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Abstract  

The paper is concerned with the preference of prior for the Bayesian analysis of the shape parameter of the 

mixture of Burr type X distribution using the censored data. We modeled the heterogeneous population 

using two components mixture of the Burr type X distribution. A comprehensive simulation scheme, 

through probabilistic mixing, has been followed to highlight the properties and behavior of the estimates in 

terms of sample size, corresponding risks and the proportion of the component of the mixture. The Bayes 

estimators of the parameters have been evaluated under the assumption of informative and non-informative 

priors using symmetric and asymmetric loss functions. The model selection criterion for the preference of 

the prior has been introduced. The hazard rate function of the mixture distribution has been discussed. The 

Bayes estimates under exponential prior and precautionary loss function exhibit the minimum posterior 

risks with some exceptions. 

Keywords: Inverse Transformation Method, Loss Functions, Prior Predictive 

distributions, Credible Intervals. 

1.   Introduction 

Burr (1942) introduced twelve different forms of cumulative distribution functions for 

modeling lifetime data. Among those twelve distribution functions, Burr-Type X and 

Burr-Type XII have received the maximum attention. Surles and Padgett (2001) observed 

that the Burr-Type X distribution can be used quite effectively in modeling strength data 

and general lifetime data. Several aspects of the one-parameter (Scale = 1) Burr-Type X 

distribution have been studied by Sartawi and Abu-Salih (1991), Jaheen (1996), Ahmad 

et al. (1997) and Raqab (1998). The distribution function and the density function of a 

Burr-Type X distribution have closed form. As a consequence of that, it can be used very 

conveniently even for censored data. 

 

Mixture models play a vital role in many applications. The direct applications of finite 

mixture models are in the fields of physics, biology, geology, medicine, engineering and 

economics, and many others. Detailed applications and examples are given by Mclachlan 

and Peel (2000), Mcculloch and Searle (2001), Ismail and El Khodary (2001), 
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Demidenko (2004), Sultan et al. (2007), Nair and Abdul (2010), Afify (2011) and 

Erisoglu et al. (2011). Gosh and Ebrahimi (2001) have made the Bayesian analysis of the 

mixing function in a mixture of two exponential distributions. Saleem and Aslam (2008) 

presented a comparison of the Maximum Likelihood (ML) estimates with the Bayes 

estimates assuming the uniform and the Jeffreys priors for the parameters of the Rayleigh 

mixture. Saleem et al. (2010) considered the Bayesian analysis of the mixture of Power 

function distribution using the complete and the censored sample. 

 

The problem of censoring is more commonly encountered in life-time data because no 

experiment may remain sustained for an infinite time due to restrictions on the available 

time or cost for testing. There are different kinds of censoring schemes which include 

right, left and interval censoring, single or multiple censoring and type-I or type-II 

censoring. Type-I and type-II censoring schemes are most popular among them. Saleem 

et al. (2010) considered the Bayesian analysis of the power function mixture distribution 

using type-I censored data. Shi and Yan (2010) discussed the empirical Bayes estimates 

of two-parameter exponential distribution under type-I censoring. 

 

We have focused on the selection of suitable prior for Bayesian analysis of the mixture of 

Burr type X distribution under type I censored samples. It worth mentioning here, that the 

mixture of this model under Bayesian approach has not been considered in the literature 

yet. 

 

The article is outlined as follows. In the section 2, we defined the mixture model for Burr 

type X distribution, sampling and likelihood function for type I censored samples. In the 

section 3, the posterior distributions have been derived under different priors. The loss 

functions for the derivation of Bayes estimators and posterior risks have been introduced 

in the section 4. Method of elicitation of hyper-parameters for the mixture of Burr type X 

distribution via prior predictive approach has been discussed in the section 5. Credible 

intervals for the parameters of the model have been derived in the section 6. The posterior 

predictive distributions have been presented in the section 7. A simulation study along 

with graphical representation of the results has been performed in the section 8.  A real 

life example has been included in the section 9. The section 10 contains the discussion 

regarding the hazard rate function of the mixture model. The model selection criterion 

has been introduced in the section 11. The section 12 presents the conclusion of the 

study.  

