under LINEX loss function. 

Moreover, approximate confidence region are also discussed and compared with two Bootstrap confidence 

regions. Also the MLE and three confidence intervals for the stress–strength parameter ( )R P Y X   

are explored. A numerical illustration for these new results is given.  
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1.   Introduction 

Recently a new distribution, named as generalized exponential (GE) distribution or 

exponentiated exponential distribution was introduced and studied quite extensively by 

Gupta and Kundu. 1999; 200la; 2001b; 2002. The two parameters of an exponentiated 

exponential distribution represent the shape and the scale parameter like a gamma 

distribution or a Weibull distribution. The density function varies significantly depending 

of the shape parameter. It is observed that it has lots of properties which are quite similar 

to those of a gamma distribution but it has an explicit expression of the distribution 

function or the survival function like a Weibull distribution.  

 

The two-parameter GE distribution has the following distribution function; 

   1 , 1,2
i

i x

iF x e i
   , 

and it has a density function 
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Here   is the shape parameter and is the scale parameter. When the shape parameter 
equals 1 it coincides with the 1-parameter exponential distribution. Therefore, GE 

distribution is a generalization of an 1-parameter exponential distribution having a shape 

parameter  . 

 

The joint type-II censoring may occur while conducting comparative life-tests of 

products from different lines of production, for example. To be more precise, suppose 

products are being manufactured by two different lines under the same conditions and 

that two independent samples of sizes m and n are selected from these two lines, 

respectively, and are placed simultaneously on a life-testing experiment. Then, due to 

cost and time considerations, the experimenter may choose to terminate the life-testing 

experiment as soon as a certain number of failures occur. The successive failure times 

and the corresponding product types will be recorded, and the life-testing experiment will 

get terminated as soon as a pre-specified number of failures are observed.  

 

Suppose that 1,..., mX X , the lifetimes of m specimens of product A, are i.i.d. random 

variables from distribution function ( )F x and density function       ( )f x , and 1,..., nY Y , 

the lifetimes of n specimens of product B, are i.i.d. random variables from distribution 

function G(x) and density function g(x). Further, suppose 
(1) (2) ( )... NW W W    denote 

the order statistics of the N m n  random variables 1 1{ ,..., ; ,..., }m nX X Y Y . Then, 

under the joint Type-II censoring scheme, the observable data consist of ( , )Z W , where

(1) (2) (r)W = (W , W ,. . . , W ) , with r (1 )r N   being a pre-fixed integer, and 

1 rZ = (Z , . . . , Z  ) with 1iz   or 0 according as iw  is from an X- or Y-failure.  

 

Letting 
1

r

r i

i

M Z


 denote the number of X-failures in W and 
1

(1 )
r

r i r

i

N Z r M


     

(i.e., the number of Y-failures in W ), the likelihood of (Z, W) is given by Balakrishnan 

and Rasouli (2008) as:  
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where 1F F  , 1G G   are the survival functions of the two populations and 
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. 

 

Balakrishnan and Rasouli (2008) developed likelihood inference for the parameters of 

two exponential populations under joint type-II censoring. They developed inferential 

methods based on maximum likelihood estimates (MLE) and compared their 

performance with those based on some other approaches such as Bootstrap. Shafay et al. 

(2013) derived the Bayesian inference for the unknown parameters of two exponential 

populations under joint type II censoring they developed with the use of squared-error, 

linear-exponential and general entropy loss functions. The problem of predicting the 

future failure times, both point and interval prediction, based on the observed joint type-II 

censored data is obtained; see also Rasouli and Balakrishnan (2010) for a generalization 

of their results to progressive type-II censoring. Finally Balakrishnan and Feng (2014). 
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generalized Balakrishnan and Rasouli (2008), Rasouli and Balakrishnan (2010) and 

Shafay et al. (2013) works by considered a jointly type II censored sample arising from h 

independent exponential populations. 

 

Succeeding section deals with the computational procedure to obtain the MLEs of 

1 2 1, ,    and 2  and their asymptotic variance-covariance matrix. Section 3 describes 

the various bootstrap confidence intervals. While section 4 is concerned with Bayes 

estimators under squared error loss function as well as under LINEX loss function for the 

parameters. Section 5 the maximum likelihood estimation and confidence intervals using 

asymptotic distribution and two parametric bootstrap resampling methods for the stress–

strength parameter ( )R P Y X   are explored. All estimators are not in nice closed 

forms, therefore, numerical examples are considered to illustrate the proposed estimators 

in section 6. Last section includes a brief conclusion. 

