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Abstract 

Three different selection procedures namely RML, S and F-procedure are reviewed with application to 

exponential, Weibull, Pareto, and Finite range models. Some inaccurate results were discovered in the 

article of Pandy et al. (1991), it will be illustrated and modified. A simulation study is developed to 

numerically compare between the three procedures by obtaining the probability of correct selection. 
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1.   Introduction 

To model the time to failure data for estimating reliability, several families of probability 

distributions are commonly used. In this paper, two pairs of distributions are considered: 

firstly, the Weibull and exponential distributions; secondly, the finite range and Pareto 

distributions. The problem that we consider in this article may be described as follows: 

 

Suppose that we have a complete random sample 1 2, ,..., nT T T  as a life time data on a 

parent random variable T with distribution function F . It is required to decide that F  is 

a member of one of a set of separate families of distribution functions say 1 2, ,..., kF F F  , 

without specifying the actual values of all or some parameters of the model. 

Consequently, we require a selection rule for deciding which of these k  families best fits 

the sample. Practically, if 2k  , we would like to choose between the two hypotheses 

  0 1 2: , ,..., nH t t t   was sampled from 1F  

Versus  1 1 2: , ,..., nH t t t   was sampled from 2F . 

 

The concept of separate family of probability distributions was introduced by Cox (1961) 

who considers this problem from the hypothesis testing viewpoint. Atkinson (1970) 

considered this problem from the discrimination viewpoint in which the two hypotheses 

are treated symmetrically. Dumonceaux et al. (1973) proposed the use of the ratio of the 

maximized likelihoods (RML) statistic and applied it on discriminating between normal 

and Cauchy distributions, and between normal and exponential distributions. 

Dumonceaux and Antle (1973) developed the application of this approach to discriminate 

between lognormal and Weibull distributions. Bain and Engelhardt (1980) recommended 

a procedure based on the ratio of the maximized likelihoods statistic (RML-procedure) in 

choosing between Weibull and gamma model. Gupta and Kundu (2003, 2004) derived 
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the asymptotic distributions of the RML statistic under null hypotheses in discriminating 

between generalized exponential and Weibull models and between generalized 

exponential and gamma models. Kundu et al. (2005) derived the asymptotic distributions 

of the RML statistic in discriminating between generalized exponential and log-normal 

models. In addition, S-procedure has been proposed by Quesenberry and Kent (1982) to 

choose among exponential, gamma, Weibull, and lognormal models. Also, Pandey et al. 

(1991) derived F-procedure to choose between exponential and Weibull models; and 

between finite range and Pareto models. 

 

The present paper deals exclusively with discrimination between exponential and Weibull 

distributions; and between finite range and Pareto distributions. Their densities are given 

in table I where   and   are the scale and shape parameters of each model respectively. 

 

It is necessary to point out that the exponential and Weibull models are two important 

failure models used frequently in reliability. Since the exponential distribution is a special 

case of the Weibull distribution, then we need to develop a method to discriminate 

between them. In our case of study, the exponential model has only a scale parameter, but 

the Weibull model has a scale and a shape parameter. Thus, the Weibull model is more 

powerful to fit any data drawn from the exponential model in case of unknown Weibull 

shape parameter. In other words, it isn't useful to discriminate between exponential and 

Weibull models in case of unknown Weibull shape parameter. 

 

The finite range and Pareto models have a common property that the domain of their 

random variables depends on the scale parameters. This common property makes 

discriminating between the two models so difficult, therefore many methods were 

developed to discriminate between them. 

 

A comparison among different selection procedures is done numerically by obtaining 

probability of correct selection (PCS), which is defined as the probability that a selection 

procedure leads to select the correct distribution. 

