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Abstract 

A competing risks model based on exponential distribution is considered under adaptive type-I progressive 

hybrid censoring scheme. We investigate the maximum likelihood estimation and Bayesian estimation for 

the distribution parameter. The Bayes estimate of the unknown parameter is obtained based on squared 

error and LINEX loss functions under the assumption of gamma prior. The asymptotic confidence 

intervals, the Bayes credible intervals and two parametric bootstrap confidence intervals are also proposed. 

To evaluate the performance of the estimators, a simulation study is carried out. 
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1. Introduction 

Lin and Huang (2012), introduced a new progressive hybrid censoring scheme called an 

adaptive type-I progressive hybrid censoring scheme (AT-I PHCS), and it can be 

described as follows: suppose n identical units are put on test with progressive censoring 

scheme 1 2, ,..., mR R R , 1 m n  , and the experiment is terminated at a prefixed time T, 

where (0, )T    and integers '
i

R s  are prefixed. At the time of the first failure
 1: :m n
x , 1

R  

of the remaining units are randomly removed. Similarly, at the time of the second failure 

2: :m n
x , 2

R  of the remaining units are randomly removed and so on. Let J denote the 

number of failures that occur before time T. If the m-th failure : :m m n
x  occurs before time 

T (i.e 
: :m m n

x T ), the process will not stop, but continue to observe failures without any 

further withdrawals until reach time T. Then, at time T all remaining units 

1

J

J ii
R n J R


    are removed and the experiment is terminated. The progressive 

censoring scheme in this case will become 1 2 1, ,..., , ,...,m m JR R R R R , where 

1 ... 0m m JR R R    . Otherwise, the process when 
: :m m n

x T  will have a progressive 

censoring scheme as 1 2, ,..., JR R R .  
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Progressive hybrid censoring scheme in the context of life testing studies has become 

quite popular. Kundu and Joarder. (2006) considered a type-I progressive hybrid 

censoring scheme (T-I PHCS), where the experiment is terminated at time 

 : :
min ,

m m n
T x T  . They investigated the maximum likelihood and Bayesian estimation 

for the exponential distribution. Childs et al. (2008) proposed a type-II progressive hybrid 

censoring scheme, where the experiment is terminated at time  : :
max ,

m m n
T x T  , and 

derived the exact distribution of the maximum likelihood estimator. Ng et al. (2009) 

introduced a new censoring scheme, called an adaptive type-II progressive hybrid 

censoring, where the number of failures m and the corresponding progressively scheme is 

given, but no units will be removed when the experimental time passes time T. Recently, 

Lin and Huang. (2012) proposed another adaptive progressive hybrid censoring scheme, 

AT-I PHCS, which assures the termination of the life testing experiment at a fixed time T 

and results a higher efficiency in estimations as compared with T-I PHCS, they studied 

point and interval estimation for the exponential distribution based on an AT-I PHCS. Lin 

et al. (2012) investigated the maximum likelihood and Bayesian estimation for a two-

parameter Weibull distribution based on AT-I PHCS. They obtained the Bayes estimates 

of the unknown parameters by using the approximated form of Lindley (1980) and 

Tierney and Kadane (1986). 

 

The main aim of this paper is analyzing the competing risk model when lifetimes have 

independent exponential distributions under an AT-I PHCS. We derive the maximum 

likelihood estimators (MLE) and Bayes estimators under squared error and LINEX loss 

functions using gamma priors. We also obtain the asymptotic confidence interval, 

credible interval and two bootstrap confidence intervals. 

 

The rest of this paper is organized as follows: In section 2, we introduce the model and 

the notation used throughout this paper. In section 3, we discuss the maximum likelihood 

estimation.  The Bayes estimators of the parameter under squared error and LINEX loss 

functions are derived in section 4. Different confidence intervals are presented in Section 

5. In section 6, numerical illustration of the maximum likelihood and Bayes estimates and 

the corresponding confidence intervals are presented. Finally, in section 7, we obtain the 

ML and Bayes estimators when the causes of failure are unknown. 

2.   Model Description and Notation 

In reliability analysis, the failure of items may be attributable to more than one cause at 

the same time. These "causes" are competing for the failure of the experimental unit. 

Consider a life time experiment with n N  identical units, where its lifetimes are 

described by independent and identically distributed (i.i.d) random variables 

1 2, ,..., nX X X . Without loss of generality; assume that there are only two causes of 

failure. We have  1 2min ,i i iX X X  for 1,...,i n , where , 1,2kiX k  , denotes the latent 

failure time of the i-th unit under the k-th cause of failure. We assume that the latent 

failure times 
1iX  and 

2iX  are independent, and the pairs  1 2,i iX X  are i.i.d. Assume that 
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the failure times follows the exponential distribution with cumulative distribution 

function 
kF  and failure hazard function 

kh  have the form  

1 , , 0 , 0 , 1,2 (1)k x

k k kF e h x k
  

       
 

Under adaptive type-I progressive censoring scheme and in presence of competing risks 

data we have the following observation: 

         1: : 1 1 1: : 1 : : : :, , ,..., , , , , ,0 ,,..., , ,0 , ,m n m m n m m m m n m J m n J JX c R X c R X c X c T R 

 
 

where 
ic  is the indicator denoting the cause of failure, J denote the number of failures 

before time T and 
JR   is the number of remaining units left at the time point T with 

1,..., 0m m JR R R  . Let  1,2ic  . Here, , 1,2ic k k   means the unit i  has failed due to 

cause k. Further, we define 

 1

1, 1
1

0

i

i

c
I c

else


  


      and       2

1, 2
2

0

i

i

c
I c

else


  


 

 

Thus, the random variables  1 11
1

J

ii
J I c


   and  2 21

2
J

ii
J I c


   describe the 

number of failures due to the first and the second cause of failures, respectively. Both 
1J   

and 
2J   follow binomial distributions with sample size J. using the independence of the 

latent failure times
1 2,i iX X , 1,...,i n  , we can obtain the relative risk rate due to a 

particular cause (say, cause 1) as follows 

1 2 1
1 2 1

1 20

( ) .
x x

i iP X X e e dx
  


 



