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Abstract 

It is clear that the likelihood ratio statistics plays an important role in theories of asymptotical estimation 

and hypothesis testing. The aim of the paper is to investigate the asymptotic properties of likelihood ratio 

statistics in competing risks model with informative random censorship from both sides. We prove the 

approximation version of the locally asymptotically normality of the likelihood ratio statistics. The results 

have asymptotic representation of the likelihood ratio statistics using the strong approximation method 

where local asymptotic normality is obtained as a consequence. 
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1.   Introduction 

The most important property of statistical models is the locally asymptotically normality 

(LAN) of likelihood ratio statistics (LRS) of a regular statistical experiment. The essence 

of the LAN is that the LRS of model can be approximated by functions of the from 

2
,

1
exp

2
nu u

 
 

 
, where ,n  - asymptotically (at n ) normal with the parameters 

(0,1)  random variables (r.v.). LAN in the case of independent and identically distributed 

(i.i.d.) observations studied by A.Wald, L.Le Kam and J. Hajek (for details see [6-11]). In 

[3-5] established results of strong approximation for LRS by stochastic integrals in 

competing risks model (CRM) for random censoring of observations on the right and 

from both sides. In this paper we consider similar problems in the CRM, when random 

censoring from both sides is informative. 

2.   Informative model and its characterization  

Following [3-5], we consider the CRM. Let X - r.v. with values in a measurable space 

( , )X B , where 1RX , ( )B X . Consider the disjoint events (1) ( ){ ,..., }kA A  (or at least 
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( ) ( )( ) 0,i jP A A    ,i j   , 1 ,i j k ), such that ( )

1

1
k
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i

P A


 
  

 
. In CRM our interest is 

concentrated on joint properties of r.v. X  and events  ( ) , 1,iA i k . Let 

( ) ( ){ ( ), 1, }i iI A i k    - indicators of these events, and joint distribution of the vector 
(1) ( )( , ,..., )kX    depends on unknown parameter   : 

(1) ( ) (1) (1) ( ) ( )( , ,..., ) ( , ,..., ),k k kQ x y y P X x y y        

where 1 ( ), {0,1}, 1,ix R y i k    and   an open set in 1R  for simplicity   is scalar 

parameter. 

 

Let ( ; ) ( )H x P X x    and ( ) ( ; )iH x    ( )( , 1)iP X x    - marginal distributions of r.v. 

X  and ( )( , ), 1,iX i k   respectively. Since (1) ( )... 1k    , then 
(1) ( )( ; ) ... ( ; ) ( ; )kH x H x H x      - for all 1( ; )x R   . Let subdistributions ( )iH  are absolutely 

continuous and have densities ( )ih . Then there is a density h  of d.f. H  and for all 
1( ; )x R   : (1)( ; ) ( ; ) ...h x h x    ( ) ( ; )kh x  . Assume that the r.v. X  subject to random 

censoring from both sides by pair of r.v.-s ( , )L Y  with absolutely continuous d.f.-s 

( ; ) ( )K x P L x    and ( ; ) ( )G y P Y y   . It also assumes that the r.v.-s { , , }X L Y  - are 

independent, and censoring is informative, i.e., d.f.-s K  and G  expressed in terms of d.f. 

H  by the following formulas for all 1( ; )x R   : 
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1 ( ; ) 1 ( ; ) ,

( ; ) 1 1 ( ; ) ,

G x H x

K x H x






 

 


   



   
        

(1) 

where   and   are positive and unknown nuisance parameters independent of  .  

 

Let k  and g  are density functions corresponding to the d.f. K  and G  respectively. Then 

according to (1) 

 
1

1
( ; ) 1 1 ( ; )k x H x
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( 1) 1 ( ; ) ( ; ),H x h x


  


   

 
1

( ; ) 1 ( ; ) ( ; ).g x H x h x


   


 
      

(2) 

 

Let  inf : ( ; ) 0H x H x    and  sup : ( ; ) 1HT x H x   . Then from (1), H K L    , H K LT T T  , 

and a densities (2)  are positive on the set [ ; ]H HT .  