2.   The Population and the Model 

A population is postulated to be composed to two subpopulations with specified 

parameters. The subpopulations are mixed in proportion  , 1w w
 
where 0 1w  . A 

finite mixture distribution function with the two component densities of specified 

parametric form (but with unknown parameters,  1  and 2 ) and with unknown mixing 

weights, w  and  1 w is 1 2( ) ( ) (1 ) ( )F x wF x w F x   , 0 1w  , with the two 

component distribution functions of specified parametric (Burr type X distribution) form 
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  
12

1( ) 1F x exp x


    and   
22

2 ( ) 1F x exp x


   . The corresponding finite mixture 

density function has its probability density function (pdf) as:  

         
1 21 1

2 2 2 2

1 2 1 2( , , ) 2 exp 1 exp (1 )2 exp 1 exp ,p x w w x x x w x x x
 

   
 

        |

0,   1,2;   0i i x     
        

(1) 

 

The graphs of the mixture model, given in (1), are presented in the following. The 

abbreviations used in the legends are: PR1: λ1 = 1.50, λ 2 = 0.75; PR2: λ1 = 2.75, λ2 = 2.00; 

PR3: λ1 = 3.50, λ2 = 3.00; PR4: λ1 = 4.50, λ2 = 4.00; PR11: λ1 = 0.50, λ2 = 0.75; PR12:  

λ1 = 2.75, λ2 = 4.50; PR13: λ1 = 3.50, λ2 = 5.00; PR14: λ1 = 4.50, λ2 = 6.00. 

 

From the graphs it can be seen that the mixture model shifts its origin to the right for 

larger values of the parameters. In addition, the larger values of the parameters decrease 

the spread and increase the height of the curves.    

 

Fig. 1: Graph of the mixture model using π = 0.25 

 

Fig. 2: Graph of the mixture model using π = 0.75 

 

 

Fig. 3: Graph of the mixture model using π = 0.25 

 

Fig. 4: Graph of the mixture model using π = 0.75 
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2.1.  Sampling 

A random sample of size n units from the above mixture model is operating to a life 

testing experiment. The test is terminated at a fixed time T. Let the test be conducted and 

it is observed that out of n, r units have lifetime in the interval  0,T
 
and  n r

 
units 

are still functioning when the test termination time T is over. Hence  n r  units that 

have not failed by the time T are censored objects and yield no information. According to 

Mendenhall and Hader (1958), in many real life situations only the failed objects can 

easily be identified as member of either subpopulation 1 or subpopulation 2. So, 

depending upon the cause of failure it may be observed that 1r and 2r  objects are 

identified as members of the first subpopulation and the second subpopulation 

respectively. Obviously 1 2r r r   and remaining  n r
 
units provide no information 

about the subpopulation to which they belong. Furthermore, let ijx as the failure time of 

the j
th

 unit to the i
th

 subpopulation, where 
1 21,2,..., , 1,2;0 , .i j jj r i x x T   

 

2.2.  The Maximum Likelihood Function  

The likelihood function for a two-component mixture with n items under study, the 

probability that 1r  
will fail due to cause 1, 2r  

will fail due to cause 2 and remaining 

1 2( )n r r 
 
will survive at time T when test is terminated is given as: 

        
1 2

1 2 1 1 2 2

1 1

( , , x) 1 1
r r

n r

j j

j j

L w wf x w f x F T 


 

        

             

        

1 21 2
1 1

2 2 2 2

1 2 1 1 1 1 2 2 2 21 1

1 1
2 2

1 2

, , x 2 exp 1 exp (1 )2 exp 1 exp

                     1 exp ln 1 exp 1 exp ln 1 exp

r r

j j j j j jj j

n r

L w w x x x w x x x

w T w T

 