 

Not that If 1 2 1   we obtain MLEs based on a jointly type-II censored sample from 

two exponential populations which introduced by Balakrishnan and Rasouli (2008) and 

Shafay et al. (2013). 

2.   Maximum Likelihood Estimators 

Suppose that the two populations are GE distribution with distribution function; 

    1
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1 1( ; , ) 1 xF x e
       and     2
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where i  are the shape parameters and i  are the scale parameters. In this case, the 

likelihood function in (2) becomes 
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where 1 2 1

1, , ,i i rw w w

i iu e q e v e       2

2
rwv e  , 1 1(1 )v   and 2 2(1 )v   .  

 

Therefore, to obtain the MLE’s of i  and i  we find the first derivatives of the natural 

logarithm of the likelihood function (3) with respect to i  and i  and equating them to 

zero, we get the following four equations 

 

 

1

1

2

2

1

1

ˆ

1 1

ˆ
11 1 1

ˆ

2 2

ˆ
12 2 2

ˆ 1

1 1 1
1 ˆ

1 11 1 1

ˆ ˆln ( ) ln
ˆln 1 0,

ˆˆ 1

ˆ ˆln ( ) ln
ˆ(1 ) ln 1 0,

ˆˆ 1

ˆˆˆ ˆln ( )
ˆ( 1) 0,

ˆ ˆˆ1 1

r
r r

i i

i

r
r r

i i

i

r r
r i i i r r

i i

i ii

L m m m
z u

L n n n
z q

L m z w u m m w v
w z

u













 

  

 

  

 


  







 

 
    

 

 
     

 

 
     

  





 

 



S.K. Ashour, O.E. Abo-Kasem 

Pak.j.stat.oper.res.  Vol.X  No.1 2014  pp57-72 60 

and 
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where 1 2 1 2
ˆ ˆ ˆ ˆ

1 2 1 1
ˆˆˆ ˆ ˆ ˆ, , , (1 )i i r rw w w w

i iu e q e v e v e v              and 2 2
ˆ ˆ(1 )v   . Then the 

maximum likelihood estimates of the parameters 1 2 1, ,    and 2  can be obtained by 

solving system of equations (4). No explicit form for these estimates, we use a numerical 

technique using Mathcad2007 Package to obtain 1 2 1
ˆˆ ˆ, ,    and 2̂ .  

 

The approximate asymptotic variance-covariance matrix for 1 2 1, ,    and 2  can be 

obtained by inverting the information matrix with the elements that are negative of the 

expected values of the second order derivatives of logarithms of the likelihood functions. 

Cohen (1965) concluded that the approximate variance covariance matrix may be 

obtained by replacing expected values by their MLEs. Now the Fisher information matrix 

associated with 1 2 1, ,    and 2 is defined as: 
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Using the asymptotic normality of the MLEs, we can express the approximate 

100(1 )%  confidence intervals for 1 2 1, ,    and 2 .  

 

Suppose that ̂  is the MLE of the parameter vector 1 2 1 2( , , , )     . Denote the Fisher 

information matrix corresponding to   by I   and 1limn n I  

 . Then, ̂  is 

asymptotically normal distributed (see Serfling (1980)), i.e., ˆ( ) (0, )n N   . In 

particular, let  
2

ˆ ( , )
ˆˆ , 1,2,

i i iS n i    are the ( , )i i  elements in the matrix 
1ˆ ˆn I    

and Î   
is the estimator of I  . Therefore, asymptotic normality confidence intervals of 

, 1,2,i i   with confidence level 100(1 )%  are given by 

  ˆ1 2
ˆˆ , 1,2,

ii z S i



   and   ˆ1 2

ˆ ˆ , 1,2
i

i z S i
 




  . 

where 
(1 ) 2z   denotes the upper (1 ) 2  percentage point of the standard normal 

distribution. 

3.   Bootstrap Confidence Intervals 

In this section, we present several bootstrap methods to construct confidence intervals for 

1 2 1, ,    and 2 , viz., Studentized-t interval (Boot-t) and Percentile interval (Boot-p) (see 

Efron (1982) and Efron and Tibshirani (1994) for details).  

a)  Bootstrap Percentile Interval Procedure (Boot-p) 

The bootstrap percentile method defines the lower and upper bounds of the confidence 

intervals just using the 100 2th  and 100(1 2)th  quantiles of the empirical 

bootstrap distribution of *ˆ
i  and 

*ˆ , 1,2i i   respectively. In particular: 
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(1) Compute the MLE ˆˆ( , )i i   of ( , )i i   based on joint type II censored sample 

( , )w z . 

