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Abstract 

We introduce in this paper a new six-parameters generalized version of the generalized linear failure rate 

(GLFR) distribution which is called McDonald Generalized Linear failure rate (McGLFR) distribution. The 

new distribution is quite flexible and can be used effectively in modeling survival data and reliability 

problems. It can have a constant, decreasing, increasing, and upside down bathtub-and bathtub shaped 

failure rate function depending on its parameters. It includes some well-known lifetime distributions as 

special sub-models. Some structural properties of the new distribution are studied. Expressions for the 

density, moment generating function, conditional moments, mean deviation, Bonferroni and Lorentz curves 

also are obtained. Moreover we discuss maximum likelihood estimation of the unknown parameters of the 

new model. 

Keywords:  Generalized Linear Failure Rate, Moment generating function, Moments, 

Maximum likelihood estimation.  

1.   Introduction 

In analyzing lifetime data one often uses the exponential, Rayleigh, linear failure rate or 

generalized exponential distributions. It is well known that exponential can have only 

constant hazard function whereas Rayleigh, linear failure rate and generalized 

exponential distribution can have only monotone (increasing in case of Rayleigh or linear 

failure rate and increasing decreasing in case of generalized exponential distribution) 

hazard functions. Unfortunately, in practice often one needs to consider non-monotonic 

function such as bathtub shaped hazard function also, see, for example, Lai et al. (2001). 

The Generalized linear failure rate distribution generalizes both these distributions which 

may have non-increasing hazard function also. Also, the Weibull distribution, having the 

exponential, Rayleigh as special cases,is very popular distribution for modeling lifetime 

data and for modeling phenomenon with monotone failure rates, when modeling 

monotone hazard rates, the Weibull distribution may be an initial choice because of its 

negatively and positively skewed density shapes. However, the Weibull distribution does 
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not provide a reasonable parametric fit for modeling phenomenon with non-monotone 

failure rates such as the bathtub-shaped and the unimodal failure rates which are common 

in reliability and biological studies. The models that present bathtub-shaped failure rate 

are very useful in survival analysis. But, according to Nelson (1982), the distributions 

presented in lifetime literature with this type of data, as the distributions proposed by 

(1980), are sufficiently complex and, therefore, difficult to be modeled. Later, other 

works had introduced new distributions for modeling bathtub-shaped failure rate. For 

example, Rajarshi, S., Rajarshi, M (1988) presented a review of these distributions and 

Haupt and Schabe (1992) considered a lifetime model with bathtub failure rates.  

 

Sarhan and Kundu (2009) introduced generalized linear failure rate , the new distribution 

due to its flexibility in accommodating all the forms of the hazard rate function can be 

used in a variety of problems for modeling lifetime data. Another important characteristic 

of the distribution is that it contains, as special sub-models, the generalized exponential 

distribution, generalized Rayleigh, Linear failure rate, exponential, and Rayleigh 

distributions.  

 

A random variable X  is said to have the generalized linear failure rate distribution 

)(GLFR  with three parameters ),,(   if its probability density function is given by 
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while the cumulative distribution function is given by 
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where  ,  are scale parameters of the distribution whereas the parameter   denotes the 

shape parameters.  

 

The aim of this paper is extend the )(GLFR  distribution by introducing three extra shape 

parameters to define a new distribution refereed to as the McDonald generalized linear 

failure rate )(McGLFR  distribution. The role of the three additional parameters is to 

introduce skewness and to vary tail weights and provide greater flexibility in the shape of 

the generalized distribution and consequently in modeling observed data. It may be 

mentioned that although several skewed distribution functions exist on the positive real 

axis, not many skewed distributions are available on the whole real line, which are easy 

to use for data analysis purpose. The main idea is to introduce three shape parameters, so 

that the )(McGLFR  distribution can be used to model skewed data, a feature which is 

very common in practice. 

1.1   Mc-Donald Generalized Distribution 

For an arbitrary parent cdf )(xG . The probability density function (pdf) )(xf  of the new 

class of distributions called the Mc-Donald generalized distributions (denoted with the 

prefix " Mc" for short) is defined by 
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where 0>0,> ba  and 0>c  are additional shape parameters . ( See Corderio et al. 