   

 

 

 


 

       

 
                

 

 |

 

        
1

1 2 2 21 1

1 2

2
1

1 2

0 0 1 1 2

, , x 1 1 expi

n r kn r
k k r k rr k

i i ij ij

k k i

n r n r k
L w w w x

k k
    

 
 

  

    
        

  
  |

 

(2) 

where 
1 211 12 1 21 22 2( , ) ( , ,..., , , ,..., )r rx x x x x x 1 2x x x

 
is data, 

       
1 1 1

2 2

1 1 1 1

1

ln 1 exp ln 1 exp
r

j j j

j

x x k T
 



       
 

and       
2 1 1

2 2

2 2 2 2

1

ln 1 exp ln 1 exp
r

j j j

j

x x k T
 



         

3.   Prior and Posterior Distributions 

In case of an informative prior, the use of prior information is equivalent to add a number 

of observations to the given sample size and hence leads to a reduction of posterior risks 

of the Bayes estimates based on the said informative prior. Bolstad (2004) has discussed 

a method to evaluate the worth of a prior information in terms of the number of additional 
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observations supposed to be added to the given sample size. While, when significant 

information is not avaiable regarding the parameters of the sampling distribution, a non-

informative prior can be formed. We have assumed both informative and non-informative 

priors for the posterior estimation.  

3. 1.  Posterior Distribution under Uniform Prior  

Let us assume a state of ignorance that 1 2,  and ware uniformly distributed over (0, ) . 

Hence 

1 1 1 2 2 2( ) , ( ) , 0ip k p k     3( ) 1,p w    1,2,  0 1i w      (3) 

 

Assuming independence, we have an improper joint prior that is proportional to a 

constant. The joint prior is incorporated with the likelihood (2) to yield a proper joint 

posterior distribution of 1 2,  and .w 
 
The joint posterior distribution of 1 2, 

 
and w is  

      
1

1 2 2 21 1

1 2

2
1

1 2

0 0 1 1 21

1
( , , x 1 1 expi

n r kn r
k k r k rr k

i i ij ij

k k ik

n r n r k
p w w w x

k k
    

 
 

  

    
        

  
  | )           

   0,i     0 1w        (4) 

where 1 1 1 2 2 21,   1r k r k        ,  1 2,B    is a standard beta function and 1k is 

defined as:  

 

   
   

  
 

  
 

1

1 2

1 2

1 2

1 1 2

1 1 2 1 1
0 0 1 2

1 1 2 2

1 1
1 ,

n r kn r
k k

k r r
k k

j j j j

n r n r k r r
B

k k x x 

 


 
 

        
     

  
   

3. 2.   Posterior Distribution under Jeffreys Prior 

Jeffreys prior is locally uniform and hence non-informative. An appealing property of 

Jeffreys prior is that it is invariant with respect to one-to-one transformations. For the 

Burr type x model given in Section 2, the Jeffreys priors are 
1 1 1

1

1( ) ,0 ,p  
   

2 2 2

1

2( ) ,0p  
     and 3( ) 1,0 1.p w w    assuming independence, the joint prior 

 2

1

1 1 2( , ),g w  


 is incorporated with the likelihood (2) to yield a proper joint 

posterior distribution of 1 2,  and w . The joint posterior distribution under Jeffreys prior 

is: 

      
1

1 2 2 21 1

1 2

2
1 1

1 2

0 0 1 1 22

1
( , , x 1 1 expi

n r kn r
k k r k rr k

i i ij ij

k k ik

n r n r k
p w w w x

k k
    

 
  

  

    
        

  
  | )

      0,i 
 
0 1w     (5) 

where 2k  is defined as:  

   
   

  
 

  
 

1

1 2

1 2

1 2

1 1 2

2 1 2

0 0 1 2
1 1 2 2

1 , .
n r kn r

k k

k r r
k k

j j j j

n r n r k r r
B

k k x x 

 


 

      
     

  
 
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3.3.   Posterior Distribution under Gamma Prior 

In case of an informative prior, the use of prior information is equivalent to add a number 

of observations to the given sample size and hence leads to a reduction of posterior risks 

of the Bayes estimates based on the said informative prior. 

