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Abstract 

Nakagami distribution is a flexible lifetime distribution that may offer a good fit to some failure data sets. It 

has applications in attenuation of wireless signals traversing multiple paths, deriving unit hydrographs in 

hydrology, medical imaging studies etc. In this research, we obtain Bayesian estimators of the scale 

parameter of Nakagami distribution. For the posterior distribution of this parameter, we consider Uniform 

prior, Inverse Exponential prior and Levy prior. The three loss functions taken up are Squared Error Loss 

Function (SELF), Quadratic Loss Function (QLF) and Precautionary Loss Function (PLF). The 

performance of an estimator is assessed on the basis of its relative posterior risk. Monte Carlo Simulations 

are used to compare the performance of the estimators. It is discovered that the PLF produces the least 

posterior risk when uniform priors is used. SELF is the best when inverse exponential and Levy Priors are 

used. 

Keywords: Nakagami distribution, bayesian estimation, square error loss function, 

quadratic loss function, precautionary loss function.  

1. Introduction 

Nakagami distribution was proposed for modeling the fading of radio signals (Nakagami, 

1960). Numerous parametric models are used in the analysis of lifetime data and in 

problems related to the modeling of failure processes. Among univariate models, a few 

particular distributions occupy a central role because of their demonstrated usefulness in 

a wide range of situations. This category contains the Exponential, Weibull, Gamma and 

Lognormal distributions.  

 

Nakagami distribution is also a flexible lifetime distribution model that may offer a good 

fit to some sets of failure data. Kleiber and Kotz (1970), it has been used to model 

attenuation of wireless signals traversing multiple paths. The nakgami-m distribution is 

widely used to model the fading of radio signals and other areas of communicational 

engineering (Statistical Distributions by Peacock). It can also be used in hydrology to 

derive the unit hydrographs. It has the applications in medical imaging studies to model 

the ultrasounds especially in Echo (heart efficiency test). It is also useful for modeling 

high-frequency seismogram envelopes. The reliability theory and reliability engineering 

also make extensive use of the Nakagami distribution. Because of the memory less 

property of this distribution, it is well suited to model the constant hazard rate portion and 

used in reliability theory. It is also very convenient because it is so easy to add failure 

rates in a reliability model.  
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In physics, if you observe a gas at a fixed temperature and pressure in a uniform 

gravitational field, the height of the various molecules also follow an approximate 

Nakagami distribution. Nakagami distribution is also used in lifetime distribution model 

i.e. the analysis of failure times of electrical components. On the other hand the 

Nakagami distribution is the best distribution to check the reliability of electrical 

component as compare to the Weibull, Gamma and lognormal distribution.  

 

The probability density function of the distribution is given as 
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. It collapses to 

Rayleigh distribution when  = 1 and half normal distribution = 0.5 

 

Hoffman (1960) first time used this distribution to model the attenuation of wireless 

signals traversing multiple paths. Valentine (1995) analyzed the bit error rate (BER) 

performance of an M-branch maximal-ratio combiner (MRC) for the detection of signals 

in a correlated Nakagami-fading channel. Lin and Yang (2000) investigated and derived 

the statistical model of spatial-chromatic distribution of images. Through extensive 

evaluation of large image databases, they discovered that a two-parameter Nakagami 

distribution well suits the purpose. Abdi and Kaveh (2000) have shown that this 

distribution is useful for modeling multipath faded envelope in wireless channels and also 

estimated the shape parameter of the distribution. Zhang (2000) introduced a direct-sum 

decomposition principle and determined the statistical mapping between the correlated 

Nakagami process and a set of Gaussian vectors for its generation. A simple general 

procedure is derived for the generation of correlated Nakagami channels with arbitrary 

parameters. Cheng and Beaulieu (2001) considered the maximum-likelihood estimation 

of the Nakagami shape parameter m. Two new estimators were proposed and examined. 

The sample mean and the sample variance of the new estimators were compared with the 

best reported estimator. The new estimators offered superior performance. Shankar et al. 