(2012) for additional details). Note that )(xg  is the pdf of parent distribution , 

dx

xdG
xg

)(
=)( . The class of distributions (3) includes as special sub-models the beta 

generalized (Eugene et al. (2002)) for 1=c  and Kumaraswamy (Kw) generalized 

distributions (Cordeiro & Castro, (2011)) for 1=a . For random variable X  with density 

function (3), we write ),,( cbaGMcX  . The probability density function (3) will be 

most tractable when )(xG  and )(xg  have simple analytic expressions. The 

corresponding cumulative function for this generalization is given by 
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=),(    denotes the incomplete beta function ratio 

(Gradshteyn & Ryzhik, (2000)). Equation (4) can also be rewritten as follows 
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is the well-known hypergeometric functions which are well established in the literature 

(see, Gradshteyn and Ryzhik (2000)). Some mathematical properties of the cdf )(xF  for 

any Mc- G distribution defined from a parent )(xG  in equation (5), could, in principle, 

follow from the properties of the hypergeometric function, which are well established in 

the literature (Gradshteyn and Ryzhik, 2000, Sec. 9.1). One important benefit of this class 

is its ability to model skewed data that cannot properly be fitted by many other existing 

distributions. Mc- G family of densities allows for higher levels of flexibility of its tails 

and has a lot of applications in various fields including economics, finance, reliability, 

engineering, biology and medicine.  

 

The hazard function (hf) and reverse hazard functions (rhf) of the Mc-G distribution are 

given by 
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and 
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respectively. Recently Cordeiro et al. (2012) presented results on the McDonald normal 

distribution, Cordeiro et al. (2012) proposed McDonald Weibull distribution, and 

Francisco et al. (2012) obtained the statistical properties of the Mc   and applied the 

model to reliability data. Oluyede and Rajasooriya (2013) introduced the Mc-Dagum 

distribution and its Statistical Properties with Applications.  
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The rest of the article is organized as follows. In Section 2, we define the cumulative, 

density and hazard functions of the McGLFR  distribution and some special cases. 

Section 3 includes the statistical properties such as thr  moment , moment generating 

function . The distribution of the order statistics are proposed in Section 4. Least squares 

and weighted least squares estimators introduced in Section 5. Finally, maximum 

likelihood estimation of the parameters is determined in Section 6. 

2.   McDonald Generalized Linear Failure Rate Distribution 

In this section we studied the seven parameter McDonald generalized linear failure rate 

)(McGLFR  distribution. Using )(xG  and )(xg  in (3) to be the cdf and pdf of (1) and (2). 

The pdf of the McGLFR  distribution is given by 
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where  ,  are scale parameters the other positive parameters  , a  ,b  and c  are shape 

parameters, and ),,,,,,(= cbax  . The corresponding cdf of the McGLFR  

distribution is given by 
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also, the cdf can be written as follows  
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where 
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Figures 0 and 1 illustrates some of the possible shapes of the pdf and cdf of the McGLFR 

distribution for selected values of the parameters ,,,, cba  and  , respectively.  
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Figure  1:   The pdf’s of various McGLFR distributions for values of parameters: 

2.58;1;1.5;2;0.5;0.6;0.=0.6;0.7;3;0.4;0.5;0.1;0.2;0.=

2.5,=2.5,=2.5,2;2.2,2.4;1;1.2;1.5;=0.8;0.9;4;0.5;0.7;0.5;0.3;0.=

cb

a
  

with color shapes purple, blue, orange, red, pink, green and black, respectively. 

 

Figure  2: The pdf’s of various McGLFR distributions for values of parameters: 

2.58;1;1.5;2;0.5;0.6;0.=0.6;0.7;3;0.4;0.5;0.1;0.2;0.=

2.5,=2.5,=2.5,2;2.2,2.4;1;1.2;1.5;=0.8;0.9;4;0.5;0.7;0.5;0.3;0.=

cb

a
  

with color shapes purple, blue, orange, red, pink, green and black, respectively. 
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The hazard rate function and reversed hazard rate function of the new distribution are 

given by 
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and 
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respectively. 