 
  

    similarly,     2
2 1

1 2

( )i iP X X


 
 


 

 

For a given censoring scheme 1 2 1, ,..., ,0,...,,0,m JR R R R 

 , the likelihood function of the 

observed data    1 1, ,..., , Jx c T R   is given by 

    1 2

1 2 1 2 2 1 1 2

1

1 2

( , ) . ( ). ( ) ( ). ( ) . ( ). ( )

( ). ( )

i i i

J

J
I c I c R

J i i i i i i

i

R

L c f x F x f x F x F x F x

F T F T

 



 



           

   


 

where : :i i m n
x x  for simplicity of notation, 

1

J

J i

i

c 


  with 
1

1
m

i j

j

m i R


    . 

 

Applying the identity .
k k k

f h F , we can write the likelihood function as follows 

 
 

 
  11 2

1 2 1 2 1 2 1 2

1

( , ) . ( ) ( ) . ( ). ( ) . ( ). ( )
i Ji i

J
R RI c I c

J i i i i

i

L c h x h x F x F x F T F T 
 



       
 

(2) 

 

we denote 1 2J J J  , and 0J  . 
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3.   Maximum Likelihood Estimation 

From (1) and (2), the likelihood function ignoring the normalized constant can be written 

as follows 

   1 2

1 2 1 2 1 2

1

( , ) . .exp 1
J

J J

i i J

i

L R x R T      



  
      

  


   

(3) 

and the log-likelihood function give 1J    

   1 2 1 1 2 2 1 2

1

ln ( , ) ln ln 1
J

i i J

i

L J J R x R T      



 
      

 


   

(4) 

upon differentiating (4) with respect to 
1  and 

2  we get the likelihood equations as 

1 2 1

1 1

ln ( , )
( )

L J
x

 

 


 


, 

1 2 2

2 2

ln ( , )
( )

L J
x

 

 


 

        

(5) 

where  
1

( ) 1
J

i i J

i

x R x R T



    is the total time on test (TTT). Equating the first 

derivations (5) to zero, we get the MLE of  1  and 2  in the following form 

ˆ , 1,2
( )

k
k

J
k

x
    

 

From the log-likelihood function in (4), we have 

2

1 2 1

2 2

1 1

ln ( , )L J 

 


 


, 

2

1 2 2

2 2

2 2

ln ( , )L J 

 


 


, 

and 

2

1 2

2 1

ln ( , )
0

L  

 




          

(6) 

 

The Fisher information matrix 
1 2( , )I    is then obtained by taking the expectation of 

minus equations (6), this expectation is difficult to obtained, so, under some regularity 

conditions, 1 2
ˆ ˆ( , )   is approximately bivariately normal with mean 1 2( , )   and covariance 

matrix 
1

1 2( , )I  
. Practically, we estimate 

1

1 2( , )I  
 by 

1

1 2
ˆ ˆ( , )I  

, then 

2 2

1 2 1 2

2

1 1 2 11

1 2 2 2

1 2 1 2 2
2

2 1 2
1 1 2 2

ln ( , ) ln ( , )

ˆ( ) 0
ˆ ˆ( , )

ˆln ( , ) ln ( , ) 0 ( )

ˆ ˆ( ,

1
L L

var
I

L L var

   

   
 

    

  
   



  
          
       

       


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4.   Bayesian Estimation 

We consider the Bayesian estimation under the assumption that the random variables 
k , 

1,2k  , has a gamma prior distribution with known shape and  scale parameters ka  and 

kb , with pdf given by 

1 .
( ) . . , 0, , 0

( )

k

k k k

a
a bk

k k k k k

k

b
g e a b

a

   
  


    

(7) 

combining (3) and (7), the joint posterior density of 
1  and 

2  given the data is 

    1 1 2 21 1

1 2 1 2 1 1 2 2

1
( , | ) . . .exp ( ) ( )a J a Jg x b x b x

A
                

where 
   1 1 2 2

1 1 2 2

1 2

( ) ( )

( ) . ( )
a J a J

a J a J
A

b x b x
 

   


 
. 

 

The marginal posterior of 
1  and 

2  are given as follows 

 
  

1 1

1 1

1

1 1

1 1

1 1

1

( )
( | ) . .exp ( )

(
 

)

a J

a J
b x

g x b x
a J

 



 


  
 

 

and 

 
  

2 2

2 2

2

2 2

2 2

2 1

2

( )
( | ) . .exp ( )

(
 

)

a J

a J
b x

g x b x
a J

 



 


  
 

 

 

It is important to state that, in Bayesian estimation, we consider two types of loss 

functions. The first is the squared error loss function. The second, the LINEX loss 

function introduced by Varian (1975). The LINEX loss function with parameters a  and 

d is given by 

 
   ( )

, ( ) 1
d

a e d
    

   
      

(8) 

where a  and d  are constants. The sign and magnitude of d  represent the direction and 

degree of symmetry, respectively. From (8) the Bayes estimator   of   is given by    

 
 1

ln , 0lin

d
E e d

d





  

       
(9) 

for d  closed to zero, the LINEX loss is approximately squared error loss. 

 

Under squared error loss function, the Bayes estimator of 1  and 2  is the posterior mean 

which obtained as follows 

1
1 1

1 ( )
Sq

a J

b x






       and       2

2 2

2 ( )
Sq

a J

b x






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For the non-informative priors 
1 1 2 2 0a b a b     , the Bayes estimators coincide with the 

corresponding MLEs. Also, the posterior risk associated with 
k , 1,2k   can be written 

as  

   
22( )k k kR E E        

where  

 
   1 1 2 1

1 1 2 2

1 2

( ). ( )1
, 1,2

( ) ( )

r

k

r

k a J r a J J r

a J r a J r
E r

A b x b x
 

 
 

    

     
  

 
 

is the marginal posterior r th moments of k , 1,2k  , and 0, 1    for 1k    and 

1, 0    for 2k  . 