(2) Use ˆˆ( , )i i  to generate a bootstrap joint type II censored sample * *( , )w z  and 

compute the bootstrap estimate of ( , )i i  , say
* *ˆˆ( , )i i  , based on this bootstrap 

sample. 

(3) Repeat step 2 B times to have *(1) *(2) *( )ˆ ˆ ˆ, ,..., B

i i i    and 
*(1) *(2) *( )ˆ ˆ ˆ, ,..., B

i i i   . 

(4) Arrange *(1) *(2) *( )ˆ ˆ ˆ, ,..., B

i i i    and 
*(1) *(2) *( )ˆ ˆ ˆ, ,..., B

i i i    in ascending order and obtain 

*[1] *[2] *[ ]ˆ ˆ ˆ, ,..., B

i i i    and 
*[1] *[2] *[ ]ˆ ˆ ˆ, ,..., B

i i i   . 

(5) A two-sided 100(1 )%  percentile bootstrap confidence interval for ( , )i i  , say 

* *ˆ ˆ[ , ]iL iU   and 
* *ˆ ˆ[ , ]iL iU   is given by 

 * * *([ 2]) *([ (1 2])ˆ ˆ ˆ ˆ( , ) ,B B

iL iU i i

       and  * * *([ 2]) *([ (1 2])ˆ ˆ ˆ ˆ( , ) ,B B

iL iU i i

      . 

b)  Studentized-t Interval Procedure (Boot-t) 

The Boot-t confidence intervals estimators are computed according to the following 

steps: 

 

(1–2) Same as the steps 1–2 in (a).  

(3) Compute the t –statistic * *

*

ˆ ˆ
ˆˆ ˆ( )

i i
i iT S

 
   and * *
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ˆ ˆ
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ˆ
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 are the bootstrap versions. 

(4) Repeat steps 2–3 B times and obtain * * *

(1) (2) ( )

ˆ ˆ ˆ
, ,...,

i i i

BT T T
  

 and * * *

(1) (2) ( )

ˆ ˆ ˆ, ,...,
i i i

BT T T
  

. 

(5) Arrange * * *

(1) (2) ( )

ˆ ˆ ˆ
, ,...,

i i i

BT T T
  

 and * * *

(1) (2) ( )

ˆ ˆ ˆ, ,...,
i i i

BT T T
  

 in ascending order and obtain 

* * *

[1] [2] [ ]

ˆ ˆ ˆ
, ,...,

i i i

BT T T
  

 and * * *

[1] [2] [ ]

ˆ ˆ ˆ, ,...,
i i i

BT T T
  

. 

(6) A two-sided 100(1 )%  bootstrap-t confidence interval for ( , )i i   say 

* *

, ,
ˆ ˆ[ , ]i tL i tL   and * *

, ,
ˆ ˆ[ , ]i tL i tU  , is given by 

 * *

([ 2]) ([ (1 2)])

ˆ ˆˆ ˆ
ˆ ˆˆ ˆ, , 1,2,

i ii i

B B

i iT S T S i 

  
      

and  

 * *

([ 2]) ([ (1 2)])

ˆ ˆˆ ˆ
ˆ ˆˆ ˆ, , 1,2,

i ii i

B B

i iT S T S i 

  
      

 

In section 6, we will have a simulation study in order to evaluate the performance of the 

three confidence intervals.  



Bayesian and Non–Bayesian Estimation for Two Generalized Exponential Populations Under Joint Type II Censored Scheme 

Pak.j.stat.oper.res.  Vol.X  No.1 2014  pp57-72 63 

4.   Bayes Estimators 

In this section, Bayesian method is used to obtain the estimators for the unknown 

parameters , 1,2i i   and , 1,2i i   using symmetric squared error loss function and 

asymmetric LINEX loss functions. 

 

We consider that 1 2 1, ,   and 2 have the following independent gamma prior 

distributions;  

1( ) , , , 0,
( )

k

k k k

a
a bk

k k k k k

k

b
e a b

a

     


 

and 

1( ) , 0, 1,2
( )

k

k k k

a
a bk

k k k

k

b
e k

a

      


     (6) 

Here all the hyper parameters ka and kb are assumed to be known and non-negative. 