Figures 3 and 4 illustrates some of the possible shapes of the survival funvction and 

hazard function of the McGLFR distribution for selected values of the parameters 

,,,, cba  and  , respectively. 



McDonald Generalized Linear Failure Rate Distribution 

Pak.j.stat.oper.res.  Vol.X  No.3 2014  pp267-288 273 

 

Figure 3:  The survival function’s of various McGLFR distributions for values of 

parameters: 

2.58;1;1.5;2;0.5;0.6;0.=0.6;0.7;3;0.4;0.5;0.1;0.2;0.=

2.5,=2.5,=2.5,2;2.2,2.4;1;1.2;1.5;=0.8;0.9;4;0.5;0.7;0.5;0.3;0.=

cb

a
  

with color shapes purple, blue, orange, red, pink, green and black, respectively.   

 

Figure 4:  The hazard function’s of various McGLFR distributions for values of 

parameters: 

2.58;1;1.5;2;0.5;0.6;0.=0.6;0.7;3;0.4;0.5;0.1;0.2;0.=2.5,=2.5,=

2.5,2;2.2,2.4;1;1.2;1.5;=0.8;0.9;4;0.5;0.7;0.5;0.3;0.=

cba


  

with color shapes purple, blue, orange, red, pink, green and black, respectively. 
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2.1  Submodels 

The McDonald generalized linear failure rate )(McGLFR  distribution is very flexible 

model that approaches to different distributions when its parameters are changed. The 

McGLFR  distribution contains as special- models the following well known 

distributions. If X  is a random variable with pdf (7), using the notation 

),,,,,(( cbaGMcX   then we have the following cases.  

  Generalized Linear Failure Rate distribution: For 1,=== cba the McGLFR  

distribution reduces to GLFR  distribution which introduced by Sarhan and 

Kundu (20).  

  Beta Generalized Linear Failure Rate distribution: For 1,=c the McGLFR  

distribution reduces to BGLFR  distribution.  

  Beta Linear Failure Rate distribution. For 1,==c the McGLFR  distribution 

reduces to BLFR  distribution which introduced by Jafari and Mahmoudi (2012).  

  Kumaraswamy Generalized Linear Failure Rate distribution: For 1,=a the 

McGLFR  distribution reduces to KGLFR  distribution which introduced by 

Elbatal (2013).  

  McDonald Generalized Exponential distribution: For 0= , the McGLFR  

distribution reduces to McGE  distribution.  

  Generalized Exponential distribution: For 0= , and 1,=== cba the 

McGLFR  distribution reduces to GE  distribution which introduced by Gupta and 

Kundu (1999).  

  McDonald Exponential distribution: For 0= , and 1=  ,the McGLFR  

distribution reduces to McE  distribution.  

  Beta Exponential distribution: For 0= , and 1== c  ,the McGLFR  

distribution reduces to BE  distribution.  

  Kumaraswamy Exponential distribution: For 0= , and 1== a  ,the 

McGLFR  distribution reduces to KE  distribution.   

  McDonald Generalized Rayleigh distribution: For 0= , the McGLFR  

distribution reduces to McGR  distribution.  

  Generalized Rayleigh distribution: For 0= , and 1,=== cba the McGLFR  

distribution reduces to GR  distribution which introduced by Kundu and Rakab 

(2005).  

  McDonald Rayleigh distribution: For 0= , and 1=  , the McGLFR  

distribution reduces to McR  distribution. 

3.   Statistical Properties 

In this section we study the statistical properties of the )(McGLFR  distribution, 

specifically moments and moment generating function .Moments are necessary and 
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important in any statistical analysis, especially in applications. It can be used to study the 

most important features and characteristics of a distribution (e.g., tendency, dispersion, 

skewness and kurtosis).   

Theorem 3.1  

The r th moment of )(McGLFR  distribution, 1,2,...=r . is given by 
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Proof. 

We start with the well known definition of the r th moment of the random variable X  

with probability density function )(xf  given by 
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thus we get 
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Again, the binomial series expansion of 
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we obtain 
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but the series expansion of 
)2
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substituting from (17) into (16), yields 
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the integral in (18) can be computed as follows 
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wich completes the proof.  

Theorem 3.2.  