 

Under LINEX loss function (8), the Bayes estimator of 
1  and 

2  can be obtained as 

follows 

1 1 1
1

1

( ) ( )
ln

( )
lin

a J b x

d d b x


   
  

  
 

and 

2 2 2
2

2

( ) ( )
ln

( )
lin

a J b x

d d b x


   
  

  
, 0d   

 

One can use other asymmetric loss functions, such as, modified LINEX loss function 

proposed by Basu and Ibrahimi (1991), which appears to be suitable for the estimation of 

scale parameters and other quantities, also, entropy loss function suggested by Calabria 

and Pulcini (1994), that is alternative to the modified LINEX loss function.   
 

5.   Confidence Intervals 

In this section, we propose four different confidence intervals. One is based on the 

asymptotic distribution of 
1  and 

2 , the second is the credible intervals based on the 

posterior distribution, and two different bootstrap confidence intervals. 

 Asymptotic confidence interval (NA)        

The 100(1 )  approximate confidence intervals for 1  and 2  can be obtained using the 

asymptotic normality of the MLEs as follows  

1 / 2 1
ˆ ˆ. var( )z    and 2 1 / 2 2

ˆ ˆ. var( )z    

where 2

1 1 1
ˆ ˆvar( ) / J   and 2

2 2 2
ˆ ˆvar( ) / J   are the elements on the main diagonal of the 

covariance matrix 1 2
ˆ ˆ( , )

-1I    and  /2z    is the upper  
2


- th percentile point of a standard 

normal distribution. 
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 Credible interval (BA) 

The credible interval of 
1  and 

2  can be obtained using the posterior distributions of 
1  

and 
2 . The posterior of 

1 1 12 ( ( ))Z b x   and 
2 2 22 ( ( ))Z b x   follows 2  

distribution with  1 12( )a J   and  2 22( )a J  degrees of freedom respectively. Therefore, 

100 1( %)  credible intervals for 
1  and 

2  are  

   1 1 1 1

2 2

2( ) ,1 2( ) ,
2 2

1 1

,
2( ( )) 2( ( ))

a J a J

b x b x

  
  

 
 
 

  
 

  and  
   2 2 2 2

2 2

2( ) ,1 2( ) ,
2 2

2 2

,
2( ( )) 2( ( ))

a J a J

b x b x

  
  

 
 
 

  
 

 

 

where 
1 1( ) 0a J   and 

2 2( ) 0a J  . Note that if  1 12( )a J  and  2 22( )a J are not integer 

values, then gamma distribution can be used to construct the credible intervals.  

 Bootstrap confidence intervals  

Here, we construct two parametric bootstrap confidence intervals for 1  and 2  

A) Percentile bootstrap confidence interval (PB) 

1- Compute the MLE of k  using the original adaptive type-I progressive hybrid 

censored sample with censoring scheme 1 1,..., ,0,...,,0,m JR R R 

  and prefixed T. 

2- Generate a bootstrap sample using ˆ
k , 1 1,..., ,0,...,,0,m JR R R 

   and T to obtain the 

bootstrap estimate of 
k  say ˆb

k  using the bootstrap sample. 

3- Repeat step (2) B times to have 
(1) (2) ( ), ,...,b b b B

k k k   . 

4- Arrange 
(1) (2) ( ), ,...,b b b B

k k k    in ascending order as 
[1] [2] [ ], ,...,b b b B

k k k   . 

5- A two-sided 100(1 )%  percentile bootstrap confidence interval for the unknown 

parameter 
k  is given by  

  
 [ /2] [ (1 /2)]ˆ ˆ,b B b B

k k

   
 

 

B) Bootstrap-t confidence interval (TB) 

1-2)  Same as the steps (1) in Boot-p 

3)  Compute the t-statistic ˆ ˆ ˆ( ) / ( )b b

k k kT V    , where ˆ( )b

kV  is the   asymptotic 

variances of ˆb

k  and it can be obtained using the Fisher information matrix. 

4.  Repeat step 2-3 B times and obtain  (1) (2) ( ), ,..., BT T T . 

5.  Arrange (1) (2) ( ), ,..., BT T T  in ascending order as [1] [2] [B], ,...,T T T . 

6.  A two-sided 100(1 )%   bootstrap-t confidence interval for the unknown 

parameter 
k  is given by 

[ /2] [ (1 /2)]ˆ ˆ ˆ ˆ( ), ( )B B

k k k kT V T V     
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6.   Numerical Results  

The performance of the different results obtained in the previous sections can't be 

compared theoretically, to illustrate the behavior of the proposed methods as well as 

evaluate the statistical performances of these estimates a numerical illustration is 

conducted. We re-analyze a real data set analyzed by Hoel (1972), and reused by Kundu 

et al. (2004). Also, a simulations study is used to compare the performance of the 

different estimators, different confidence intervals using different parameter values and 

different schemes.  

 

Example: In this section, we re-analyze one data set which was originally analyzed by 

Hoel (1972) and later by Kundu et al. (2004), Pareek et al. (2009) and Cramer and 

Schmiedt (2011). The data was obtained from a laboratory experiment in which male 

mice received a radiation dose of 300 roentgens at 35 days to 42 days (5-6 weeks) of age. 

The cause of death for each mouse was determined by reticulum cell sarcoma as cause 1 

and other causes of death as cause 2, there were 77n   observations remain in the 

analysis. The progressively type-II censored data was generated and first used by Kundu 

et al. (2004). Considering 630T   and using the censoring scheme 25m   and 

1 2 24... 2R R R    , the adaptive progressive type-I censored sample from the original 

data is given by  

 

(40, 2), (42, 2), (62, 2), (163, 2), (179, 2), (206, 2), (222, 2), (228, 2), (252, 2), (259,2), 

(318, 1), (385, 2), (407, 2), (420, 2), (462, 2), (517, 2), (517, 2), (524, 2), (525, 1),(558, 

1),(536, 1), (605, 1), (612, 1), (620,2), (621, 1), (622, 2), (628,1). 