2.   Ratio of Maximized Likelihoods (RML)-Procedure 

Dumonceaux et al. (1973) proposed the ratio of the maximized likelihoods (RML) 

statistic, which is given by 

 
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where 1L  and 2L  are the likelihood functions for 1F  and 2F  with vectors of parameters   

and   respectively and ̂  and ̂  are vectors of the maximum likelihood estimators for 

the parameters. This formula can be modified easily to be on the form of 
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Bain and Engelhardt (1980) recommended a procedure based on the ratio of the 

maximized likelihoods statistic (called RML-Procedure) in choosing between two 
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models, where the acceptance or rejection of any hypothesis depends only on the value of 

the RML statistic. In practice, 1F  best fits data if the RML  statistic is greater than one 

(equivalent to 0  ), otherwise 2F  best fits data. 

 

To discriminate between exponential and Weibull models using RML-procedure, suppose 

that the unknown scale parameter of exponential distribution is denoted by e . Also, the 

unknown scale and known shape parameters of the Weibull distribution are denoted by 

w  and *

w ; respectively. Pandey et al. (1991) obtained the following natural logarithm 

of the ratio of the maximized likelihoods 

         * * *

1

ˆ ˆ 1
n

w w e w w i

i

n n n n n t     


     ,   (1) 

where ˆ
e  and ˆ

w  are the maximum likelihood estimators of e  and w , respectively. 

Using equation (1) the exponential model is selected if 0  , otherwise if 0   the 

Weibull model is selected. 

 

To discriminate between the Finite range and Pareto models using RML-procedure, 

suppose that the unknown scale parameter and unknown shape parameter of finite range 

distribution are denoted by fr  and fr  respectively. Also, the unknown scale and 

unknown shape parameters of the Pareto probability distribution are denoted by 
p  and 

p  respectively. Pandey et al. (1991) obtained the following natural logarithm of the 

ratio of the maximized likelihoods 
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where, ˆ
fr , ˆ

fr , ˆ
p , and ˆ

p  are the maximum likelihood estimators of the parameters 

fr , fr , 
p , and 

p  respectively. Using equation (2) the finite range model is selected if 

0  , otherwise if 0   the Pareto model is selected. 

3.   S-Procedure 

Quesenberry and Kent (1982) used a selection procedure based on statistics that are 

invariant under scale transformations of the data for choosing between the hypotheses 

mentioned in section 1. They found that their statistic has the property of being 

independent of the actual values of the scale parameter. The proposed selection rule is to 

select a distribution family iF  by obtaining the S statistic for each family. The S statistic 

is given by  

   
1

1 2( , ,..., ) n

i i n

t

S f t t t d      . 

 

If 2k  ; the distribution family of 1F  is selected when 1 2( ) ( )n S n S , otherwise the 

distribution family of 2F  is selected. 
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To discriminate between the exponential and Weibull models using S-procedure, 

Quesenberry and Kent (1982) obtained the natural logarithm of S statistic for the 

exponential distribution as 

 
1

( ) ( )
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e i

i

n S n n n n t


 
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and for the Weibull distribution as 
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Thus the exponential model is selected if ( ) ( )e wn S n S , otherwise the Weibull model 

is selected. 

 

To discriminate between the Finite range and Pareto models using S-procedure, Pandey 

et al. (1991) obtained the natural logarithm of S statistic for the Pareto distribution as 

     
1
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n
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Pandey et al. (1991) gave the following incorrect formula of the logarithm of the S 

statistic of Finite range distribution at page 1379 
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But the correct formula is  
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That can be proved as follows: 

 

Proof :- 

Using the Finite range pdf given in table I 
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then, the logarithm of S is 
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which proves our formula. 

 

Thus the Pareto model is selected if ( ) ( )p frn S n S , otherwise the finite range model is 

selected. 

4.   F-Procedure 

Pandey et al. (1991) proposed the F-procedure for choosing between the hypotheses 

mentioned in section 1. The distribution families 1F  and 2F  are fitted using the regression 

equation of the form 

   y a bx  , 

as follows: 

 

Try to obtain a linear function in t , ( )n t  or ( ( ))n n t  using the reliability function 

( )R t , the cumulative hazard rate function ( )H t  or their logarithmic transformations. 