Let  1 1 1, ,Gamma a b   2 2 2,Gamma a b  are the gamma priors 3and ( ) 1,p w 

, 0,i ia b   1,2,  0 1i w    
 

Assuming independence, the joint prior is incorporated with the likelihood to give the 

joint posterior distribution, that is  

   1 1 2 21 1

1 2 1 2 1 1 2 2( , , exp expr a r ap w b b          ) . The joint posterior distribution of 

1 2, 
 
and w is 

      
1

1 2 2 21 1

1 2

2
1 1

1 2

0 0 1 1 23

1
( , , x 1 1 expi i

n r kn r
k k r k r ar k

i i i ij ij

k k ik

n r n r k
p w w w b x

k k
    

 
   

  

    
         

  
  | )  

    0,i 
 
0 1w      (6) 

where 3k  is defined as:  

   
   

  
 

  
 

1

1 2

1 1 2 2

1 2

1 1 1 2 2

3 1 2

0 0 1 2
1 1 1 2 2 2

1 ,
n r kn r

k k

k r a r a
k k

j j j j

n r n r k r a r a
B

k k b x b x 

 


 
 

        
     

    
 

 

3.4.   Posterior Distribution under Exponential Prior 

Let  1 1 ,Exp    2 2Exp  are the exponential priors and 3( ) 1,p w   0,i   

1,2,  0 1i w    

 

Assuming independence, the joint prior is incorporated with the likelihood to give the 

joint posterior distribution, that is  

   1 2 1 1 2 2( , , exp expp w       ) . The joint posterior distribution of 1 2,  and w is 

      
1

1 2 2 21 1

1 2

2
1

1 2

0 0 1 1 24

1
( , , x 1 1 expi

n r kn r
k k r k rr k

i i i ij ij

k k ik

n r n r k
p w w w x

k k
     

 
 

  

    
         

  
  | )  

      0,i 
 
0 1w    (7) 

where 4k  is defined as:  

   
   

  
 

  
 

1

1 2

1 2

1 2

1 1 2

4 1 2 1 1
0 0 1 2

1 1 1 2 2 2

1 1
1 , .

n r kn r
k k

k r r
k k

j j j j

n r n r k r r
B

k k x x   

 


 
 

        
     

    
 
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The graphs for the marginal posterior distributions for the parameters of the mixture 

density, given in (3), (5), (6) and (7) under different priors are presented in the following. 

The graphs are based on the simulated data from the mixture model using a sample of 

size 50. The legends in the graphs contain following abbreviations: UP: Uniform prior; 

JP: Jeffreys prior; GP: Improved gamma prior; EP: Exponential prior. 

 

 

 
Fig. 5: Graph of the marginal posterior 

distribution of λ1 under different priors 

 
Fig. 6: Graph of the marginal posterior 

distribution of λ2 under different priors 
 
 

The graphs indicate that the marginal posterior distributions for the parameters λ1 and λ2 

are slightly positively skewed. In case of first component, it can be observed that shape of 

posterior distribution under all the prior are close to each other with slightly different 

origins. In case of second component, the curves of the posterior distributions under 

uniform and exponential priors are similar, while the shapes of posterior distributions 

under Jeffreys and gamma priors are different.  