Combining (6) with equation (3) and using Bayes theorem, the joint posterior density 

function of 1 2 1, ,   and 2  can be written as: 

   1 2 1 2 1 2 1 2

1
( \ , , , ) ( , , , , , ) k kl data L w z           


  

where      1 2 1 2

0 0 0 0

( , , , , , ) k k k kL w z d d          
   

        

 

Therefore, the Bayes estimator of any function of 1 2 1, ,   and 2 , say 1 2 1 2( , , , )      

under the squared error loss function is 

 

   

1 2 1 2, , , \ 1 2 1 2

1 2 1 2 1 2 1 2

0 0 0 0

ˆ ( , , , )

1
( , , , ) ( , , , , , ) (7)

B data

k k k k

E

L w z d d

        

              


   



    

 

 

Under a LINEX loss function the Bayes estimate of a function 1 2 1 2( , , , )      is given by 

1ˆ ln ( ), 0,c

L E e c
c

           (8) 

where  

   1 2 1 2

0 0 0 0

1
( ) ( , , , , , )c c

k k k kE e e L w z d d           


   

       

 

Equations (4), (5), (7) and (8) are hard to obtain. An iterative procedure is applied to 

solve these equations numerically.  
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5.   Estimation of the stress–strength reliability ( )R P Y X    

In this section, we consider the problem of estimating reliability in the stress strength 

model when the strength of a unit or a system, X, has cumulative distribution function 

1( )F x  and the stress subject to it, Y, has cumulative distribution function 2 ( )F y . The 

main purpose of this section is the focus on the inference on ( )R P Y X  , where, X 

and Y are independent generalized exponential random variables under joint type II 

censoring scheme. The maximum likelihood estimation and confidence intervals using 

asymptotic distribution and two parametric bootstrap resampling methods for parameter 

R are explored. 

 

If X is the strength of a system which is subjected to a stress Y, then R is a measure of 

system performance, the system fails if at any time the applied stress is greater than its 

strength, The estimation of R is very common in the statistical literature. For example, 

Tong (1974, 1975 and 1977), Constantine and Karson (1986), Ahmad et al. (1997), 

Surles and Padgett (2001), Kundu and Gupta (2005 and 2006), and Raqab and Kundu 

(2005) have discussed this problem when X and Y are two independent exponential, 

gamma, Burr type X, and generalized exponential random variables. However, the 

censoring sampling has not been taken into account in these works. Finally, Chien-Tai 

and Shun (2013) consider the problem of estimation for ( )R P Y X  , where X and Y 

are two independent but not identically general location-scale distributed random 

variables under the joint progressively type-II right censoring scheme. 

5.1  Maximum Likelihood Estimation of Reliability R  

Let X, Y have generalized exponential distribution with pdfs 1( )f x  and 2 ( )f y  and 

cumulative distributions functions 1( )F x  and 2 ( )F y  in equation (1). Here, we consider 

the problem of estimating reliability ( )R P Y X   based on a joint type-II censored 

sample mentioned in section 1. The reliability function is defined as 

2 1

0

( ) ( ) ( )R P Y X F y f x dx



         (9) 

 

By using the MLEs 1 2 1
ˆˆ ˆ, ,   and 2̂ from likelihood equations (4), can be obtained the 

MLE of R (invariance property) as  

2 1
1 2 1

ˆ ˆ 1ˆ ˆ ˆ

1 1

0

ˆˆ ˆ 1 1x x xR e e e dx
 

   



       

    ,    (10) 

which can be solved by using an iterative numerical method. 

5.2  Interval Estimation for R 

In this sub section, we propose different methods of constructing confidence intervals for 

R. The first method is based on the asymptotic distribution of R̂ . Other methods are 

based on two parametric bootstrap methods: the percentile bootstrap (Boot- p) and 

bootstrap- t methods (Boot- t ). 
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a) Asymptotic Normality Procedure 

By best asymptotically normal property of the MLE, the asymptotic variance of R̂ is 

found to be 
1ˆ( )Var R Q I Q

        (11) 

where 
1 2 1 2

, , ,
R R R R

Q
   

    
 

    
, Q denotes the transpose of Q and I   Fisher 

information matrix presented in equation (5). If we replace the variance by its estimate, 

we can easily obtain an approximate 100(1 )  confidence interval for R as 

(1 2)
ˆ ˆ( )R z Var R  

b)  Parametric Boot-p confidence interval 

To obtain the Boot- p confidence intervals for R, we use the following algorithms 

1. Based on joint type-II censored sample ( , )w z , compute the MLEs 1 2 1
ˆˆ ˆ, ,    and 2̂  

and then the MLE R̂  of R. 

2. Generate random samples from two independent generalized exponential with 

parameters 1 1
ˆˆ( , )  and 2 2

ˆˆ( , )   of sizes m and n, respectively. Then, generate a 

bootstrap joint type-II censored sample * *( , )w z . 