This linear function is equated by the right hand side of the regression equation, a bx , 

to define X  as some function of failure time T (i.e. ( )X T ) and a  and b  are 

functions in parameters. As a result, values of dependent variable 1 2, ,..., nx x x  are 

calculated from the sample observations 1 2, ,..., nt t t  [hint: use ( )i ix t ]. After that, 

equating the left hand side, y ,  by the corresponding empirical estimation of the right 

hand side which is a function of ( )R t  or ( )H t . Then, calculate the corresponding 

1 2, ,..., ny y y . Finally, the F-statistic is computed according to the following formula: 

  1
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Practically, both 1F  and 2F  are fitted to the sample data by calculated F-statistics of 1  

and 2  respectively. Then F-procedure is proposed as: select iF  if 1 2max( , )i   ,

1,2i   . Practically, distribution family of 1F  is selected when 1 2   otherwise 

distribution family of 2F  is selected. 

 

To discriminate between exponential and Weibull models using F-procedure, Pandey et 

al. (1991) formulated their regression equation to get with exponential 
j jx t , and the  

 ( )j n

n j
y n R t n

n

 
     

 
, and with Weibull ( )j jx n t , and 

 ( )j n

n j
y n H t n n
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   
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  
 for  1,...,j n . By using equation (3) to obtain e  

and w  the exponential model is selected if e w  , while the Weibull model is selected 

otherwise. 

 

To discriminate between Finite range and Pareto models using F-procedure, Pandey et al. 

(1991) formulated their regression equation to get with finite range ( )j jx n t , and 

 ( )j n

j
y n F t n

n
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   

 
, and with Pareto ( )j jx n t , and ( )n

n j
y H t n
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for  1,...,j n . By using equation (3) to obtain fr  and 
p  the finite range model is 

selected if 
fr p  , while the Pareto model is selected otherwise. 

5.   A Numerical Comparison 

In our case of study, we consider two sets of two pairs of failure models, exponential 

versus Weibull and Pareto versus Finite Range. To carry out comparison, programs used 

to calculate the probability of correct selection (PCS) for each of the three selection 

procedures. In comparison, we have two cases: 

Case 1: Exponential versus Weibull Model 

PCS values for exponential versus Weibull are computed and reported in table II. 

Numerical comparison in this case is carried out as follows: 

 

When the data are coming from an exponential distribution, we consider 

5,10,20,30,50n  . Then, for different values of n  we generated a random sample of 

size n  from exponential distribution with scale parameter 1   and check whether a 

given procedure correctly select the distribution or not. This process is replicated 10,000 

times to obtain the PCS value for different values of n  with each procedure. We notice 

that, when the data are drawn from an exponential distribution, as the shape parameter   

increases the PCS values for RML or S-procedure decrease until become near from 1   

then switch to increase until reach the certainty with   greater than or equal 10. But in 

respect to F-procedure, we notice that as   increases the PCS values remain constant all 

the time. 
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But when the data are coming from a Weibull distribution, we consider 

5,10,20,30,50n   and .25,.5,.75,1.25,1.5,1.75,2,5,10  . Then, for different values of 

n  and   we generated a random sample of size n  from Weibull distribution with shape 

parameter   and scale parameter 1   and check whether a given procedure correctly 

select the distribution or not. This process is replicated 10,000 times to obtain the PCS 

value for different values of n  and   with each procedure. We notice that, when the 

data are drawn from a Weibull distribution, as the shape parameter   increases the PCS 

values for RML or S-procedure decrease until become near from 1   then switch to 

increase until reach the certainty with   greater than or equal 10. But in respect to F-

procedure, we notice that its PCS values increase as   increases until reach the certainty 

with   greater than or equal 5. 

Case 2: Finite Range versus Pareto Model 

PCS values for finite range versus Pareto are computed and reported in table III. 