The moment generating function of )(McGLFR  distribution is given by 
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Proof. 

We start with the well known definition of the )(tM  of the random variable X  with 

probability density function )(xf  given by 
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Substituting from (7) into the above relation, we get 
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using the binomial series expansion given by (15) and (17) we get 
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which completes the proof. 
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3.1  Conditional moments 

For lifetime models , it is also of interest to find the conditional moments and the mean 

residual liftime function. The conditional moments for )(McGLFR  distribution is given 

by 
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using (14), (15) and (17) , Equation (24) becomes 
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The mean residual lifetime function is given by 
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3.2   Mean deviation 

The amount of scatter in a population is evidently measured to some extent by the totality 

of deviations from the mean and median. These are known as the mean deviation about 

the mean and the mean deviation about the median are defined by  
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Also  
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we can calculate Equations (26) and (27) as follows, from equation (12) , when 1=r  we 

get  
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using (14), (15) and (17) , the formula above imply 
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so that 
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where ),( bs  is the upper incomplete gamma function given by 

dtetbs ts
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3.3   Bonferroni and Lorenz Curves 

In this section we proposed the Bonferroni and Lorenz Curves. The Bonferroni and 

Lorenz curves (Bonferroni 1930) and the Bonferroni and Gini indices have applications 

not only in economics to study income and poverty, but also in other fields like 

reliability, demography, insurance and medicine. The Bonferroni and Lorenz curves are 

defined by 
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and 
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where ),( b  is the lower incomplete gamma function given by  
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4.   Distribution of the order statistics 

In this section, we derive closed form expressions for the pdfs of the thr  order statistic of 

the )(McGLFR  distribution, also, the measures of skewness and kurtosis of the 

distribution of the thr  order statistic in a sample of size n  for different choices of rn;  are 

presented in this section. Let nXXX ,...,, 21  be a simple random sample from )(McGLFR  

distribution with pdf and cdf given by (7) and (9), respectively. Let nXXX  ,...,21  

denote the order statistics obtained from this sample. We now give the probability density 

function of nrX : , say ),(: xf nr  and the moments of nrX :  nr 1,2,...,=, . Therefore, the 

measures of skewness and kurtosis of the distribution of the nrX :  are presented. The 

probability density function of nrX :  is given by 

    ),(),(1),(
1),(

1
=),(

1

:  xfxFxF
rnrB

xf
rnr

nr





   (30) 

where ),( xF  and ),( xf  are the cdf and pdf of the )(McGLFR  distribution given by 

(7), (??), respectively, and B  (.,.)  is the beta function, since 1<),(<0 xF , for 0>x , 

by using the binomial series expansion of   rn
xF


 ),(1  , given by 

    ,),(1)(=),(1
0=

j
j

rn

j
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xF

j
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xF 







 
 




     (31) 

we have 

  ),,(),(1)(=),(
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     (32) 

substituting from (7) and (8) into (32), we can express both ),(: xf nr  in terms of the 

incomplete beta function and the thk  ordinary moment of the thr  order statistics nrX :   say 

)( :

k

nrXE  as a liner combination of the thk  moments of the )(McGLFR  distribution with 

different shape parameters. Therefore, the measures of skewness and kurtosis of the 

distribution of nrX :  can be calculated. 
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6.   Estimation and Inference 

In this section we determine the maximum likelihood estimates )(MLEs  of the 

parameters of the ),( xMcGLFR  distribution from complete samples only. Let 

nXXX ,...,, 21  be a random sample from ),( xMcGLFRX   with observed values 

nxxx ,...,, 21  and let Tcba ),,,,,(=   be the vector of the model parameters. The log 

likelihood function of (7) is defined as 

     )(log)(log)(logloglog=)( bnanbanncnL    

   2

1=1=1= 2
log i

n
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i

n

i
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n
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2
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2
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xxn
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  (33) 

 

Differentiating )(L  with respect to each parameter ba,,,,   and c  and setting the 

result equals to zero, we obtain maximum likelihood estimates. The partial derivatives of 

)(L  with respect to each parameter or the score function is given by: 
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where (.)  is digamma function )(x  =  ,
)(

)(
=)(log

x

x
x

dx

d
'




 and the MLE of the 

parameters ,,,,, ba  and c , say ,

  ,


  ,


  


a  , ,


b and 


c are obtained by solving the 

following equations, 0.=
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There is no closed 

form solution to these equations, so numerical technique must be applied.  