 

The first component denotes the life time and the second component indicate the cause of 

failure. There were 27J  , 1 8J  , 2 19J    and 25 26 0R R   and 
27 2R   . From the 

above data, we obtain the following: 

 
1

1 29108
J

i i J

i

R x R T



   , which yields  

Parameter ML estimate Bayes estimate  under 

Squared  error loss 

1  
 

-42.74838 10  
9(9.442 10 )  

-43.092 10  
-8(1.06212 10 )  

2  
-46.52741 10  

8(2.242 10 )  

-46.871 10  
-8(2.3603 10 )  

 

where the variances and the Bayes risk reported within brackets. Also, the relative risk 

due to cause 1 is 0.296, and due to cause 2 is 0.704, The MLE's of the mean lifetimes due 

to cause 1 and cause 2 are given by 

1

1
ˆ 3638.5   and 

1

2
ˆ 1532  . 
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Now we report the 95% asymptotic, credible intervals, Boot-P and Boot-t confidence 

intervals  

Methods 1  
2  

NA -4 -4(2.7482 10 ,2.74857 10 )   -4 -4(6.5269779 10 ,6.5278524 10 )   

BA -4 -4(1.414 10 ,5.415 10 )   -4 -3(4.197 10 ,1.019 10 )   

PB -4 -4(2.2932 10 ,3.4131 10 )   -4 -4(5.4465 10 ,8.1061 10 )   

TB -4 -4(2.2029 10 ,7.0627 10 )   -4 -4(5.2319 10 ,7.7987 10 )   

 

The analysis of the previous real data set demonstrate the importance and usefulness of 

adaptive type-I progressive hybrid censoring scheme and inferential procedures based on 

them.  

 

Simulation study: A simulation study is conducted to evaluate the behavior of the ML 

and Bayes estimates by considering different values of  sample sizes 30,50n  , different 

effective number of failures 5,10m   and 0.4,0.6T  , and by choosing 

1 2( , ) (0.4,0.6)   and (1,0.8)  in all the cases, and considered three different sampling 

schemes    

 

Scheme 1: 1 1 · · · 0 andm mR R R n m     , 

Scheme 2: 1 1 · · · 1 2 1m mR R and R n m      ,  and 

Scheme 3: 1 1 · · · = ( ) /m mR R R n m m    ,   

 

For each case, the MLEs and Bayes estimates under squared error and LINEX (with 

0.1d  ) loss functions of 1  and 2  are computed based on 1000 simulations, with the 

assumption that the number of failures due to each cause of failures at least one, and the 

parameters distributed as a random variables with gamma prior distributions with 

parameter (1, 1.5) and  (1, 1.5), respectively.  The average values, average bias, root 

mean squared errors and average number of observed  failures 
AJ  for the ML and Bayes 

estimates of 1  and 2  are reported in tables 1 and 2 . The average 95%  confidence 

length of asymptotic confidence intervals, the credible intervals with respect to the 

gamma prior distributions, Boot-p and Boot-t confidence intervals of 1  and 2  and the 

corresponding coverage probabilities are reported in tables 3 and 4. All of the 

computations were performed using MATLAB and MATHCAD program version 2007.  
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From table 1 and 2, we observed that in most cases the MLE of 
1 and 

2  has smaller 

biases than the Bayes estimates, and the ordering of performance of estimators in term of 

minimum root mean squared errors (from best to worst) for 
1 and 

2  is Bayes estimates 

under LINEX, squared error loss functions and MLE's. Comparing the three censoring 

scheme based on minimum root mean squared errors shows that the performance of 

estimation for scheme 1 is best followed by scheme 2 and then scheme 3. When T 

becomes larger, the root mean square errors decreases, this is not being very surprising, 

because when T increases some additional information is gathered. From table 3 and 4, in 

terms of coverage probabilities and average confidence lengths we observed that the 

Bayes credible intervals quite close to the nominal level than other three methods, 

Among these methods, PB has the shortest average lengths followed by BA, NA, and 

then TB, also, we observed that, in all cases when T increases the average length 

decreases. 

7.   Unknown Causes of Failure 

In all procedures mentioned above, we assume that the cause of failure for all individuals 

to be known. We now consider the situation of unknown causes of failure, let 

 1 11
1

J

ii
J I c


   and  2 21

2
J

ii
J I c


   describe the number of failures due to the first 

and the second cause of failures, respectively, and  3 31

J

ii
J I c


   is the number of 

failures having failure times but corresponding causes of failure are unknown. Let us also 

denote
 1 2J J J   , and therefore 3J J J  . The likelihood function of the observed 

data ignoring the constant is 

     1 2
( )

1 2 1 2 1 2 1 2

1

( , ) exp 1
J

J JJ J

i i J

i

L R x R T       
 



  
       

  


  

(10) 

 

Taking the natural logarithm of (10), we obtain 

    
     1 2 1 1 2 2 1 2 1 2 (i)

1

ln ( , ) ln ln ( )ln 1
J

i J

i

L J J J J R x R T        



 
         

 


 
(11) 

 

Upon differentiating (11) with respect to 1  and 2  and equating the partial derivatives to 

zeros, we obtain the MLE's of 
1   and 2  as  

.ˆ , 1,2
. ( )

k
k

J J
k

J x



   

 

Consider the Bayesian estimation under the assumption of gamma prior distribution (7), 

the joint posterior density of 
1   and 2  given the data is can be written as follows 

  
    1 1 2 11 1

1 2 1 2 1 2 1 1 2 2

0

1
( , | ) . . . .exp ( )

1

J J
a J i a J J i

i

J J
g x x b b

A i
       

 
      



 
     

 


 

(12) 
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where  
   1 1 2 1

1 1 2 1

0 1 2

( ) ( )
1

( ) . ( )

J J

a J i a J J i
i

J J a J i a J J i
A

i b x b x

 

    


        
  

  
 .   