(2005) and Tsui et al. (2006) use the Nakagami distribution to model ultrasound data in 

medical imaging studies. Tsui et al. (2006) showed that Nakagami parameter, estimated 

using ultrasonic back scattered envelopes, compressed by logarithmic computation 

denoted by m-log is more sensitive than the original Nakagami parameter m calculated 

using uncompressed envelopes for detecting the variations of scatter concentration in 

tissues. Kim and Latch man (2009) used the Nakagami distribution in their analysis of 

multimedia. Sarkar et al. (2009) investigated the adequacy of this distribution to derive 

the Geomorphological Instaneous Unit Hydrographs (GIUH) along with two parameter 

Logistic, two parameter Weibull and two parameter Gamma distributions. They 

compared the results of Nakagami distribution with other existing approaches and found 

that this distribution based on GIUH can be good substitute to other existing approaches. 

Tsui (2009) proposed a new method; noise assisted Nakagami parameter based on 

empirical mode decomposition of noisy backscattered echoes to allow quantification of 
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the scatterer concentration based on data obtained using a non-focused transducer. 

Schwartz et al. (2011) developed and evaluated analytic and bootstrap bias-corrected 

maximum likelihood estimators for the shape parameter in the Nakagami distribution. It 

was found that both “corrective” and “preventive” analytic approaches to eliminating the 

bias are equally, and extremely, effective and simple to implement. Dey (2012) obtained 

Bayes estimators for the unknown parameter of inverse Rayleigh distribution using 

Squared error and Linex loss function. Kazmi et al. (2012) compared class of life time 

distributions for Bayesian analysis. They studied properties of Bayes estimators of the 

parameter using different loss functions via simulated and real life data. Feroze (2012) 

discussed the Bayesian analysis of the scale parameter of inverse Gaussian distribution. 

Feroze and Aslam (2012) found the Bayesian estimators of the scale parameter of Error 

function distribution. Different informative and non-informative priors were used to 

derive the corresponding posterior distribution. Ali et al. (2012) discussed the scale 

parameter estimation of the Laplace model using different asymmetric loss functions. 

Yahgmaei (2013) proposed classical and Bayesian approaches for estimating the scale 

parameter in the inverse Weibull distribution when shape parameter is known. The Bayes 

estimators for the scale parameter is derived in Inverse Weibull distribution, by 

considering Quasi, Gamma and uniform priors under square error, entropy and 

precautionary loss function. Zaka and Akhter (2013) derived the different estimation 

methods for the parameters of Power function distribution. Zaka and Akhter (2013) 

discussed the different modifications of the parameter estimation methods and proved 

that the modified estimators appear better than the traditional maximum likelihood, 

moments and percentile estimators. 

2. Posterior Distributions under the Assumption of Different Priors 

The objective of this chapter is to find Bayesian estimators of the scale parameter of 

Nakagami distribution under various loss functions and priors. A comparison of these 

estimates is also made.  

 

An obvious choice for the non-informative prior is the Uniform distribution. The 

Uniform Prior relating to the scale parameter   is defined as: 

P( ) k   

 

The likelihood function of Nakagami distribution is  
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The Posterior distribution of scale parameter   using uniform prior is  

0
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Now we use Inverse Exponential Prior and Levy Prior as informative prior because they 

are compatible with the parameter   of the Nakagami distribution. Similarly Posterior 

distributions using informative priors for the parameter   of the Nakagami distribution 

are derived below: 

 

Inverse Exponential Prior relating to the scale parameter   is: 
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Then the Posterior distribution of scale parameter   using Inverse Exponential Prior is 
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Now the Levy Prior relating to the scale parameter   is given as: 

3 / 2
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Similarly the Posterior distribution of scale parameter   using Levy Prior is  
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3. Bayesian Estimation Under Three Loss Functions 

In statistics and decision theory a loss function is a function that maps an event into a real 

number intuitively representing some "cost" associated with the event. Typically it is 

used for parameter estimation, and the event in question is some function of the 

difference between estimated and true values for an instance of data. The use of above 

lemma is made for the derivation of results. 