 

Let  (1) ( )( , ,..., ),, 1, k
j j j j jYX L A A j   - a sequence of independent replicas of the aggregate 

(1) ( )( , ,...,, , )kX L A AY . On n - th stage of the experiment we observe the sample of size n : 
( )

1( ,..., ),n
nZ Z  where ( 1) (0) (1) ( )( ; , , ,..., ),k

j j j j j jZ Z      , ( ) max( ,min( , )),j j j j j j jZ L X Y L X Y     
( ) ( )( )l l

j jI D  , -1,0,1,...,l k  and events  ( 1) : ( ) ( ) ( )j j j jD X Y L       , 

 (0) : ( ) ( ) ( )j j j jD L Y X      , ( ) ( )i i

j jD A    : ( ) ( ) ( )j j jL X Y      , 1,...i k . We 
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introduce d.f.-s  ( ; ) j jM x P X Y x     1 (1 ( ; )) (1 ( ; ))G x H x       and  ( ; ) jN x P Z x   

( ; ) ( ; )K x M x  , as well as subdistributions   ( ) ( )( ; ) ; 1l l

j jT x P Z x     , -1,0,1,..., .l k  It is 

easy to see that  

( 1) ( ; ) ( ; ) ( ; ),

x

T x M u dK u  



   

(0) ( ; ) ( ; )(1 ( ; )) ( ; )

x

T x K u H u dG u   


  ,     (3) 

( ) ( )( ; ) ( ; )(1 ( ; )) ( ; ), 1, .

x

i iT x K u G u dH u i k   


    

Then ( )

1
( ; ) ( ; )(1 ( ; )) ( ; )

x
k i

i
T x K u G u dH u   





    ( ; )T x   and 

( 1) (0) (1)( ; ) ( ; ) ( ; ) ...T x T x T x        ( ) ( ; ) ( ; )kT x N x   . Let 
1

1






 and 

1

1






. Then 

according to (1), by direct calculation of subdistributions (3), we have  

 ( 1) ( ; ) ( ; ) ( ; )

x

T x M u d M u
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( ; ) 1 ( ; ),
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M x N x


  



 

  
(4) 

     (0) ( ; ) ( ; ) 1 ( ; ) 1 ( ; )
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1

( ; ) 1 ( ; )
1

x

M u d H u
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1

x
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1
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T x M u d H u
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1

x

M u dM u N x


   




  
   (6) 

 

Informative model under simple random censoring from both sides without competing 

risks was first introduced in [1,2]. Following [1,2], we prove a theorem characterizing the 

model (1) by independence of r.v.-s jZ  and vectors  ( 1) (0), ,j j j
   , where 

(1) ( )... k
j j j      .  

Theorem 2.1.  Model (1) holds if and only if the r.v. jZ  and vector  ( 1) (0), ,j j j
    are 

independent for each 1j  .  

Proof of the Theorem 2.1.  Suppose that the formulas (1) are hold. Then we have the 

representation (4) - (6) for subdistributions. Tending to the limit under x  in these 

formulas, in particular for all    we have  

   ( 1) (0)1 1 , 1 (1 ) ,j jP P            1jP    .   (7) 
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Introduce the events  jA Z x   and  1 0 1, ,B B B , where  ( ) 1 , 1,0m
m jB m      and 

 1 1jB    . Then from (4)-(7) it follows the independence of events A  and 

 , 1,0,1mB m   . Similarly, we can show independence of other combinations of these 

events and their rejections. This shows that the r.v. jZ  and vector  ( 1) (0), ,j j j
    are 

independent. Conversely, let r.v. jZ  and vector  ( 1) (0), ,j j j
    are independent. In 

particular, from independence of jZ  and ( 1)
j
  for all Kx   we have  

( 1) ( ; )
( ; ) exp

( ; ) ( ; )
x

dT u
K x

M u K u




 

   
  

  
  ( 1) ( ; )

exp 1
( ; )

j

x

dN u
P

N u









  

     
  



   ( 1)
1

( ; ) ( ; ) .jP
M x K x  


 

 

 

From here the second representation in (1) follows under     ( 1) ( 1)1 1j jP P        . 

On the other hand, since independence of jZ  and (0)
j  for all Gx  , 

 

(0) ( ; )
1 ( ; ) exp

( ; ) 1 ( ; )

x
dT u

G x
K u H u
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(8) 

also from independence of jZ  and j  for all Hx   we have  

( ; )
1 ( ; ) exp

( ; ) ( ; )

x
dT u

H x
K u N u
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exp 1 .
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  (9) 

 

Now from (8) and (9) for all 1( ; )x R    

   log 1 ( ; ) log 1 ( ; ) ,G x H x      
      

(10) 

where     
1

(0) 1 1j jP P 


     , which shows the validity of first formula in (1). 

Theorem 2.1 is proved. 