 

Under squared error loss function, the Bayes estimator of 1   and 2  is the posterior 

mean which obtained as follows 

   1 1 2 1

1 1 2
1

1

1
0 1 2

( 1). ( )1

1 ( ) ( )

J J

a J i a J J i
i

Sq

J J a J i a J J i

A i b x b x


 

     


         
  

  
  

and 

   1 1 2 1

1 1 2

1

2

2
1

0 1

( ). ( 1)1

1 ( ) ( )

J J

a J iS a J Jq i
i

J J a J i a J J i

A i b x b x


 

     


         
  

  
  

 

Under LINEX loss function (8), the Bayes estimator of 1  and 2  can be obtained as 

follows 

   1 1 2 1

1 1 2 1
1

0 1 2

( ). ( )1 1
ln

1 ( ) ( )

J J

lin a J i a J J i
i

J J a J i a J J i

d A i d b x b x


 

    


           
   

     
  

and 

   1 1 2 1

1 1 2 1
2

0 1 2

( ). ( )1 1
ln

1 ( ) ( )

J J

lin a J i a J J i
i

J J a J i a J J i

d A i b x d b x


 

    


           
   

     
 , 0d    

 

All the procedures discussed in sections (5) can be easily modified to the present 

situation.  
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Table (1)
c
:  The average biases, root mean squared errors and average number of 

failures of the ML and Bayes estimates of 
1 2( , ) (0.4,0.6)    under 

different censoring scheme and different T 's. 
 

Scheme 

 

(n ,m)  

ML Estimates Bayes Estimates  

AJ  
1̂  2̂  1Sq  2Sq  

1lin  2lin  

T = 0.4 
 

1 
 

 
 

 

(30,5) 

0.003 

0.209 

0.024 

0.267 

0.032 

0.185 

0.028 

0.232 

0.03 

0.184 

0.025 

0.23 

9.908 

2 0.001 

0.216 

0.028 

0.281 

0.039 

0.189 

0.031 

0.24 

0.037 

0.188 

0.028 

0.239 

8.862 

3 

 
 

0.045 

0.32 

0.033 

0.391 

0.085 

0.252 

0.023 

0.287 

0.081 

0.248 

0.018 

0.283 

4.928 

1  
 

 

(50,5) 

0.015 

0.179 

0.022 

0.214 

0.009 

0.164 

0.025 

0.197 

0.007 

0.164 

0.023 

0.196 

16.397 

2 0.014 

0.177 

0.03 

0.226 

0.01 

0.161 

0.032 

0.206 

0.009 

0.161 

0.031 

0.205 

15.359 

3 

 
 

0.032 

0.272 

0.039 

0.328 

0.071 

0.229 

0.035 

0.262 

0.068 

0.226 

0.031 

0.259 

6.354 

1  
 

 

(30,10) 

0.008 

0.206 

0.001 

0.249 

0.041 

0.184 

0.006 

0.216 

0.039 

0.183 

0.004 

0.215 

9.79 

2 0.017 

0.238 

0.005 

0.277 

0.053 

0.207 

0.011 

0.233 

0.05 

0.206 

0.007 

0.232 

8.202 

3 

 
 

0.021 

0.253 

0.008 

0.309 

0.06 

0.216 

0.011 

0.248 

0.057 

0.213 

0.007 

0.245 

6.895 

1  
 

 

(50,10) 

0.002 

0.16 

0.003 

0.186 

0.024 

0.149 

0.002 

0.171 

0.022 

0.148 

0.0005 

0.17 

16.331 

2 0.004 

0.174 

0.002 

0.21 

0.028 

0.16 

0.003 

0.19 

0.027 

0.16 

0.001 

0.189 

14.092 

 

3 

 

 0.018 

0.239 

0.011 

0.279 

0.049 

0.209 

0.013 

0.231 

0.047 

0.207 

0.009 

0.229 

8.667 

 
 

T = 0.6  
 

1 
 

 
 

(30,5) 

0.01 

0.189 

0.023 

0.237 

0.017 

0.171 

0.026 

0.214 

0.015 

0.17 

0.024 

0.213 

13.448 

2 0.008 

0.206 

0.033 

0.253 

0.022 

0.184 

0.035 

0.225 

0.02 

0.183 

0.032 

0.223 

11.91 

3 

 
 

0.043 

0.305 

0.059 

0.396 

0.081 

0.248 

0.045 

0.302 

0.077 

0.244 

0.04 

0.298 

5.885 

1  
 
 

(50,5) 

0.026 

0.165 

0.029 

0.197 

0.008 

0.154 

0.031 

0.186 

0.008 

0.153 

0.03 

0.185 

22.401 

2 0.022 

0.173 

0.033 

0.216 

0.003 

0.16 

0.035 

0.202 

0.004 

0.159 

0.033 

0.201 

20.957 

3 

 
 

0.019 

0.258 

0.038 

0.32 

0.056 

0.221 

0.036 

0.262 

0.054 

0.219 

0.033 

0.259 

7.657 

1  
 

 

(30,10) 

0.005 

0.176 

0.02 

0.214 

0.03 

0.161 

0.023 

0.193 

0.029 

0.161 

0.021 

0.192 

13.565 

2 0.015 

0.197 

0.033 

0.251 

0.045 

0.179 

0.035 

0.218 

0.043 

0.178 

0.032 

0.217 

10.774 

3 

 
 

0.02 

0.229 

0.042 

0.292 

0.054 

0.2 

0.039 

0.239 

0.051 

0.198 

0.035 

0.237 

8.426 

1  

 

(50,10) 

 

0.005 

0.136 

0.019 

0.167 

0.021 

0.13 

0.021 

0.157 

0.02 

0.129 

0.02 

0.157 

22.771 

2 0.013 

0.156 

0.021 

0.182 

0.031 

0.148 

0.024 

0.169 

0.03 

0.148 

0.022 

0.168 

19.338 

3 0.02 

0.216 

0.047 

0.282 

0.049 

0.193 

0.044 

0.238 

0.047 

0.192 

0.041 

0.236 

9.935 

c
 The first and the second row in each cell represent the average biases and root mean squared errors of 

1   

and 
2  respectively. 
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Table (2)
d
:  The average biases, root mean squared errors and average number of 

failures of the ML and Bayes estimates of 
1 2( , ) (1,0.8)    under different 

censoring scheme and different T 's. 
 

