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Abstract

It is clear that the likelihood ratio statistics plays an important role in theories of asymptotical estimation
and hypothesis testing. The aim of the paper is to investigate the asymptotic properties of likelihood ratio
statistics in competing risks model with informative random censorship from both sides. We prove the
approximation version of the locally asymptotically normality of the likelihood ratio statistics. The results
have asymptotic representation of the likelihood ratio statistics using the strong approximation method
where local asymptotic normality is obtained as a consequence.

Keywords: Likelihood ratio statistics, Competing risks model, Locally asymptotically
normality, Random censoring.

1. Introduction

The most important property of statistical models is the locally asymptotically normality
(LAN) of likelihood ratio statistics (LRS) of a regular statistical experiment. The essence
of the LAN is that the LRS of model can be approximated by functions of the from

exp{uwnyg—%uz}, where «, ,- asymptotically (at n—oo) normal with the parameters

(0,2) random variables (r.v.). LAN in the case of independent and identically distributed

(i.i.d.) observations studied by A.Wald, L.Le Kam and J. Hajek (for details see [6-11]). In
[3-5] established results of strong approximation for LRS by stochastic integrals in
competing risks model (CRM) for random censoring of observations on the right and
from both sides. In this paper we consider similar problems in the CRM, when random
censoring from both sides is informative.

2. Informative model and its characterization

Following [3-5], we consider the CRM. Let X - r.v. with values in a measurable space
(X,B), where X cR', B=o(X). Consider the disjoint events {A®,..., A®} (or at least
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— k .
P(A" "AD)=0, i=j, i, j=1,I), such that P{UA(')jzl. In CRM our interest is

i=1
concentrated on joint properties of rv. X and events {A(i) i=1_k}. Let

{60 =1(AD),i=1k} - indicators of these events, and joint distribution of the vector
(X,69,...,6%) depends on unknown parameter 9 ®:

QYY) =B (X <369 =50 =y ),

where xeR!,y" e{0,1},i=1Lk and © an open set in R* for simplicity ¢ is scalar
parameter.

Let H(x;0)=P,(X <x) and HV(x;8)= P,(X <x,8% =1) - marginal distributions of r.v.
X and (X,60),i=1k respectively. Since 5O 4. +6W =1, then
HY(x6)+..+ HY (x.0)=H(x0) - for all (x;0) e R x®. Let subdistributions H® are absolutely
continuous and have densities h®. Then there is a density h of d.f. H and for all
(x;0) eR* x©: h(x;0)=h®(x;0)+...+ h®(x;0) . Assume that the r.v. X subject to random
censoring from both sides by pair of r.v.-s (L,Y) with absolutely continuous d.f.-s
K(x;0)=P,(L<x) and G(y;0)=P,(Y <y). It also assumes that the r.v.-s {X,L,Y} - are
independent, and censoring is informative, i.e., d.f.-s K and G expressed in terms of d.f.

H by the following formulas for all (x;0) eR'x®:
1-G(x;0)=(1-H(x;0))",
a+l B (1)
K(0)=[1-(1-Hx ) |,

where « and g are positive and unknown nuisance parameters independent of 4.

Let k and g are density functions corresponding to the d.f. K and G respectively. Then
according to (1)

k(x;@):ﬂ[ ~(1-H(x; 0))‘”1] (a+D)(1-H(x0)) " h(x0),
9(x0) =a(l-H(x6))" " h(x;6). 2)

Let 7, =inf {x:H(x;0)>0} and T, =sup{x:H(x;0)<1}. Then from (1), z,, =z =7, Ty =T« =T,
and a densities (2) are positive on the set [z,,;T,].