 

Let  ( 1) ( 1) 1jp P
     and  1jp P   . Then 
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and therefore these parameters are estimated by the statistics  

( 1)1
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 and ( 1)1n np   ,      (11) 

where ( 1) ( 1)
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1 n

n jj
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1 1 1
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j j i

p
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3.   Approximation of the LRS 
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Let ( ) ( ) ( )( , , )n n nQY U - denote the sequence of statistical experiments generated by 

observations ( )n , where ( ) ( 2) ( ){ {0,1} } ,n k n Y X  ( ) ( )( )n nU Y , ( )nQ  - distribution on 
( ) ( )( , )n nY U . The family of measures ( ){ , , 1}nQ n     is absolutely continuous with 

respect to measure ( )
1 ... ,n

n      where ( 1) ( )... ,k
m m

m m y y
d dx       ( )l

my
  - counting 

measures concentrated at a point  ( ) {0,1}, 1,0,1,..., ; 1,l
my l k m n     and its density is given 

by  
( )( )

( )
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( )
( ; )

( )

nn
n

n nn

dQ

d
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Now, by using (1) and (2) after simple algebra the density (12) can be represented as 

follows: 
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where  
(0)

( 1)
1

1( ; ) ( 1)

n

n
j

j j
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  - independent of   , ( )

1

( ; ) ( ; )
n

i

i

t x t x 


  - density 

of subdistribution ( ; )T x   and ( ) ( ; )it x     ( ) ( ; ) ( ; ) 1 ( ; )ih x K x G x    
( ) ( ; )

,
iT x

x




 1, .i k  

Note that according to the representation (13) statistics  1 1, , ; , ,n nZ Z    is a sufficient 

statistic for this informative model. From (13) one can expect that the LAN property for 

this model depends on the properties of the density ( ) , 1,...,it i k . Because, 
( ) ( )( ; ) ( ; )i it x h x       1 ( ; ) 1 1 ( ; )H x H x


       , then have ( ) ( )( ; ) ( ; )i it x h x   and 

( ; ) ( ; )t x h x   for all 1,i k , 1( ; )x R   . We need some regularity conditions: 

(C1)  Supports ( )

( ){ : ( ; ) 0},i

i

h
N x h x    1,i k  are independent on parameter   and 

( )

1

i

k

h
i

N


 ; 

(C2)  For any 
1 2,   , 

1 2   and ( )ih
x N : ( ) ( )

1 2( ; ) ( ; )i ih x h x  , 1,...,i k ; 

(C3)  There are finite for all x derivatives ( ) ( ; ) / ,l i lh x     1,2; 1,l i k   and  

( )| ( ; ) / | , 1,2; 1,...,l i lh x dx l i k 




      ; 

(C4)  Functions 
( )log ( ; ) log ( ; )

, 1, ,
it x t x

i k
 

 

  
 

  
 are of bounded variations; 

(C5)  Fisher information  
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is finite and positive at the point 0  .  

 

We define the empirical estimates of the distributions ( ; )N x  , ( ) ( ; )mT x  , 1,0,1,...,m k   

and ( ; )T x  : 
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We denote 0( ; ) ( )N x N x  , ( ) ( )
0( ; ) ( )m mT x T x  , 1,0,1,...,m k   and 0( ; ) ( )T x T x  , where 

0   is true value of  . Let 
0n

u
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    , where 1u R . We introduce the LRS 

 

( )

( )( )

( )( )
1 1 00

( ; )( ; )

( ; )( ; )

i
jin n k

j nn n
n in

j i jn

t Zp Z
u

t Zp Z







 

  
   

   

 L

1

0

( ; )

( ;
,

)

j

j n

j

t Z

t Z






 
 
  




 


 

and its logarithm  

 
( )

( )

( )
1 1 0

( ; )
log log

( ; )

in k
j ni

n j i
j i j

t Z
u

t Z



 

  
   

   
 L  

0

( ; )
1 log

( ; )

j n

j

j

t Z

t Z





 
   

  

 

  

( )
( )

( )
1 0

( ; )
log ( )

( ; )

ik
in

ni
i

t x
n dT x

t x







 

   
   

  
 

( 1) (0)

0

( ; )
log ( ) ( )

( ; )

n
n n

t x
d T x T x

t x











 
    

 
 . (14) 

We have  

Theorem 3.1. Let the regularity conditions (C1) - (C5) are hold. Then for each 1u R  for 

the LRS we have representation  
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and ( ) 0nR u   at n  in 
0

( )nQ -probability. Here  ( ; ), 1,0,1,...,mW y n m k   are two–

parametrical Wiener processes on [0,1] (0, )  , and the components of the vector 

1 0 1( , , ,..., )kW W W W   are independent. 
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Remark 3.1. In view of the properties of processes   , 1,0,1,...,mW m k   the r.v. 
nW  is 

the sum of independent stochastic integrals of Ito, and for each 1n  : 

 
0

( )

0/ (0, ( ))
D

n

n Q N W JL . 