3.1. Squared Error Loss Function (SELF) 

The squared error loss function proposed by Legendre (1805) and Gauss (1810) is 

defined as:  

   
2

,L SELF SELF     

 

The derivation of Bayes estimator under SELF using Uniform Prior is given below:  
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3.2. Quadratic Loss Function (QLF) 

A quadratic loss function is defined as: 

   2x c t x    
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For some constant C, the value of the constant makes no difference to a decision, and can 

be ignored by setting it equal to 1. 

 

The quadratic loss function can also be defined as 
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The Bayes estimator under QLF using Uniform Prior is 
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3.3. Precautionary Loss Function (PLF) 

Norstrom (1996) introduced an asymmetric precautionary loss function (PLF) which can 

be presented as:  
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Similarly the Bayes estimator under PLF using Uniform Prior is derived as:  
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4. Posterior Risks Under Different Loss Functions 

The Posterior risk of the Bayes estimator under different Loss functions using Uniform 

Prior are: 

 

Using Square Error Loss function (SELF):  
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Quadratic Loss function (QLF): 
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Similarly the expressions for Bayes Estimators and Risks under Inverse Exponential and 

Levy Priors can be derived in a similar manner. 

5. Simulation Study 

Using Easy fit Software, we have generated 5,000 Random numbers from Nakagami 

Distribution with different values of Parameters   and  . A program has been developed 

in R language to obtain the Bayesian Estimates and Posterior Risks under 10,000 

replications and averages of 10,000 outputs has been presented in the tables below.  

Table 1:  Bayes Estimates under ( = 1.5,   = 2) 

Sample 

Size 

Uniform Prior 

         = 1.5,        = 2 

Inverse Exponential Prior Levy Prior 

n SELF QLF PLF SELF QLF PLF SELF QLF PLF 

5 2.69602 1.97708 2.98057 2.10068 1.65843 2.25649 2.18454 1.69908 2.35957 

20 2.10873 1.96815 2.14742 2.00535 1.88002 2.03964 2.01842 1.89027 2.05352 

40 2.03689 1.96900 2.05468 1.98259 1.91864 1.99932 1.99478 1.92991 2.01175 

100 1.99738 1.97075 2.00416 1.98018 1.95413 1.98682 1.97990 1.95376 1.98655 

150 1.98925 1.97157 1.99373 1.97504 1.95763 1.97944 1.97767 1.96020 1.98209 

250 1.98216 1.97158 1.98482 1.97469 1.96421 1.97733 1.97712 1.96662 1.97976 

400 1.97873 1.97213 1.98038 1.97238 1.96583 1.97403 1.97449 1.96793 1.97614 

Table 2:  Bayes Estimates under ( = 1,   = 0.5) 

Sample 

Size 

Uniform Prior 

           = 1,    = 0.5 

Inverse Exponential Prior Levy Prior 

n SELF QLF PLF SELF QLF PLF SELF QLF PLF 

5 0.82309 0.49385 1.00808 0.69178 0.49413 0.77343 0.65965 0.45668 0.74797 

20 0.55006 0.49506 0.56601 0.54418 0.49471 0.55831 0.53384 0.48418 0.54808 

40 0.52039 0.49437 0.52737 0.51981 0.49505 0.52643 0.51388 0.48911 0.52051 

100 0.50477 0.49468 0.50737 0.50493 0.49503 0.50748 0.50248 0.49258 0.50503 

150 0.50049 0.49381 0.50219 0.50140 0.49480 0.50308 0.49937 0.49278 0.50105 

250 0.49918 0.49518 0.50019 0.49862 0.49466 0.49962 0.49737 0.49341 0.49837 

400 0.49731 0.49482 0.49793 0.49699 0.49451 0.49761 0.49673 0.49426 0.49735 
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Table 3:  Bayes Estimates under ( = 1,   = 2) 