Let {(x LY, AR AL), j>l} - a sequence of independent replicas of the aggregate
(X,LY,A®  A®Y On n- th stage of the experiment we observe the sample of size n:
00 =(Z1,..Zn),  Where  Z;=(Z;;00°,A9,A9,.,A9),,  Z, =L, v(X; AY,) =max(L;,min(X,,Y,)),
AV =1(DV), =-1,0,1...k and events D{ ={w: X; (@) AY; (@) < Lj(a)} ,
DY ={o:L(@)<Y,(@)<X;(@)}, DP=A"n ~{o:L@<X (@Y (@), i=L.k. We
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introduce d.f.-s M(x0)=P,(X;AY,<x) =1-(1-G(x0))-A-H(x0) and N(x0)=P,(Z,<x)=
K(x;0)M(x;0), as well as subdistributions T")(x;¢9)=P6(Zj <xAY =1), 1=-1,0,1....k. Itis
easy to see that

TO(x;0) = j M (u; 0)dK (u; ),
TO(x;0) = j' K(u;0)A-H (u;0)dG(u;0), 3)

TO(x0) = j K (u;0)1-G(u;8))dH “ (u; ), i =L k.

Then Z;T(‘)(X;H) = j K(u;)(1L-G(u;8)dH (u;6) = T(x;6) and
TOXO)+TOxD+TOX0) +...+ +TH(x;0)=N(x;60). Let y:i and ;in. Then
1+ 1+ 4
according to (1), by direct calculation of subdistributions (3), we have
D (v oy _ [ . Y. B NV (1 .
T (x,e)_:[oM(u,e)d(M(u,H)) _1+ﬂ(M(x,H)) =(1-2)N(x;0), 4)
©) (v __X RSV B . B . a:_ix . V4 _ . a+1=
TO(x:6)= L(M(u,e)) (L-H(u;0))d(L-H(u;0)) 1+a:|;(M(u,9)) d(1-H(u;0))
:_%I(M(u;e))ﬂdM(u;e) = (1-2)yN(x0), (5)

X

T(x0) :-ﬁ [(M@o) d(1-Hwe) " = _ﬁ [ (M@:0))’ dM(u:6) = 2N (x:6). (6)

Informative model under simple random censoring from both sides without competing
risks was first introduced in [1,2]. Following [1,2], we prove a theorem characterizing the

model (1) by independence of rv.-s Z; and vectors (A(j’l),A(jo),Aj), where

A =AY+ + A1,

Theorem 2.1. Model (1) holds if and only if the r.v. Z; and vector (A‘j*l),A(jO’,Aj) are
independent for each j>1.

Proof of the Theorem 2.1. Suppose that the formulas (1) are hold. Then we have the
representation (4) - (6) for subdistributions. Tending to the limit under x —oo in these
formulas, in particular for all < ® we have

P, (A7 =1)=1-14, P, (A =1) = (1-7)4, P, (A; =1) =27 . @)
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Introduce the events A={Z; <x} and {B,,B,,B,}, where B, ={A{™ =1}, m=-10 and
Blz{Aj =1}. Then from (4)-(7) it follows the independence of events A and
{B,,m=-10,1}. Similarly, we can show independence of other combinations of these
events and their rejections. This shows that the r.v. Z; and vector (A‘j‘l’,A(jO’,Aj) are
independent. Conversely, let rv. Z, and vector (A(j‘l),A(jo),Aj) are independent. In
particular, from independence of Z; and A(j‘l) forall x>z, we have

+00 1) ¢y,- +o0 )

K(X;g)zexp _IM =exp _PQ(A(J'_D zl)jw —
M (u; 8)K(u;6) N(u;6)

X X

[M(x;0)K(x; 9)]P"(A("71):1) .

From here the second representation in (1) follows under g=P,(A{™” =1)(P6,(A‘j‘1) ¢1)).
On the other hand, since independence of Z; and A{ forall x>z,
X

e v ] dT@(u;0) ~ o (@ [ ON(u;0)
! q*m‘“%iijma—meﬁ“em{FﬂAJ‘QIKwﬁywumm’ ®

also from independence of Z; and A; forall x>z, we have
X

_ dT (u;6) ¢ dN(u; )
1_H(X'a):eXp{_I—K(u;a)—N(u;H)}: exp{—Pg(Aj =1)I K(u;e)—N(u;e)} 9)

—00 —00

Now from (8) and (9) for all (x;0) eR'x®
—log(1-G(x;0)) =-alog(1-H(x;6)), (10)

where o = P, (A =1) (PQ(AJ. :1))_1, which shows the validity of first formula in (1).