Scheme 

 

(n ,m)  

ML Estimates Bayes Estimates  

AJ  
1̂  2̂  1Sq  2Sq  

1lin  2lin  

T = 0.4 
 

1 
 

 
 

(30,5) 

0.019 

0.356 

0.044 

0.341 

0.037 

0.3 

0.015 

0.284 

0.042 

0.299 

0.011 

0.282 

15.497 

2 0.044 

0.397 

0.034 

0.362 

0.023 

0.322 

0.003 

0.296 

0.029 

0.32 

0.002 

0.294 

13.699 

3 
 

 

0.093 

0.593 

0.11 

0.541 

0.061 

0.376 

0.01 

0.349 
 

0.071 

0.372 

0.001 

0.344 

6.396 

1  

 

(50,5) 

0.0002 

0.283 

0.033 

0.281 

0.033 

0.256 

0.016 

0.251 

0.036 

0.255 

0.013 

0.25 

25.718 

2 0.003 

0.283 

0.014 

0.268 

0.038 

0.255 

0.002 

0.24 

0.042 

0.254 

0.004 

0.239 

23.571 

3 

 
 

0.066 

0.491 

0.08 

0.473 

0.046 

0.348 

0.013 

0.338 

0.054 

0.345 

0.006 

0.334 

8.517 

1  

 

(30,10) 

0.011 

0.346 

0.028 

0.304 

0.044 

0.294 

0.002 

0.255 

0.049 

0.293 

0.002 

0.254 

15.414 

2 0.012 

0.391 

0.044 

0.365 

0.059 

0.315 

0.005 

0.289 

0.065 

0.314 

0.0003 

0.286 

11.814 

3 

 
 

0.025 

0.48 

0.067 

0.45 

0.075 

0.349 

0.007 

0.32 

0.082 

0.347 

0.0004 

0.316 

8.915 

1  

 

(50,10) 

0.041 

0.241 

0.001 

0.215 

0.005 

0.266 

0.019 

0.24 

0.038 

0.241 

0.003 

0.216 

25.552 

2 0.004 

0.285 

0.027 

0.263 

0.036 

0.253 

0.008 

0.231 

0.039 

0.252 

0.005 

0.23 

21.616 

3 0.033 

0.458 

0.062 

0.415 

0.059 

0.343 

0.009 

0.307 

0.065 

0.341 

0.003 

0.304 

10.333 

T = 0.6 
 

1 
 

 
(30,5) 

0.016 

0.335 

0.022 

0.29 

0.029 

0.291 

0.001 

0.253 

0.033 

0.29 

0.002 

0.251 

19.786 

2 0.014 

0.346 

0.044 

0.321 

0.037 

0.295 

0.017 

0.272 

0.042 

0.294 

0.013 

0.27 

17.331 

3 

 
 

0.086 

0.584 

0.069 

0.509 

0.049 

0.389 

0.004 

0.342 

0.058 

0.385 

0.012 

0.338 

7.412 

1  

 

(50,5) 

0.005 

0.269 

0.021 

0.243 

0.022 

0.248 

0.009 

0.223 

0.024 

0.247 

0.007 

0.222 

33.072 

2 0.007 

0.275 

0.04 

0.262 

0.022 

0.251 

0.024 

0.237 

0.025 

0.25 

0.022 

0.236 

30.638 

3 
 
 

0.05 

0.467 

0.06 

0.412 

0.043 

0.348 

0.01 

0.309 

0.05 

0.346 

0.004 

0.306 

10.159 

1  

 

(30,10) 

0.015 

0.307 

0.01 

0.281 

0.03 

0.267 

0.01 

0.245 

0.034 

0.266 

0.013 

0.244 

19.705 

2 0.046 

0.373 

0.016 

0.326 

0.02 

0.302 

0.011 

0.269 

0.025 

0.3 

0.016 

0.268 

14.66 

3 

 
 

0.064 

0.485 

0.03 

0.414 

0.038 

0.347 

0.018 

0.307 

0.045 

0.344 

0.024 

0.305 

9.979 

1  

 

(50,10) 

 

0.007 

0.242 

0.003 

0.212 

0.02 

0.223 

0.008 

0.195 

0.022 

0.222 

0.01 

0.195 

32.847 

2 0.015 

0.26 

0.006 

0.236 

0.018 

0.234 

0.008 

0.213 

0.021 

0.233 

0.01 

0.212 

27.391 

3 0.066 

0.456 

0.028 

0.375 

0.025 

0.338 

0.012 

0.291 

0.031 

0.336 

0.017 

0.288 

11.467 

d
 The first and the second row in each cell represent the average biases and root mean squared errors of 

1   

and 
2  respectively. 
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Table (3)
e
:  The average 95% confidence lengths and the coverage probabilities 

1 2( , ) (0.4,0.6)    for different methods and different censoring scheme 

and different T 's. 
Scheme (n, m)  NA BA PB TB 

T = 0.4 

1  
 

 

(30,5) 

1  0.761 (86.8) 0.736 (98.4) 0.472 (87.8) 1.207 (76.6) 

2  
0.968 (90.2) 0.898 (94.5) 0.489 (91.4) 1.112 (81.4) 