Similarly, numerical comparison in this case is carried out as follows: 

 

When the data are coming from a Finite range distribution, we consider 

5,10,20,30,50n   and .25,.5,.75,1,1.25,1.5,1.75,2,5,10  . Then, for different values 

of n  and   we generated a random sample of size n  from Finite range distribution with 

shape parameter   and scale parameter 1   and check whether a given procedure 

correctly select the distribution or not. This process is replicated 10,000 times to obtain 

the PCS value for different values of n  and   with each procedure. We notice that when 

the data are drawn from a Finite range distribution, as the shape parameter   increases 

the PCS values for RML or S or F-procedure remain constant.  

 

But when the data are coming from a Pareto distribution, we consider 5,10,20,30,50n   

and .25,.5,.75,1,1.25,1.5,1.75,2,5,10  . Then, for different values of n  and   we 

generated a random sample of size n  from Pareto distribution with shape parameter   

and scale parameter 1   and check whether a given procedure correctly select the 

distribution or not. This process is replicated 10,000 times to obtain the PCS value for 

different values of n  and   with each procedure. We notice that when the data are 

drawn from a Pareto distribution, as the shape parameter   increases the PCS values for 

RML or S or F-procedure remain constant. 

6.   Notes on the Work of Pandey et al. (1991) 

Pandey et al. (1991) carried out a numerical investigation to compute PCS values for the 

RML, S and F procedures in discriminating between exponential and Weibull models and 

between finite range and Pareto. They generated 5000 samples of size 5,10 and 20n   

and 3000 samples of size 30n   and 2000 samples of size 50n  . They found that the 

reason behind choosing these varied numbers of generated samples due to the excessive 

increase in execution time with higher sample sizes. In addition, they excluded the 

sample size 50 in case of discriminating between exponential and Weibull models 

because the S statistic of exponential involved gamma function ( )n  which is too large 

to be evaluated with 50n   on their PC machine.  
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The problem which Pandey et al. (1991) faced were solved now. We could use a sample 

of size 50n   since the recent IBM machine has the ability to evaluate the gamma 

function ( )n  for 171n  . In addition, we generated 10,000 samples in all cases and that 

led to essentially different results. The reason behind choosing exactly 10,000 generated 

samples is the stationarity of results for the number of generated samples more than 

10,000. On the other hand, Pandey et al. (1991) neither fixed the number of generated 

samples nor stated an acceptable reason behind generating varied number of samples 

changes from sample size to another. 

7.   Conclusions 

Comparing RML with S with F-procedure in case of discriminating between exponential 

and Weibull models, we have the following two situations: 

1. The actual distribution is exponential: using graph I when data are drawn from 

exponential, we notice that RML is more efficient for 1   while S is more 

efficient for 1 5  , but for 5   the RML and S are equivalent. 

2. The actual distribution is Weibull: using graph II when data are drawn from 

Weibull, we notice that S may be preferred to others procedures for 1   while 

RML may be preferred to others procedures for 1 5   but for 5   the RML, 

S and F are equivalent. 

 

Similarly, comparing RML with S with F-procedure in case of discriminating between 

Finite range and Pareto models, we have the following two situations: 

1. The actual distribution is Finite Range: using graph III when data are drawn from 

Finite Range, we notice that RML and F-procedure are preferred to S procedure 

for all   since they are equivalent. 

2. The actual distribution is Pareto: When data are drawn from Pareto, we notice that 

RML is preferred to others procedures. 

 

We still need to know which of the three procedures is the most powerful and reliable. 