4.   Loss Function 

The squared error loss function (SELF) is the commonly chosen loss function for the 

estimation of the parameter. The squared error loss function    
2

,L        was 

proposed by Legendre (1805) and Gauss (1810). This loss function is broadly used 

because it gives apparently sound Bayesian solution, i.e., those one would usually suggest 

as estimators for a non-decision theoretic inference based on the posterior distribution. A 

very useful and simple asymmetric precautionary loss function (PLF) is: 
* 2

*

*

( )
( , ) .L

 
 




  The Bayes estimator and the posterior risk under PLF are
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x

x  and     2( ( , ) 2E L d E E 
   xx x

x x  respectively. The Bayes 

estimators are also evaluated under weighted squared error loss function (WSELF). The 

Bayes estimator and the posterior risk under WSELF are   
1

1E


 


 
x

x  and 

     
1
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  

   


 
x x x

x x  Hence, we consider symmetric as well as 

asymmetric loss functions for getting better understanding in our Bayesian analysis.  
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5. Elicitation of Hyper-parameters of Informative Prior through Prior Predictive 

Probabilities  

To elicit a prior density, Aslam (2003) forms some new methods base on the prior 

predictive distribution. For the elicitation of hyper-parameters, he considers prior 

predictive probabilities, predictive mode and confidence level. In this study, the method 

of prior predictive probabilities is used for obtaining the hyper-parameters of the 

considered informative prior.  In fact, prior predictive removes the uncertainty in 

parameter (s) to reveal a distribution for the data point only. We suppose that prior 

predictive probabilities satisfy the laws of probability because this law ensure the expert 

would be consistent in eliciting the probabilities and some inconsistencies may arise 

which are not very serious. 

 

A function  ,a b is defined in such a way that the hyper-parameters a  and b  are to be 

chosen by minimizing this  
   

 

2

0

,

, min
a b y

p y p y
a b

p y


  
  

  
 , where  p y  denote the prior 

predictive probabilities characterized by the hyper-parameters a  and b  and  0p y  

denote the elicited prior predictive probabilities. The above equations solved 

simultaneously by applying ‘PROC SYSLIN’ of the SAS package for eliciting the 

required hyper-parameters. 

5.1.  Elicitation of   hyper-parameters of Gamma Prior  

The equation of prior predictive under the gamma prior is given as: 

1

1 2 1 2 1 2

0 0 0

( ) ( , , ) ( , , )p y p w p y w dwd d     
 

    |

    

(8) 
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p w e e
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After some algebra 
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 
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 
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      0 y       (9) 

 

By using the method of elicitation, discussed above, we get the following hyper-

parametric values 1 2.69875,a   1 0.08456,b   and 2 25.58269, 0.089586.a b 
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5.2.   Elicitation of hyper-parameters of Exponential Prior  

The equation of prior predictive under the exponential prior is given as: 

1

1 2 1 2 1 2

0 0 0

( ) ( , , ) ( , , )p y p w p y w dwd d     
 

    |
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 
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 
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After some simplifications the prior predictive distribution becomes: 

    
       

2 2
1 1

2 2

1
2 2 1 2

1 2

( )

ln 1 exp ln 1 exp

exp 1 exp ,p y

y y

y y y
 

 
 



 

     

 
 

    
 
 

  

       0 y      (10) 

By using the method of elicitation, mentioned above, we get the following hyper-

parametric values 1 20.925806,  1.023728.  
 

6.   Credible Interval 

The Bayesian counterpart of the confidence interval is named as credible interval. Unlike 

classical confidence interval, the 95% Bayesian credible interval contains the true 

parameter value with approximately 95% confidence. The credible interval is defined as: 

Let  xp   be the posterior distribution; then a  100 1 %  credible interval for 

parameter  , in any set C is such that 
   

x
1

p
P C


  . According to Eberly and 

Casella (2003) the credible interval can also be defined as:  
0

2
x

L

p d


   , 

 x
2

U

p d


 


  where L and U are the lower and upper limits of the credible interval 

respectively and  is level of significance. 