Theorem 2.1 is proved.

_ _ 1 p 1 _
D _ D _ _ _ — _ _ _1_pD
Let p™=P,(A{”=1) and p=P,(A;=1). Then v el /1_1+ﬂ_1 p
and therefore these parameters are estimated by the statistics

7=t and 4, =1-pf?, (12)

1- pn

where p(? = 12” ACD —EZHZA —lznlzk:&”

P SR T A T LA

3. Approximation of the LRS
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Let (Y™, U™, Q{M)- denote the sequence of statistical experiments generated by
observations /7™, where Y™ ={X x{0,3**2¥", U™ =5(¥™), Q" - distribution on
(Y™ UMy, The family of measures {Q{”,0e®,n>1} is absolutely continuous with
respect to measure v =y, x..xv,, where de:dexgygnX---Xé’ygﬂkw g - counting

measures concentrated at a point y® e{0,1},1 =-1,0,1,...k;m=1,n and its density is given
by
—w_dQP@")
. (7 ;e)szn)—((ﬁ(m;=1_[{[l\/|(zj;e)k(zj;e)] [K@;:0)-(1-HEZ0)ez 0] -
1% j=1

k

.H[K(zj ;9)(1—G(zj;9))h<”(zj;9)]A(j” } (12)

i=1

Now, by using (1) and (2) after simple algebra the density (12) can be represented as

follows:
k

P, (E(n) : 9) = 7 (a,ﬁ)ﬁ{[t(zj : H)Jl—Aj .H[t(i) (ZJ ; 9):IA(ji) }' (13)
i1

i=1
o ACD ZH:A(JO) n.oo.
where y, (a; 8) =[ Bla +1)]§A" -a™ - independent of @, t(x;0) =) t(x;0) - density
i=1
TV (x;6)
B
Note that according to the representation (13) statistics (Z,,...,Z,; A,....,A,) is a sufficient
statistic for this informative model. From (13) one can expect that the LAN property for

this model depends on the properties of the density t®,i=1..k. Because,
t®(x;0)=h® (x;0)- -[l—H(x;H)]a[l—(l—H(x;H))]ﬂ, then have t9(x;0)<h®(x;0) and
t(x;0)<h(x;0) forall i=1k, (x;0) e R*x®. We need some regularity conditions:

of subdistribution T(x;6) and t¥(x;6)= =h®(x6)K(x6)(1-G(x;0))= i=1k.

(C1) Supports N, ={x:h"(x;#)>0}, i=1k are independent on parameter ¢ and
hth =,
i1

(C2) Forany 6,60,€0, 6,6, and xeN ,: h¥(x6)=h"(x6,), i=1..k;

(C3) There are finite for all x derivatives 8'h® (x;6)/86', 1=12;i=1k and

j|a'h<i>(x;e)/ae' ldx <oo,1 =1,2;i=1,...k

are of bounded variations;

M (y- . _
(C4)  Functions {M,i: ,W}

1k
00

(C5) Fisher information
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J (9) i T[alogt(.)(x 9)) dT(i)(X;9)+ T(WJ dI:T(_l)(X;e)-i-T(O)(X;H):I

is finite and positive at the point 9=¢,.
We define the empirical estimates of the distributions N(x;0), T™(x;6), m=-10,1,....k
and T(x;60):

n n
Nn(x)z%ZI (Z; <X) =TSP +TO () +T, (), Tn(m)(x)=%ZA(jm)l (z;<x), m=-10,1...k,
j=1 j=1