Sample 

Size 

Uniform Prior 

          = 1,        = 2 

Inverse Exponential Prior Levy Prior 

n SELF QLF PLF SELF QLF PLF SELF QLF PLF 

5 3.27097 1.96258 4.00611 2.15220 1.53729 2.40623 2.29543 1.58915 2.60278 

20 2.17396 1.95657 2.23699 2.00593 1.82358 2.05804 2.04132 1.85143 2.09577 

40 2.06200 1.95890 2.08968 1.99242 1.89754 2.01780 1.99629 1.90008 2.02205 

100 2.00051 1.96050 2.01080 1.96703 1.92846 1.97694 1.97306 1.93418 1.98305 

150 1.98738 1.96088 1.99412 1.96728 1.94140 1.97387 1.97153 1.94550 1.97815 

250 1.97345 1.95766 1.97744 1.96059 1.94503 1.96453 1.96669 1.95105 1.97064 

400 1.96933 1.95949 1.97181 1.96163 1.95187 1.96409 1.96439 1.95460 1.96685 

Table 4:  Bayes Estimates under ( = 2,   = 1.5) 

Sample 

Size 

Uniform Prior 

           = 2,        = 1.5 

Inverse Exponential Prior Levy Prior 

 n SELF QLF PLF SELF QLF PLF SELF QLF PLF 

5 1.85651 1.48520 1.98469 1.57760 1.31467 1.66294 1.61238 1.33197 1.70459 

20 1.60065 1.52062 1.62214 1.50188 1.43036 1.52101 1.51273 1.43983 1.53225 

40 1.55658 1.51766 1.56665 1.49630 1.45980 1.50574 1.49539 1.45869 1.50488 

100 1.52993 1.51463 1.53381 1.48454 1.46984 1.48827 1.48736 1.47260 1.49110 

150 1.52520 1.51504 1.52777 1.48319 1.47337 1.48567 1.48312 1.47328 1.48560 

250 1.52100 1.51492 1.52253 1.48268 1.47677 1.48417 1.48296 1.47705 1.48445 

400 1.51934 1.51555 1.52030 1.48117 1.47748 1.48210 1.48249 1.47879 1.48341 

Table 5:  Posterior Risks under ( = 1,   = 0.5) 

Sample 

Size 

Uniform Prior 

           = 1,        = 0.5(p) 

Inverse Exponential Prior Levy Prior 

n SELF QLF PLF SELF QLF PLF SELF QLF PLF 

5 0.40611 0.20000 0.18499 0.13156 0.14286 0.16331 0.14143 0.15385 0.17665 

20 0.01866 0.05000 0.01595 0.01623 0.04545 0.02827 0.01610 0.04651 0.02848 

40 0.00750 0.02500 0.00699 0.00708 0.02381 0.01324 0.00702 0.02410 0.01326 

100 0.00265 0.01000 0.00260 0.00260 0.00980 0.00509 0.00259 0.00985 0.00509 

150 0.00172 0.00667 0.00170 0.00170 0.00658 0.00336 0.00169 0.00660 0.00336 

250 0.00101 0.00400 0.00101 0.00100 0.00397 0.00200 0.00100 0.00398 0.00200 

400 0.00062 0.00250 0.00063 0.00062 0.00249 0.00124 0.00062 0.00249 0.00125 

Table 6:  Posterior Risks under ( = 1.5,   = 2) 

Sample 

Size 

Uniform Prior 

           = 1.5,        = 2(p) 

Inverse Exponential Prior Levy Prior 

n SELF QLF PLF SELF QLF PLF SELF QLF PLF 

5 1.82929 0.30000 0.28454 0.76187 0.10526 0.31162 0.89673 0.11111 0.35007 

20 0.17026 0.07500 0.03870 0.14320 0.03125 0.06856 0.14763 0.03175 0.07021 

40 0.07404 0.03750 0.01779 0.06768 0.01613 0.03346 0.06916 0.01626 0.03395 

100 0.02733 0.01500 0.00678 0.02650 0.00658 0.01327 0.02657 0.00660 0.01331 

150 0.01791 0.01000 0.00448 0.01749 0.00441 0.00881 0.01758 0.00442 0.00884 

250 0.01059 0.00600 0.00266 0.01045 0.00265 0.00528 0.01049 0.00266 0.00529 

400 0.00657 0.00375 0.00166 0.00651 0.00166 0.00329 0.00652 0.00166 0.00330 
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Table 7:  Posterior Risks under ( = 1,   = 2) 