2 
1  0.811 (84.8) 0.779 (98.1) 0.493 (91.2) 1.120 (75.8) 

2  
1.028 (91.8) 0.945 (96.2) 0.521 (93.5) 1.315 (79.7) 

 3 
1  1.154 (94.5) 1.034 (98.6) 0.653 (97.7) 1.401 (84.1) 

2  
1.392 (88.6) 1.183 (96.7) 0.801 (91.5) 1.751 (81.1) 

 

1  

 
 

(50,5) 

1  0.582 (83.9) 0.572 (87.9) 0.389 (86.3) 0.732 (79.8) 

2  
0.753 (92.1) 0.718 (94) 0.392 (93.3) 0.711 (88.9) 

2 
1  0.605 (86.4) 0.593 (88.8) 0.401 (87.5) 0.871 (71.5) 

2  
0.786 (91.7) 0.747 (93.2) 0.404 (92.1) 0.849 (79.6) 

3 
1  1.009 (91.2) 0.933 (98.1) 0.618 (94.4) 1.487 (85.8) 

2  
1.244 (89.9) 1.095 (95.1) 0.734 (93.2)   1.720 (76.1) 

 

1  

 
 

(30,10) 

1  0.774 (91.8) 0.745 (98) 0.470 (92.7) 1.328 (79.4) 

2  
0.948 (91.3) 0.881 (95.5) 0.486 (93.9) 1.121 (80.4) 

2 
1  0.855 (87.6) 0.813 (97.9) 0.531 (91.3) 1.368 (77.4) 

2  
1.042 (91.7) 0.954 (96.1) 0.573 (94.3) 1.227 (78.8) 

3 1  0.937 (87.1) 0.878 (98.6) 0.736 (96.4) 1.173 (71) 

2  
1.14 (89.1) 1.022 (96.6) 0.855 (95.4) 1.205 (80) 

 

1  

 
 

50,10 

1  0.601 (89.9) 0.586 (94.4) 0.369 (91.9) 0.769 (78.6) 

2  
0.738 (93.8) 0.705 (96.3) 0.372 (94.6) 0.658 (83.3) 

2 
1  0.647 (91.7) 0.629 (95.6) 0.411 (92.2) 0.910 (82.5) 

2  
0.793 (92.2) 0.753 (94.6) 0.418 (93.6) 0.774 (80.5) 

3 1  0.841 (89.6) 0.795 (97) 0.699 (95.90) 1.229 (83.3) 

2  
1.03 (91.7) 0.939 (97) 0.791 (96.7) 1.068 (83.8) 

T = 0.6 

1  

 
 

(30,5) 

1  0.646 (85.8) 0.631 (89.3) 0.409 (87.8) 0.868 (75.3) 

2  
0.831 (90) 0.785 (93.3) 0.416 (90.4) 0.803 (83.9) 

2 1  0.691 (83.7) 0.672 (93.1) 0.409 (92) 1.074 (78.4) 

2  
0.894 (91.8) 0.837 (93.6) 0.420 (92.8) 0.978 (85.5) 

3 

 
1  1.069 (89.9) 0.973 (97.8) 0.610 (90.8) 1.619 (71.5) 

2  
1.321 (87.9) 1.14 (95.2) 0.736 (94.7) 1.961 (78.1) 

 

1  

 
 

(50,5) 

1  0.49 (84.9) 0.485 (87.3) 0.328 (86.4) 0.543 (74.2) 

2  
0.649 (90.6) 0.627 (92.2) 0.331 (91.1) 0.585 (79) 

2 1  0.512 (84.8) 0.506 (86.3) 0.331 (85.2) 0.616 (70.4) 

2  
0.677 (88.9) 0.651 (90.9) 0.336 (90.2) 0.644 (76.5) 

3 1  0.906 (87.5) 0.853 (96.9) 0.544 (89.3) 1.606 (77.8) 

2  
1.134 (88.5) 

 

1.019 (93.7) 0.626 (91.7) 1.749 (84.6) 

1  

 
 

(30,10) 

1  0.666 (91.8) 0.647 (95.9) 0.412 (93.7) 0.812 (87) 

2  
0.833 (94.2) 0.787 (97.1) 0.419 (94.5) 0.719 (85.5) 

2 1  0.763 (90.6) 0.732 (96.7) 0.475 (95.1) 0.999 (82) 

2  
0.953 (94.4) 0.883 (96.2) 0.491 (94.8) 0.861 (80.8) 

3 1  0.869 (89.6) 0.819 (97.9) 0.716 (95.5) 1.076 (81.2) 

2  
1.089 (93.3) 0.984 (96.1) 0.810 (96) 1.017 (84.5) 

 

1  

 
1  0.52 (92.3) 0.51 (94.9) 0.336 (94) 0.522 (82.6) 

2  
0.647 (94.6) 0.624 (96.1) 0.340 (95.3) 0.496 (86.3) 
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Continue Table (3):
 

 

2 (50,10) 
1  

0.571 (91.5) 0.557 (94) 0.343 (92.4) 0.665 (85.6) 

2  
0.705 (93.7) 0.676 (95.9) 0.349 (95.5) 0.606 (81.1) 

3 
1  0.808 (90.5) 0.766 (96.5) 0.621 (93.5) 1.138 (80.2) 

2  
1.014 (93.2) 0.927 (95.7) 0.697 (94.2) 1.113 (80.1) 

 
 

e
 The first and second rows represent the average 95% confidence lengths of asymptotic confidence 

intervals, the credible intervals with respect to the gamma prior distributions, Boot-p and Boot-t confidence 

intervals of 
1   and 

2  respectively, and the corresponding coverage probabilities are reported within 

brackets. 