3. Compute the MLE R̂  based on * *( , )w z . 

4. Repeat Steps 2–3 B times and obtain *(1) *(2) *( )ˆ ˆ ˆ, ,..., BR R R . 

5. Arrange *(1) *(2) *( )ˆ ˆ ˆ, ,..., BR R R  in ascending order to obtain the bootstrap sample

*[1] *[2] *[ ]ˆ ˆ ˆ( , ,..., )BR R R . 

Then, a two-sided 100(1 ) Boot- p confidence interval for R is given by 

 *[ 2] *[ (1 2)]ˆ ˆ,B BR R   

c)  Parametric Boot- t confidence interval 

1. Repeat the same Steps 1 to 3 above. 

2. Compute *ˆ( )Var R from equation (11), and compute the t –statistic 

    
*

*

*

ˆ ˆ( )

ˆ( )

R R
T

Var R


  

3. Arrange *(1) *(2) *( ), ,..., BT T T  in ascending order to obtain the bootstrap sample
*[1] *[2] *[ ]( , ,..., )BT T T . 

Then, a two-sided 100(1 ) Boot- t confidence interval for R is given by 

 *[ 2] *[ (1 2)]ˆ ˆ ˆ ˆ( ), ( )B BR T Var R R T Var R    
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6.   Numerical Illustration  

It clear that, there are no explicit solutions for obtaining new estimators in both non-

Bayesian and Bayesian approaches. Therefore artificial data, numerical solution and 

computer facilities are needed. The main object of this section is to illustrate numerically 

most of the new theoretical result obtained in the previous two sections. 

6.1  Illustrative Example 

We consider two samples of size m = n = 10 each from Nelson’s data (1982), (groups 3 

and 5 in Table 4.1, [27, p.462]) which correspond to breakdown in minutes of an 

insulating fluid subjected to high voltage stress. These failure times, denoted here as 

groups X and Y, are presented in table 1. 

 

Table 2 presents the jointly type-II censored data that have been obtained from the two 

samples in table 1 with r = 15. We then computed the MLE and Bayesian estimates of 

1 2 1, ,    and 2  (with the choice of ( , 1,2,3,4ia i   and , 1,2,3,4ib i  ) as 

hyperparameters) based on the data in table 2, and these results are presented in table 3. 

 

Table 4 presents the 95% approximate, Boot-p and Boot-t confidence intervals for 

1 2 1, ,    and 2  corresponding to case r = 15. From these results, we observe that Boot-p 

and Boot-p confidence intervals are satisfactory compared to the approximate confidence. 

Table 1: The failure time data for groups X and Y 

Group Data 

X 1.99, 0.64, 2.15, 1.08, 2.57, 0.93, 4.75, 0.82, 2.06, 0.49 

Y 8.11, 3.17, 5.55, 0.80, 0.20, 1.13, 6.63, 1.08, 2.44, 0.78 

Table 2: The jointly type-II censored data, with r = 15, from groups X and Y in 

table 1 

W .20 .49 .64 .78 .80 .82 .93 1.08 1.08 1.13 1.99 2.06 2.15 2.44 2.57 

Z 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 

Table 3: The MLE, Bayesian estimates, root mean squared errors ( MSE ) and 

estimated risks (ER) for 1 2 1, ,    and 2  

 MLE MSE  SE ER LINEX 

c =3 ER c = -0.5 ER 

1̂  3.578 2.119 3.43 0.0047 3.507 0.000044 3.46 0.00157 

2̂  1.378 0.767 1.44 0.0033 1.513 0.0002 1.422 0.0062 

1̂  1.202 0.432 1.21 0.0002 1.26 0.0036 1.191 0.0001 

2̂  0.477 0.281 0.53 0.00069 0.483 0.0003 0.603 0.0105 
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Table 4: The 95% approximate, Bootstrap-p and Bootstrap-t confidence intervals 

for  1 2 1, ,    and 2  

r = 15 

 CI for 1  CI for 2  CI for 1  CI for 2  

Approximate (-0.571, 7.728) (-0.107, 2.863) (0.361, 2.043) (-0.072, 1.025) 

Boot-p (2.077, 8.305) (0.776, 3.058) (0.508, 3.468) (0.213, 0.905) 

Boot-t (-0.581, 5.46) (-0.216, 1.952) (1.047, 2.375) (0.275, 0.827) 

6.2   Monte Carlo Simulation 

A simulation study was conducted in order to evaluate the performance of MLEs and also 

all the confidence intervals discussed in the preceding sections. We considered different 

sample sizes for the two populations as m = 15, 20, 40, 50 and n = 15, 20, 40, 50, and 

different choices for r = 12, 16, 18, 24, 32, 40, 48, 60, 64, 80. We also chose the 

parameters 1 2 1 2( , , , )     to be (1,0.6,0.15,0.2) . For these cases, we computed the 

MLEs, root mean squared errors MSE  and the 95% confidence intervals for 

1 2 1 2( , , , )     and R (with ( ( ) 0.683)R P Y X   ) using approximate, Boot-t and 

Boot-p methods (with N-Boot as 1000) and the corresponding coverage probabilities. We 

computed the Bayesian estimates of 1 2 1 2( , , , )    under the SE and LINEX loss 

functions. We repeated this process 1000 times and computed the average values of all 

the estimates and the estimated risk (ER) for each estimate. The average value of the 

MLEs 1 2 1 2( , , , )    and ( MSE ) summarized in tables 5. 
 