Sample 

Size 

Uniform Prior 

           = 1,       = 2(p) 

Inverse Exponential Prior Levy Prior 

 n  SELF QLF PLF SELF QLF PLF SELF QLF PLF 

5 6.40664 0.20000 0.73513 1.34948 0.14286 0.50807 1.77374 0.15385 0.61469 

20 0.29181 0.05000 0.06303 0.22165 0.04545 0.10422 0.23614 0.04651 0.10889 

40 0.11781 0.02500 0.02768 0.10411 0.02381 0.05076 0.10609 0.02410 0.05152 

100 0.04167 0.01000 0.01029 0.03946 0.00980 0.01982 0.03990 0.00985 0.01998 

150 0.02705 0.00667 0.00675 0.02614 0.00658 0.01318 0.02635 0.00660 0.01325 

250 0.01583 0.00400 0.00399 0.01550 0.00397 0.00787 0.01563 0.00398 0.00791 

400 0.00979 0.00250 0.00248 0.00967 0.00249 0.00491 0.00971 0.00249 0.00493 

Table 8:  Posterior Risks under ( = 2,   = 1.5) 

Sample 

Size 

Uniform Prior 

           = 2,       = 1.5(p) 

Inverse Exponential Prior Levy Prior 

 n  SELF QLF PLF SELF QLF PLF SELF QLF PLF 

5 0.54152 0.40000 0.12818 0.30096 0.08333 0.17067 0.33534 0.08696 0.18442 

20 0.07090 0.10000 0.02149 0.05926 0.02381 0.03827 0.06092 0.02410 0.03904 

40 0.03185 0.05000 0.01008 0.02869 0.01220 0.01888 0.02884 0.01227 0.01899 

100 0.01194 0.02000 0.00388 0.01113 0.00495 0.00745 0.01120 0.00496 0.00748 

150 0.00786 0.01333 0.00257 0.00738 0.00331 0.00496 0.00739 0.00332 0.00496 

250 0.00466 0.00800 0.00153 0.00441 0.00199 0.00297 0.00442 0.00199 0.00297 

400 0.00290 0.00500 0.00095 0.00275 0.00125 0.00185 0.00276 0.00125 0.00186 

6. Summary and Conclusions 

The posterior risk based on all priors and for all loss functions, relating to the scale 

parameter of a Nakagami distribution, expectedly decrease with the increase in sample 

size. Using the Uniform prior, the posterior risk increases with increase in the value of β 

whatever the value of λ may be. At the same level of β, the posterior risk decreases with 

for a Nakagami distribution with a larger λ. For the same unknown β value, the posterior 

risk decreases for a Nakagami distribution with a larger λ. The performance of loss 

function is dependent on the values of λ and β jointly. Using all Priors, the posterior risk 

is inversely proportional to the choice of values of the β. 

 

The posterior risk using Uniform prior is independent of the parameter β, but it tends to 

increase for larger values of the parameter λ of Nakagami distribution. The posterior risk 

after checking the effect of hyper parameter using Inverse Exponential and Levy Priors is 

also free of β, but for the fixed λ, the posterior risk decreases with increase in β. 

 

With Uniform Prior the posterior risk increases when β increases and λ is kept constant. 

In situations when λ increases and β is held, the posterior risk decreases. Using Inverse 

Exponential and Levy Priors and after checking the effect of hyper parameter posterior 

risk decreases when β increases and λ is constant. In situations when λ increases, the 

posterior risk decreases whatever β may be. The performance of loss function is 

dependent on λ and β jointly. 
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When  λ= 1.5 and λ =2 and all values of β for n=5 and for n=20 and above for all values 

of λ, β the PLF under Uniform prior shows minimum posterior risk than Levy prior and 

Inverse Exponential prior. Affect of hyper Parameters did not affect the mentioned 

results. The PLF of Uniform prior showed Least Posterior risk than Levy and Inverse 

Exponential Priors. While in all other cases of SELF and QLF informative Priors give 

better results than uninformative Uniform prior. 
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