 

These non-linear can be routinely solved using Newton's method or fixed point iteration 

techniques. The subroutines to solve non-linear optimization problem are available in R 

software namely optim(), nlm() and bbmle() etc. We used nlm() package. 

7.   Application 

Now we use a real data set to show that the McGLFR distribution can be a better model 

than the GLFR distribution. 

 

We work with nicotine measurements made from several brands of cigarettes in 1998. 

The data have been collected by the Federal Trade Commission which is an independent 

agency of the US government, whose main mission is the promotion of consumer 

protection. 

 

The report entitled tar, nicotine, and carbon monoxide of the smoke of 1206 varieties of 

domestic cigarettes for the year of 1998 available at http://www.ftc.gov/reports/tobacco 

and consists of the data sets and some information about the source of the data, smoker’s 

behaviour and beliefs about nicotine, tar and carbon monoxide contents in cigarettes. The 

free form data set can be found at http://pw1.netcom.com/ rdavis2/smoke.html. 

 

The site http://home.att.net/ rdavis2/cigra.html contains 384=n  observations. We 

analysed data on nicotine, measured in milligrams per cigarette, from several cigarette 

brands. Some summary statistics for the nicotine data are as follows: mean = 0.852, 

median = 0.9, minimum = 0.1 and maximum = 2.  
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Table 1: Estimated parameters of the McGLFR, GLFR, Rayleigh and 

Transmuted Rayleigh distribution for the nicotine measurements data. 

Model   Parameter 

Estimate  

 );( x    

McGLFR 0.571=â   110.970 

6.259=b̂  

2.234=ĉ  

1.369=̂  

 0.195=̂   

0.826=̂  

GLFR 2.029=̂   117.575  

 0.325=̂   

2.921=̂  

Transmuted  

Rayleigh  
 0.555=̂    121.224 

   0.771=ˆ    

Rayleigh   0.647=̂    142.357 

 

The LR test statistic to test the hypotheses 1===:0 cbaH  versus 

1=1=1=:1  cbaH  is 
2

3;0.05=7.815>13.21=  , so we reject the null hypothesis.  

 

Figure  5: Empirical, fitted McGLFR, GLFR, Rayleigh, and transmuted Rayleigh cdf of 

the nicotine measurements data.  
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Table 2:   Criteria for comparison. 

Model   KS   2    AIC   AICC  

McGLFR   0.104  221.94  233.94  234.187  

GLFR   0.114  235.15  241.15   241.220  

TRayleigh   0.124  242.448   246.448   243.445  

Rayleigh   0.184  284.714   286.714   285.714  

 

In order to compare the two distribution models, we consider criteria like KS 

(Kolmogorow Smirnow), 2 , AIC (Akaike information criterion), and AICC (corrected 

Akaike information criterion), for the data set. The better distribution corresponds to 

smaller KS, 2 , AIC and AICC values:  

,
1

1)(2
=,22=






kn

kk
AICAICCkAIC   

where k  is the number of parameters in the statistical model, n  the sample size and   is 

the maximized value of the log-likelihood function under the considered model. Table 1 

shows the MLEs under both distributions, Table 2 shows the values of KS, 2 , AIC, 

and AICC, values. The values in Table 2 indicate that the McGLFR distribution leads to a 

better fit than the GLFR distribution. 

8.   Conclusion 

Here we propose a new model, the so-called the McGLFR distribution which extends the 

GLFR distribution in the analysis of data with real support. An obvious reason for 

generalizing a standard distribution is because the generalized form provides larger 

flexibility in modeling real data. We derive expansions for the moments and for the 

moment generating function. The estimation of parameters is approached by the method 

of maximum likelihood, also the information matrix is derived. We consider the 

likelihood ratio statistic to compare the model with its baseline model. An application of 

the McGLFR distribution to real data show that the new distribution can be used quite 

effectively to provide better fits than the GLFR distribution.  
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Appendix 

The elements of Hessian matrix: 
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