7.   Posterior Predictive Distributions 

The predictive distribution contains the information about the independent future random 

observation given preceding observations. In context of Bayesian inference the predictive 

distribution is referred as the posterior predictive distribution. Bolstad (2004) and Bansal 

(2007) have given a detailed discussion about the posterior predictive distribution. The 

posterior predictive distribution can be defined as: 

   
1

1 2 1 2 1 2

0 0 0

( , , ) ; , ,x xg y h w f y w dwd d     
 

       (11) 
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where 1 2( , , )xh w  is the posterior mixture distribution,  1 2; , ,f y w   is mixture 

density for future observation and y = xn+1 is the future observation given the sample 

information x = x1, x2, ..., xn, from of the model (1). The posterior predictive distribution 

using (1) and (12) can be obtained as: 
 

The posterior predictive distribution under uniform prior is: 
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The posterior predictive distribution under Jeffreys prior is: 
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The posterior predictive distribution under gamma prior is: 
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The posterior predictive distribution under exponential prior is: 
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8.   Simulation Study 

A simulation study is carried out in order to investigate the performance of Bayes 

estimators and impact of sample size and mixing proportion in the fit of model. We take 

random samples of sizes n = 25, 50, 100 and 300 from the two component mixture of 

Burr type x distribution with     1 2
( , ) 3,  7 , 9,  11   , 0.35.w   To generate a mixture data 

we make use of probabilistic mixing with probability wand (1 )w . A uniform number u

is generated n times and if u w the observation is taken randomly from 1F  (Burr Type 

X distribution with parameter 1 ) otherwise from 2F (from Burr Type X distribution with 

parameter 2 ). Hence the parameters to be estimated are known to be 1 2( , )   and w . To 

implement censored sampling, all the observations greater than T are declared as 

censored ones while calculations are conducted. The choice of the censoring time is made 

in such a way that the censoring rate in the resultant sample to be approximately 20%. To 

avoid an extreme sample, we simulate 1000 data sets each of size n. The Bayes estimates 

and posterior risks (in parenthesis) are computed using Mathematica 8.0. The average of 

these estimates and corresponding risks are reported in Tables 1-20 and Figs 1-6. These 

Tables depict that the Bayes estimates with informative (Exponential) prior have smaller 

posterior risks, however, a few exceptions are observed. The quality of Bayes 

(Exponential) depends upon the quality of prior information. The hyper-parameters can 

be considered as outcomes of the prior information. The informative Bayes estimates 

may turn out to be the most efficient, provided that useful prior information and 

consequently, the appropriate hyper-parameters are available. The comparison observed 

is summarized in last section. 
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Table 1:  Bayes Estimates (Uniform) of Burr Type X mixture parameters under 

SELF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
3.84830 7.90969 0.368222 11.29690 12.5169 0.376611 

(1.70731) (3.94036) (0.008304) (8.549523) (9.86615) (0.008446) 

50 
3.36193 7.44322 0.364750 10.17520 11.69280 0.369313 

(0.62968) (1.73275) (0.004340) (5.79473) (4.27949) (0.004461) 

100 
3.16872 7.22388 0.352024 9.67339 11.37621 0.360692 

(0.287169) (0.801778) (0.002214) (2.681690) (1.992660) (0.002277) 

300 
3.06021 7.04191 0.347940 9.13739 11.09790 0.358282 

(0.089149) (0.254291) (0.000749) (0.794986) (0.644356) (0.000771) 

Table 2:  Bayes Estimates (Jeffreys) of Burr Type X mixture parameters under 

SELF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
3.30176 7.40462 0.367358 10.11900 11.63690 0.380166 

(1.38407) (3.660540) (0.008280) (8.130706) (9.06919) (0.008483) 

50 
3.19966 7.17565 0.361885 9.37646 11.35580 0.370783 

(0.607675) (1.661650) (0.004347) (5.178210) (4.16771) (0.004458) 

100 
3.08849 7.12302 0.350966 9.25758 11.22860 0.356951 

(0.280949) (0.793535) (0.002198) (2.523130) (1.96647) (0.002262) 