T,00=23 100,

We denote N(x;6,)=N(x), T(”‘)(x;ao):T(m)(x) m=-101,...k and T(x;6,)=T(x), where

0, €© is true value of ¢. Let §, =9, + —= < ®, where ueR". We introduce the LRS

\/ﬁ
v | 6 T10(Z,:6,) o t(z;:6,)] "
L) pn(z %) Hll_l[[(i)(zj;ao)] .|:t(zj;90):| }

and its logarithm

tV(z.;0)) t(Z.:6)

rono-§ Sl o] oo el G0

kK +o t(i)(X; Hn) i 0 t(X;Hn) By ;
= n{z J;|09|:t(i)(x; 00):|dTn()()0}+ J;I()g|:t(x;90):|d |:Tn( )(X) +Tn( )(X):|. (14)

We have

Theorem 3.1. Let the regularity conditions (C1) - (C5) are hold. Then for each ueR* for
the LRS we have representation

2

L, (u) =exp{w —“?J (@) +R (W},

where

W :Zk:]f ologt®(x;6,) dn "2 (TO (x):n) +

=7 00
T@k)%g(;@o)dnuz [\/\771(1—(71) (x); n) +W, (T (x); n)},

—o0

and R (u)—>0 at n—co in Q{”-probability. Here (W, (y;n)m=-10,1...k} are two-
parametrical Wiener processes on [0,1]x(0,), and the components of the vector
(W_,,W,,W,,..,.W,) are independent.
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Remark 3.1. In view of the properties of processes {W,,m=-101,...k} the r.v. w is
the sum of independent stochastic integrals of Ito, and for each n>1:

—(w, /Q;p)iN(o,J ,)) .

Hence, the theorem 3.1 one can written as follows: for each ueR*

L ()= @) -5 6) R0, (15)
where gz N(0,1).

To prove Theorem 3.1 we need in some auxiliary results. Define the empirical processes
of xeR':

2, () =N, () =N (), G () =T )T (), i =-10L...k.

We formulate a theorem which is an generalized analogue of Komlos, Major and
= max{|V,, |, [V | [V |y 1Yy |eens| v, [} - Maximum-norm of a

vector v=(v,,v,,v,, V,..,V,)eR“?. From [2, §1.9] we give the following statement of
Burke, Csorgd and Horvath.

Tusnady’s type result. Let |V

Theorem A [2]. On the probability space (Q,. 4,7 one can construct k+3 two-
parametrical processes K(x;n), K_,(x;n), K,(x;n), K,(x;n),.., K, (x;n) such that for the
VCtOr (V)= (0 (V). g (V-2), i (V) (V) G (). V= (W Wy Vo Vo) RS, e
have approximation

a, (V) _ n—l/zl—(v; n)||k+3 2.0(n71/2 (lOg n)Z), (16)

sup
VeR k+3

where T(v;n) = (K(V_,;n), K, (v_;n), K, (v:n), K, (v;n),..., K, (v.;n))is k+3- dimensional Gaussian
process having the same covariance structure as a vector n™?¢, (v), i.e. ET(v;n)=0 and
forany i, j=-10k,i=j:

EKOGnK(y;m) =(nA m{N() AN(y)-N()ON(Y)}

EK, (K (y;m)= (nA m{T ) ATO(y)-TO ()T ()},

EK; 06n)K; (y;m) = (n A m{-TY()T P (y)},

EK, (x;nK(y;m) = = m{TOx) AT (y)-TY N (y)}- (17)

Lemma 3.1. Let the regularity condition (C1)-(C3) are hold. Then there exist finite
derivatives 6't”(x;0)/06',1=1,2;i=1k for all (x;6) eR'x®

0

'tY (x;0)

<o =12 =Lk (18)

—0

and
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K o 0logt? (Z,;0) { - 6Iogt(Zl;0)}_
le [A — } E,|(1 Al)—ae =0. (19)

Proof of the Lemma 3.1. With regard to the expression of subdensity t through
h®.i=1k, it is easy to see that the regularity condition (C1) - (C3) are hold for them,
and in particular (18) also holds. Moreover, taking into account the independence of r.v.

z, and (A{,A,A,) (Theorem 2.1) we have

10l0g p,(Z™;0) | _<~'f 2logt” (x:0) ...
E{n ” _Zj AT+

i=1
ologt(%0) o 0Ty

1- —= 2 dT(x;6) =— t :0)d

+ p)_j@ ”; (x;6) ae%ji (x; ) dx +

+00

+(1- p)a— j tOxO)dx= (2 p)—T(oo 0)= 2-P) () =0,

as y and A assumed to be independent of . Lemma 3.1 is proved.