 

Hence, the theorem 3.1 one can written as follows: for each 1u R  
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1/2

0 0( ) ( ) ( )
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u
u u R u    L J J ,      (15) 

where (0,1)
D

N  . 

 

To prove Theorem 3.1 we need in some auxiliary results. Define the empirical processes 

of  1x R : 

( ) ( ( ) ( )),n nx n N x N x    ( ) ( )( ) ( ( ) ( )),i i

in nx n T x T x   -1,0,1,...,i k . 

 

We formulate a theorem which is an generalized analogue of Komlos, Major and 

Tusnady’s type result. Let 
3

-2max{| |,
k

v v



-1| |,v 0| |,v  
1| |,...,| |}kv v  - maximum-norm of a 

vector 
-2 -1 0( , , ,v v v v  3

1,..., ) k

kv v R  . From [2, §1.9] we give the following statement of 

Burke, Csörgő and Horvath. 

Theorem A [2]. On the probability space ( ,A,P) one can construct k+3  two-

parametrical processes ( ; ),K x n 1( ; ),K x n 0 ( ; ),K x n  1( ; ),...,K x n  ( ; )kK x n  such that for the 

vector  2( ) ( ( ),n nv v    1 1 0 0 1 1( ), ( ), ( ),..., ( )),n n n kn kv v v v     -2 -1 0( , , ,v v v v  3

1,..., ) k

kv v R  , we 

have approximation 
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k

k

n
v

v n v n O n n



 



  
R      

(16) 

where 2 1 1 0 0 1 1( ; ) ( ( ; ), ( ; ), ( ; ), ( ; ),...,v n K v n K v n K v n K v n     ( ; ))k kK v n is k+3- dimensional Gaussian 

process having the same covariance structure as a vector 1/2 ( )nn v , i.e. ( ; ) 0E v n   and 

for any , 1,0, ,i j k i j   : 

( ; ) ( ; ) (  ){ ( ) ( ) - ( ) ( )},EK x n K y m n m N x N y N x N y    

( ; ) ( ; )i iEK x n K y m  ( ) ( ) ( ) ( )(  ){ ( ) ( ) - ( ) ( )},i i i in m T x T y T x T y   
( ) ( )( ; ) ( ; ) (  ){- ( ) ( )},i j

i jEK x n K y m n m T x T y   

( ; ) ( ; )iEK x n K y m   ( ) ( ) ( )(  ){ ( ) ( ) - ( ) ( )}.i i in m T x T y T x N y      (17) 

Lemma 3.1. Let the regularity condition (C1)-(C3) are hold. Then there exist finite 

derivatives ( ) ( ; ) / , 1,2; 1,l i lt x l i k      for all 1( ; )x R    

( ) ( ; )
, 1,2; 1,...,

l i

l

t x
dx l i k
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and 
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Proof of the Lemma 3.1. With regard to the expression of subdensity ( )it  through 
( ) , 1,ih i k , it is easy to see that the regularity condition (C1) - (C3)  are hold for them, 

and in particular (18) also holds. Moreover, taking into account the independence of r.v. 

1Z  and  ( 1) (0)
1 1 1, ,    (Theorem 2.1) we have  
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as   and   assumed to be independent of  . Lemma 3.1 is proved. 

Lemma 3.2.  Under the conditions of Theorem 3.1 when n  for each 1u R   we have  
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Proof of the Lemma 3.2. We expand the integrands in LRS ( )nL u  in Taylor series on 
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where | ( ) | 1, 1,ni x i k    and | ( ) | 1n x  . In other hand, functions ( ), ( )ni nx x   expand in 
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Similarly for n  we have  
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Now (21)-(26) implies (20). Lemma 3.2 is proved.  

 



Abdurahim A. Abdushukurov, Nargiza S. Nurmuhamedova 

Pak.j.stat.oper.res.  Vol.XII  No.1 2016  pp155-164 164 

Proof of the Theorem 3.1 is uses Lemmas 3.1 and 3.2, is fully conducted through the 

proof of Theorem in [4], using also Theorem A and therefore details are omitted.  

Conclusion 

Asymptotic theory of estimation and hypothesis testing is entirely based on the 

asymptotic properties of the LRS. The most important property of LRS is LAN, which 

enables the development of the asymptotic theory of maximum likelihood and Bayesian 

type estimators and contiguity of probability measures. In this paper proved the LAN 

property of LRS in CRM under random censoring from both sides. These results can be 

used to find the limiting distributions of maximum likelihood and the Bayesian type 

estimates in considered model. 
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