From table 6 we observe that the Bayesian estimates under the SE and LINEX loss 

functions and their ERs. In tables 7–10, the coverage probabilities and the average widths 

of 95% CIs 1 2 1 2( , , , )     for all the methods are presented for some small, moderate and 

large values of m and n. 
 

From table 11 we observe The average value of the MLE R , ( MSE ), and average 

widths of the 95% confidence intervals based on approximate, Boot- p , and Boot- t 

methods with corresponding coverage probabilities for small, moderate and large values 

of m , n  and r  with ( ( ) 0.683)R P Y X   . 

Table 5:  The average value of the MLEs 1 2 1 2( , , , )     and ( MSE ) for small, 

moderate and large values of m , n  and r  

1 2 11, 0.6, 0.15      and 2 0.20   

( , )m n  r  
1̂  MSE  

2̂  MSE  1̂  MSE  
2̂  MSE  

 

(15,15) 

12 1.084 0.332 0.644 0.187 0.165 0.042 0.213 0.035 

18 1.081 0.322 0.645 0.187 0.160 0.036 0.209 0.035 

24 1.078 0.315 0.645 0.185 0.160 0.034 0.209 0.035 

 

(20,20) 

16 1.061 0.273 0.630 0.157 0.161 0.035 0.208 0.030 

24 1.053 0.249 0.628 0.155 0.159 0.029 0.208 0.030 

32 1.049 0.241 0.628 0.154 0.159 0.028 0.208 0.029 

 

(40,40) 

32 1.039 0.186 0.618 0.099 0.156 0.024 0.203 0.021 

48 1.033 0.175 0.618 0.098 0.155 0.021 0.203 0.021 

64 1.032 0.173 0.617 0.098 0.155 0.020 0.203 0.020 

 

(50,50) 

40 1.024 0.16 0.611 0.091 0.154 0.02 0.204 0.019 

60 1.019 0.153 0.611 0.089 0.154 0.019 0.204 0.019 

80 1.019 0.151 0.611 0.089 0.153 0.018 0.204 0.019 
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Table 6: Bayesian estimates and (ER) of 1 2 1 2( , , , )     for different choices of 

, , ,m n r  1 2 3 4 1 2 3 41, 1, 1, 1, 1.5, 1.75, 2.5, 3a a a a b b b b        , and  

c = -0.5 with 1 2 11, 0.6, 0.15      and 2 0.20   

( , )m n  r SE LINEX (c = -0.5) 

1̂  2̂  
1̂  2̂  1̂  2̂  

1̂  2̂  

 

 

(15,15) 

12 

ER 

1.073 

0.106 

0.644 

0.035 

0.165 

0.0018 

0.21 

0.0012 

1.064 

0.0124 

0.644 

0.0042 

0.165 

0.00022 

0.193 

0.0001 

18 

ER 

1.07 

0.1 

0.645 

0.035 

0.16 

0.0013 

0.207 

0.0012 

1.061 

0.0117 

0.645 

0.0041 

0.16 

0.00016 

0.189 

0.0002 

24 

ER 

1.067 

0.096 

0.645 

0.034 

0.16 

0.0012 

0.207 

0.0012 

1.058 

0.0112 

0.645 

0.0041 

0.16 

0.00014 

0.19 

0.0002 

 

 

(20,20) 

16 

ER 

1.076 

0.973 

0.636 

0.026 

0.162 

0.0012 

0.204 

0.0009 

1.067 

0.0231 

0.636 

0.0032 

0.162 

0.000147 

0.186 

0.0001 

24 

ER 

1.04 

0.067 

0.635 

0.026 

0.159 

0.001 

0.204 

0.0009 

1.03 

0.008 

0.635 

0.0031 

0.159 

0.000118 

0.186 

0.0001 

32 

ER 

1.037 

0.064 

0.635 

0.026 

0.159 

0.0008 

0.204 

0.0009 

1.028 

0.0077 

0.635 

0.0031 

0.159 

0.000101 

0.186 

0.0001 

 