Lemma 3.2. Under the conditions of Theorem 3.1 when n— o for each ueR* we have

~u3 R HE R ar )
\/_j alogt(x e)d[Tn(fl)(X)JrTn(o) (x)]— _%‘] (6,)+0,(1). (20)

Proof of the Lemma 3.2. We expand the integrands in LRS L (u) in Taylor series on

(i) o 1/2 . 1/2
powers of &, (x){t. (X’H”)} -1 and 7, (x):{t(x’g”)} -1. Then we obtain, respectively

t(x:6,) t(x;6,)
[ 4(3) (-
Iog I(i) (X1 0n):| =2 Iog(1+ gni (X)) = 2éni (X) - §r12| (X) + Vi (X) | §ni (X) |31 (21)
(% 6,)
_t(x;Hn) ) ,
log o } 2log(1+ 7, (X)) = 21,(X) =17, (X) + B, () [ 7, (X) [", (22)
(X&)

where |7, (x)|<Li=1k and |3, (x)|<1. In other hand, functions &, (x),7,(x) expand in
the neighborhood of 6 =¢,. We have

(i) (y 2 (i) (- 2
£ (X)= u 0logt®(x;6,) u®|(dlogt™(x;6,) e 1 (>i¢9) 0[ j s o0
2Jn o0 8n o0 tV(x;6,) 06 n
=1,...,k and
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__u dlogt(x;6,) u?|(dlogt(x;6) 2 1 ot(x;6,) .
W)= T 8n|:( 00 )+t(x;00) 00? }‘{nj n—

It is easy to verify that for all i=1k,

2 ologt® (x;6,) 1
§m(x)_4n[Tj +o(nj n—w, &) _o( j n — oo,

, alogt(x; s (1
nZ(X) = 4{%) O(nj n—oo, |17,(x) :o(ﬁj,n—mO,

Thus, when n—oo

ZnZ j £.()dTO(x) +2n j 7,0d[ T +TO(x) ] = UZI j —a'ogt (Xe)dT(')(x)+

i=1

2
u\/_f alogt(x ologt(xi6h) 4 [T +T2 (0]~ UZ|R1n ~Ru[+0, ), #3)

where

K ® (i) [y 2 _ o )
Ru=2, fw (WJ dTO (x)+ L (Wjd[ﬂ”(x)ngm(x)],

T62t(”(x;90) 4O | 76 d[T 0 +TO %) ]
206 tYx6) ) 00’ t(x;6,) '

0

k
Note that E,R,=J(¢,) and in view of T (400;0)+T (+00;0)+ > T (+00;0) =1,

i=1

E,,R., =0. Consequently, according to the law of large numbers for n— oo
R, =3 (8)|=0,(1),|R;,| =0, . (24)
Similarly for n—o0 we have

n[ AT+ [ A [TO0+T W ]- S @) =0,  (29)

and

=0,(1). (26)

”I A0l I [T 00 4000 403 [ 7, 091600 T (0

i=1 *

Now (21)-(26) implies (20). Lemma 3.2 is proved.
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Proof of the Theorem 3.1 is uses Lemmas 3.1 and 3.2, is fully conducted through the
proof of Theorem in [4], using also Theorem A and therefore details are omitted.

Conclusion

Asymptotic theory of estimation and hypothesis testing is entirely based on the
asymptotic properties of the LRS. The most important property of LRS is LAN, which
enables the development of the asymptotic theory of maximum likelihood and Bayesian
type estimators and contiguity of probability measures. In this paper proved the LAN
property of LRS in CRM under random censoring from both sides. These results can be
used to find the limiting distributions of maximum likelihood and the Bayesian type
estimates in considered model.
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