Consequently, we could use table V which shows the percentage of all samples correctly 

selected by each procedure in our two cases of selection. We notice that in case of 

discriminating between Weibull and exponential the RML and S procedures are 

equivalent and preferred. And in case of discriminating between finite range and Pareto 

the RML procedure is preferred to the others. Finally, all conclusions will conduct us to 

trust RML-procedure in general. 
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8.   Appendix 

Table I:   Probability Densities functions used 

Name Density 

Exponential 
1( ) exp    0,  0.

t
f t t 



  
    

 
 

Weibull 

1

( ) exp    , 0,  0.
t t

f t t

 


 
  

     
            

 

Finite range 

1

( )    0,  0 .
t

f t t
t




 




 
    

 
 

Pareto 

1

( )    0,  .f t t
t


 

 




 
   

 
 

Table II: PCS of Exponential Distribution versus Weibull Distribution with 

unknown scale parameter 10,000 Generated Samples 

Actual Distribution   Weibull(λ,α*)   Exp(λ) 

Procedure  RML S F  RML S F 

α* n          

.25 

5  0.89 0.93 0.05  0.99 0.96 0.63 

10  0.99 0.99 0.10  1.00 1.00 0.36 

20  1.00 1.00 0.24  1.00 1.00 0.07 

30  1.00 1.00 0.37  1.00 1.00 0.01 

50  1.00 1.00 0.55  1.00 1.00 0.00 

            

.50 

5  0.65 0.76 0.13  0.93 0.85 0.62 

10  0.83 0.88 0.25  0.96 0.92 0.35 

20  0.95 0.97 0.56  0.98 0.98 0.07 

30  0.99 0.99 0.75  0.99 0.99 0.01 

50  1.00 1.00 0.91  1.00 1.00 0.00 

            

.75 

5  0.44 0.57 0.24  0.82 0.70 0.63 

10  0.57 0.66 0.47  0.83 0.75 0.35 

20  0.71 0.76 0.80  0.86 0.81 0.07 

30  0.78 0.82 0.94  0.89 0.85 0.01 

50  0.87 0.89 0.99  0.92 0.91 0.00 
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1.25 

5  0.80 0.67 0.50  0.40 0.54 0.62 

10  0.79 0.71 0.79  0.52 0.61 0.36 

20  0.82 0.76 0.98  0.65 0.71 0.06 

30  0.83 0.79 1.00  0.71 0.76 0.01 

50  0.88 0.86 1.00  0.80 0.83 0.00 

            

1.50 

5  0.86 0.75 0.62  0.50 0.63 0.62 

10  0.88 0.82 0.89  0.66 0.74 0.35 

20  0.92 0.89 1.00  0.81 0.85 0.06 

30  0.95 0.92 1.00  0.88 0.90 0.01 

50  0.97 0.97 1.00  0.95 0.96 0.00 

            

1.75 

5  0.90 0.81 0.71  0.57 0.69 0.62 

10  0.92 0.88 0.94  0.76 0.83 0.36 

20  0.97 0.95 1.00  0.90 0.92 0.06 

30  0.99 0.98 1.00  0.95 0.97 0.01 

50  1.00 0.99 1.00  0.99 0.99 0.00 

            

2.00 

5  0.93 0.85 0.79  0.64 0.75 0.63 

10  0.95 0.92 0.97  0.83 0.88 0.36 

20  0.99 0.98 1.00  0.96 0.97 0.07 

30  0.99 0.99 1.00  0.98 0.99 0.01 

50  1.00 1.00 1.00  1.00 1.00 0.00 

            

5.00 

5  0.99 0.98 1.00  0.93 0.96 0.63 

10  1.00 1.00 1.00  1.00 1.00 0.35 

20  1.00 1.00 1.00  1.00 1.00 0.06 

30  1.00 1.00 1.00  1.00 1.00 0.01 

50  1.00 1.00 1.00  1.00 1.00 0.00 

            

10.00 

5  1.00 1.00 1.00  0.99 0.99 0.63 

10  1.00 1.00 1.00  1.00 1.00 0.35 

20  1.00 1.00 1.00  1.00 1.00 0.06 

30  1.00 1.00 1.00  1.00 1.00 0.01 

50   1.00 1.00 1.00   1.00 1.00 0.00 

 

  