 

Table (4)
f
: The average 95% confidence lengths and the coverage probabilities of 

1 2( , ) (1,0.8)    for different methods and different censoring scheme 

and different T 's. 
Scheme (n, m)  NA BA PB TB 

T = 0.4 

1  

 

 

(30,5) 

1  1.346 (92.5) 1.197 (94.6) 0.697 (91.7) 1.317 (84.2) 

2  
1.221 (91.4) 1.097 (94.2) 0.693 (92.3) 1.49 (80.9) 

2 
1  1.452 (92.6) 1.271 (94.5) 0.750 (92.8) 1.372 (75) 

2  
1.292 (91.4) 1.146 (94.5) 0.743 (93) 1.503 (82.3) 

3 
1  2.209 (90.3) 1.667 (95.2) 1.284 (90.5) 3.04 (79) 

2  
2.009 (91.4) 1.547 (98.1) 1.286 (91.9) 3.081 (87.9) 

 

1  

 

 

(50,5) 

1  1.032 (92.7) 0.961 (94.5) 0.575 (94.3) 0.923 (87.7) 

2  
0.941 (92.9) 0.881 (94.7) 0.569 (93.6) 1.016 (86.4) 

2 
1  1.07 (92) 0.991 (94.4) 0.594 (92.3) 0.951 (86.8) 

2  
0.966 (91.4) 0.901 (94.3) 0.590 (93.5) 1.299 (84.9) 

3 
1  1.882 (92.3) 1.52 (95.3) 1.108 (94.8) 2.617 (84) 

2  
1.699 (91.8) 1.397 (97.3) 1.038 (94.4) 2.766 (81.2) 

 

1  

 

 

(30,10) 

1  1.338 (92.8) 1.191 (94.9) 0.718 (92.8) 1.178 (57.8) 

2  
1.207 (93.2) 1.086 (96.3) 0.715 (94.3) 1.346 (65.6) 

2 1  1.529 (91.8) 1.316 (95.5) 0.847 (95.1) 1.531 (62.5) 

2  
1.391 (93) 1.212 (96.3) 0.832 (93.8) 1.825 (67.3) 

3 1  1.784 (91.9) 1.457 (95) 1.294 (94.45) 1.915 (79.7) 

2  
1.632 (91.9) 1.353 (96) 1.226 (95.4) 2.186 (83.1) 

 

1  

 

 

50,10 

1  1.031 (92.4) 0.959 (94.2) 0.561 (92.7) 0.793 (82.7) 

2  
0.934 (93.6) 0.874 (96.1) 0.552 (94.9) 0.840 (81.2) 

2 1  1.13 (93.4) 1.037 (95.1) 0.636 (94.3) 0.994 (80.9) 

2  
1.023 (93.1) 0.946 (95.7) 0.627 (93.4) 1.076 (88.7) 

3 1  1.701 (92.5) 1.415 (95.2) 1.227 (92.8) 2.189 (82.2) 

2  
1.52 (91.2) 1.286 (94.2) 1.152 (93.8) 2.297 (82.2) 

T = 0.6 
 

1  

 
 

(30,5) 

1  1.184 (92.2) 1.079 (93.2) 0.626 (93.1) 1.075 (88.4) 

2  
1.065 (92.4) 0.978 (95.2) 0.615 (93.9) 1.143 (85.8) 

2 1  1.269 (92.4) 1.141 (93.7) 0.651 (92.9) 1.206 (86.0) 

2  
1.156 (92.5) 1.048 (95.1) 0.638 (92.7) 1.330 (83.7) 

3 

 
1  2.028 (89.9) 1.587 (94.3) 1.321 (90.4) 2.857 (77.2) 

2  
1.802 (90.2) 1.446 (97.7) 1.206 (95.8) 2.749 (70.7) 

1 

 

2 

 

 

(50,5) 

1  0.912 (92.2) 0.862 (93.1) 0.509 (92.7) 0.783 (89.8) 

2  
0.825 (93.3) 0.784 (94.1) 0.502 (93.3) 0.828 (87.8) 

1  0.953 (92.6) 0.896 (94) 0.542 (92.8) 0.821 (84.3) 
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Continue Table (4):
 

 

  
2  

0.872 (93.1) 0.823 (94.1) 0.533 (94) 0.888 (83.1) 
3 

1  1.701 (91.6) 1.42 (94.4) 1.025 (93.4) 2.225 (81.8) 

2  
1.533 (91.7) 1.301 (96.6) 0.961 (94.7) 2.366 (88.4) 

 

1  

 
 

(30,10) 

1  1.186 (94) 1.08 (96.2) 0.624 (95.7) 1.111 (89.5) 

2  
1.056 (92.3) 0.971 (94.9) 0.611 (93.7) 1.142 (85.4) 

2 
1  1.394 (93) 1.229 (94.7) 0.767 (94.5) 1.341 (84.5) 

2  
1.232 (91.8) 1.101 (95.4) 0.743 (92.4) 1.358 (81.8) 

3 
1  1.728 (93.3) 1.429 (95.6) 1.323 (94.1) 1.973 (89.2) 

2  
1.515 (90.8) 1.28 (95.9) 1.233 (91.9) 1.939 (88.5) 

 

1  
 

 

(5010) 

1  0.916 (93) 0.865 (94.3) 0.521 (93.5) 0.787 (84.6) 

2  
0.817 (93.8) 0.776 (94.8) 0.511 (94.3) 0.793 (81.6) 

2 
1  1.009 (94.5) 0.942 (95.5) 0.522 (95) 0.887 (80.7) 

2  
0.897 (93.5) 0.843 (94.8) 0.515 (94.1) 0.895 (89.5) 

3 1  1.618 (91.5) 1.368 (93.9) 1.245 (92.8) 2.031 (89) 

2  
1.418 (90.9) 1.222 (95.2) 1.148 (93.5) 1.980 (89.8) 

 

f
 The first and second rows represent the average 95% confidence lengths of asymptotic confidence 

intervals, the credible intervals with respect to the gamma prior distributions, Boot-p and Boot-t confidence 

intervals of 
1   and 

2  respectively, and the corresponding coverage probabilities are reported within 

brackets. 
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