 

(40,40) 

24 

ER 

1.029 

0.0026 

0.626 

0.0006 

0.158 

0.0006 

0.225 

0.00062 

0.996 

0.000002 

0.620 

0.00041 

0.154 

0.00009 

0.209 

0.00001 

48 

ER 

1.029 

0.0026 

0.626 

0.0006 

0.158 

0.0006 

0.225 

0.00062 

0.996 

0.000002 

0.620 

0.00041 

0.154 

0.00009 

0.209 

0.00001 

64 

ER 

1.029 

0.0026 

0.626 

0.0006 

0.158 

0.0006 

0.225 

0.00062 

0.996 

0.000002 

0.620 

0.00041 

0.154 

0.00009 

0.209 

0.00001 

 

 

(50,50) 

40 

ER 

0.99 

0.0001 

0.61 

0.0001 

0.152 

0.000006 

0.205 

0.00002 

1.071 

0.000623 

0.641 

0.00021 

0.154 

0.0000025 

0.209 

0.000009 

60 

ER 

0.99 

0.0001 

0.61 

0.0001 

0.152 

0.000006 

0.205 

0.00002 

1.071 

0.000623 

0.641 

0.00021 

0.154 

0.0000025 

0.209 

0.000009 

80 

ER 

0.99 

0.0001 

0.61 

0.0001 

0.152 

0.000006 

0.205 

0.00002 

1.071 

0.000623 

0.641 

0.00021 

0.154 

0.0000025 

0.209 

0.000009 

Table 7:  Simulated coverage probabilities (CP) and the average widths of the 

95% confidence intervals of 1  for some small, moderate and large 

values of ,m n  and r  with 1 1   

( , )m n  r  Approximate  Boot-p  Boot-t  

CP(%) Length CP(%) Length CP(%) Length 

 

(15,15) 

12 99.994 2.589 71.4 0.826 73.05 16.621 

18 99.884 1.926 91.11 1.076 76.86 0.917 

24 99.508 1.643 89.22 1.221 71.65 0.882 

 

(20,20) 

16 61.872 1.533 91.19 0.66 97.14 1.287 

24 99.869 1.641 92.57 0.746 90.47 0.747 

32 99.472 1.388 91.92 0.845 86.72 0.724 

 

(40,40) 

32 99.997 1.431 93.23 0.491 93.39 0.542 

48 99.94 1.118 95.57 0.536 95.56 0.625 

64 99.692 0.953 94.04 0.675 93.24 0.708 

 

(50,50) 

40 99.994 1.266 92.22 0.536 86.25 0.48 

60 99.884 0.987 93.17 0.432 95.5 0.477 

80 99.486 0.841 93.81 0.499 94.72 0.553 



Bayesian and Non–Bayesian Estimation for Two Generalized Exponential Populations Under Joint Type II Censored Scheme 

Pak.j.stat.oper.res.  Vol.X  No.1 2014  pp57-72 69 

Table 8:  Simulated CP and the average widths of the 95% confidence intervals of 

2  for some small, moderate and large values of ,m n  and r  with 

2 0.6   

( , )m n  r  Approximate  Boot-p  Boot-t  

CP(%) Length CP(%) Length CP(%) Length 

 

(15,15) 

12 99.717 1.055 91.33 0.743 98.91 0.492 

18 99.197 0.93 90.84 0.826 74.18 0.551 

24 98.572 0.856 90.5 0.829 75.6 0.568 

 

(20,20) 

16 98.957 0.713 92.46 0.443 97.99 0.742 

24 99.307 0.75 92.77 0.506 96.05 0.731 

32 98.767 0.694 92.14 0.769 75.91 0.533 

 

(40,40) 

32 99.636 0.597 94.2 0.311 90.67 0.288 

48 99.035 0.528 93.67 0.39 89.37 0.346 

64 98.404 0.489 92.82 0.465 86.36 0.401 

 

(50,50) 

40 99.639 0.524 94.21 0.331 85.16 0.254 

60 99.092 0.463 93.51 0.369 82.25 0.283 

80 98.47 0.431 93.36 0.454 82.2 0.316 

Table 9: Simulated CP and the average widths of the 95% confidence intervals of 

1  for some small, moderate and large values of ,m n  and r  with 

1 0.15   

( , )m n  r  Approximate  Boot-p  Boot-t  

CP(%) Length CP(%) Length CP(%) Length 

 

(15,15) 

12 100 0.675 94.92 0.087 46.53 0.049 

18 100 0.4 95.52 0.121 92.13 0.106 

24 99.999 0.276 95.27 0.146 96.26 0.153 

 