A Numerical Comparison of Three Procedures Used in Failure Model Discrimination  

Pak.j.stat.oper.res.  Vol.X  No.1 2014  pp107-119 117 

Table II: PCS of Finite Range Distribution versus Pareto Distribution with 

unknown Shape and Scale parameters 10,000 Generated Samples  

Actual Distribution   Finite Range (λ,α)   Pareto (λ,α) 

Procedure  RML S F  RML S F 

α n          

.25 

5  0.81 0.00 0.97  0.82 0.00 0.42 

10  0.96 0.02 1.00  0.96 0.02 0.34 

20  1.00 0.11 1.00  1.00 0.11 0.27 

30  1.00 0.20 1.00  1.00 0.20 0.19 

50  1.00 0.37 1.00  1.00 0.37 0.11 

            

.50 

5  0.81 0.00 0.98  0.81 0.00 0.43 

10  0.96 0.02 1.00  0.96 0.02 0.35 

20  1.00 0.11 1.00  1.00 0.11 0.25 

30  1.00 0.20 1.00  1.00 0.20 0.20 

50  1.00 0.36 1.00  1.00 0.36 0.12 

            

.75 

5  0.82 0.00 0.97  0.82 0.00 0.41 

10  0.96 0.02 1.00  0.96 0.02 0.35 

20  1.00 0.11 1.00  1.00 0.11 0.26 

30  1.00 0.20 1.00  1.00 0.20 0.20 

50  1.00 0.37 1.00  1.00 0.36 0.12 

            

1.25 

5  0.81 0.00 0.97  0.81 0.00 0.43 

10  0.96 0.02 1.00  0.96 0.02 0.35 

20  1.00 0.11 1.00  1.00 0.11 0.26 

30  1.00 0.21 1.00  1.00 0.20 0.20 

50  1.00 0.36 1.00  1.00 0.36 0.12 

            

1.50 

5  0.82 0.00 0.98  0.81 0.00 0.41 

10  0.96 0.02 1.00  0.96 0.02 0.35 

20  1.00 0.11 1.00  1.00 0.11 0.26 

30  1.00 0.21 1.00  1.00 0.20 0.20 

50  1.00 0.37 1.00  1.00 0.36 0.12 

            

1.75 

5  0.82 0.00 0.97  0.81 0.00 0.43 

10  0.96 0.02 1.00  0.96 0.02 0.35 

20  1.00 0.11 1.00  1.00 0.11 0.26 

30  1.00 0.20 1.00  1.00 0.20 0.19 

50  1.00 0.36 1.00  1.00 0.37 0.11 
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2.00 

5  0.82 0.00 0.97  0.81 0.00 0.42 

10  0.96 0.02 1.00  0.96 0.02 0.35 

20  1.00 0.11 1.00  1.00 0.11 0.26 

30  1.00 0.21 1.00  1.00 0.20 0.19 

50  1.00 0.36 1.00  1.00 0.36 0.12 

            

5.00 

5  0.81 0.00 0.98  0.81 0.00 0.42 

10  0.96 0.02 1.00  0.96 0.02 0.35 

20  1.00 0.11 1.00  1.00 0.11 0.26 

30  1.00 0.19 1.00  1.00 0.20 0.20 

50  1.00 0.37 1.00  1.00 0.37 0.11 

            

10.00 

5  0.82 0.00 0.97  0.82 0.00 0.42 

10  0.96 0.02 1.00  0.96 0.02 0.36 

20  1.00 0.11 1.00  1.00 0.11 0.26 

30  1.00 0.20 1.00  1.00 0.20 0.20 

50   1.00 0.37 1.00  1.00 0.36 0.12 

Table V:  Overall Percentage of Correct Selection 

  Actual Distribution 

Exponential 

Versus Weibull 

Weibull(λ,α*) Exp(λ) 

RML S F RML S F 

91% 90% 78% 88% 89% 21% 

Finite Range 

Versus Pareto 

Finite Range(λ,α) Pareto(λ,α) 

RML S F RML S F 

95% 14% 99% 95% 14% 27% 
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