(20,20) 

16 100 0.434 94.04 0.074 89.14 0.068 

24 100 0.344 95.74 0.096 88.13 0.078 

32 99.998 0.241 94.54 0.134 91.21 0.122 

 

(40,40) 

32 100 0.383 95.84 0.066 95.21 0.064 

48 100 0.235 95.21 0.08 93.15 0.074 

64 99.999 0.165 95.05 0.103 94.71 0.101 

 

(50,50) 

40 100 0.342 95.73 0.064 94.27 0.06 

60 100 0.211 94.64 0.064 94.28 0.063 

80 99.997 0.148 95.02 0.088 93.32 0.084 
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Table 10:  Simulated CP and the average widths of the 95% confidence intervals of 

2  for some small, moderate and large values of ,m n  and r  with 

2 0.20   

( , )m n  r  Approximate  Boot-p  Boot-t  

CP(%) Length CP(%) Length CP(%) Length 

 

(15,15) 

12 100 0.621 96.29 0.159 70.93 0.046 

18 100 0.451 95.34 0.157 93.59 0.149 

24 100 0.365 94.31 0.216 81.05 0.152 

 

(20,20) 

16 100 0.474 95.61 0.113 85.94 0.08 

24 100 0.39 95.28 0.137 87.51 0.112 

32 100 0.317 94.77 0.209 92.7 0.194 

 

(40,40) 

32 100 0.37 95.11 0.074 94.32 0.072 

48 100 0.271 94.64 0.09 93.76 0.088 

64 100 0.219 94.95 0.16 95.54 0.169 

 

(50,50) 

40 100 0.332 94.79 0.066 94.38 0.065 

60 100 0.243 95.21 0.079 95.6 0.08 

80 100 0.197 94.62 0.125 90.47 0.108 

Table 11:  The average value of the MLE R , ( MSE ), and average widths of the 

95% confidence intervals based on approximate, Boot- p, and Boot- t 

methods with corresponding coverage probabilities for small, moderate 

and large values of m , n  and r  with ( ( ) 0.683)R P Y X    

Boot-t Boot-p Approximate MSE

 

R̂  r  ( , )m n  

Length CP(%) Length CP(%) Length CP(%) 

0.397 87.9 0.412 82.7 0.529 99.6 0.0988 0.669 12  

(15,15) 0.387 88.1 0.402 79.8 0.513 99.2 0.092 0.673 18 

0.268 91.2 0.287 84.5 0.447 99.1 0.0924 0.675 24 

0.490 95.9 0.438 92.7 0.569 99.8 0.0867 0.669 16  

(20,20) 0.714 100 0.481 98.4 0.418 98.8 0.0837 0.671 24 

0.832 100 0.635 100 0.368 97.9 0.0818 0.672 32 

0.269 97 0.256 95.6 0.373 99.5 0.0622 0.679 32  

(40,40) 0.259 94.6 0.289 97.4 0.284 98.6 0.0589 0.681 48 

0.406 99.8 0.384 99.6 0.246 96.9 0.0577 0.6825 64 

0.194 90.9 0.209 92.8 0.33 99.8 0.0548 0.681 40  

(50,50) 0.190 92 0.209 93.7 0.244 98.5 0.0522 0.681 60 

0.183 91.5 0.191 92.6 0.217 96.2 0.0524 0.680 80 
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7.   Conclusions 

In this paper, the MLEs and Bayesian estimation based on the SE and  LINEX loss 

functions for the unknown parameters of two Generalized exponential distributions has 

been discussed based on a joint type- II censored sample. We obtained the MLEs of the 

parameters and found corresponding Fisher information matrix. Also, we studied three 

approximate methods, Asymptotic Normality, Bootstrap-t and Parametric Bootstrap 

percentile procedures for constructing intervals for the parameters. The MLEs and the 

Bayesian estimates have then been compared through a Monte Carlo simulation study 

and a numerical example has also been presented to illustrate all the inferential results 

established here. The computational results show that the Bayesian estimation based on 

the SE, and LINEX loss functions is more precise than the MLEs estimation. Also, the 

ERs and MSE of all the estimates decrease with increasing r even when the sample sizes 

m and n are small. We assessed the performance of the mentioned three confidence 

intervals. According to the simulation study, when the sample sizes of two populations, n 

and m, and the total number of failures r, are large, the estimators’ biases are small and 

the confidence intervals have desirable coverage probabilities. Also, we observed that the 

approximate better than the two bootstrap methods often perform as well as each other. 

Finally, the estimation of the stress strength parameter ( )R P Y X   has been 

considered.  
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