300 
3.02764 7.06139 0.349584 9.08948 11.09280 0.355318 

(0.088078) (0.257066) (0.000747) (0.794586) (0.634268) (0.000771) 

Table 3: Bayes Estimates (Gamma) of Burr Type X mixture parameters under 

SELF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
4.27375 9.52703 0.369743 11.239910 14.96091 0.377196 

(1.17377) (3.444110) (0.008279) (7.30536) (8.066221) (0.008415) 

50 
3.57024 8.29246 0.363936 0.48351 12.85350 0.370791 

(0.552699) (1.38648) (0.004340) (4.612960) (3.52851) (0.004451) 

100 
3.30485 7.61572 0.351129 9.70951 11.90730 0.357211 

(0.258689) (0.734721) (0.002109) (1.87269) (1.738860) (0.002245) 

300 
3.09703 7.202190 0.348890 9.34969 11.32190 0.360447 

(0.086911) (0.249998) (0.000747) (0.719263) (0.602342) (0.000770) 
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Table 4:  Bayes estimates (Exponential) of Burr Type X mixture parameters 

under SELF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
2.72059 5.28858 0.368870 5.34828 6.93937 0.375599 

(0.792067) (1.696070) (0.008289) (2.947610) (2.898230) (0.008459) 

50 
2.86723 6.028280 0.363530 6.65760 8.54611 0.375230 

(0.451839) (1.125201) (0.004352) (2.390270) (2.249980) (0.004499) 

100 
2.93150 6.48006 0.350943 7.58245 9.68817 0.359929 

(0.244612) (0.644396) (0.002100) (1.62458) (1.438101) (0.002269) 

300 
2.947962 6.82801 0.348355 8.47065 10.45710 0.357804 

(0.084543) (0.239022) (0.000746) (0.682571) (0.560437) (0.000770) 

Table 5:  Bayes Estimates (Uniform) of Burr Type X mixture parameters under 

PLF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
3.63081 7.81626 0.379789 10.76150 12.36130 0.391052 

(0.372643) (0.466748) (0.021960) (1.10449) (0.738157) (0.022816) 

50 
3.22798 7.30170 0.370674 9.89830 11.58250 0.378963 

(0.172190) (0.222966) (0.011806) (0.528004) (0.353685) (0.012049) 

100 
3.14062 7.12907 0.354127 9.41779 11.31340 0.361765 

(0.087854) (0.108429) (0.006196) (0.265448) (0.172076) (0.006358) 

300 
3.04858 7.06232 0.349588 9.17393 11.096440 0.357110 

(0.029090) (0.054014) (0.002135) (0.086752) (0.056676) (0.002203) 

Table 6:  Bayes Estimates (Jeffreys) of Burr Type X mixture parameters under 

PLF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
3.97559 8.14414 0.380948 11.6103 12.9970 0.386649 

(0.370027) (0.458917) (0.022075) (1.08062) (0.73241) (0.022521) 

50 
3.46248 7.56759 0.369176 10.2128 11.90650 0.378516 

(0.175344) (0.224237) (0.011778) (0.517186) (0.352806) (0.012144) 

100 
3.25057 7.22929 0.353921 9.73641 11.43030 0.366667 

(0.088455) (0.108306) (0.006232) (0.264949) (0.171243) (0.006352) 

300 
3.06459 7.10131 0.351089 9.23960 11.13260 0.361796 

(0.028708) (0.036093) (0.002121) (0.086554) (0.056583) (0.002198) 
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Table 7: Bayes Estimates (Gamma) of Burr Type X mixture parameters under 

PLF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
4.39203 9.76091 0.378361 12.19460 15.15220 0.386882 

(0.352954) (0.437120) (0.022084) (0.979985) (0.678564) (0.022684) 

50 
3.69332 8.34134 0.368883 10.63280 13.24760 0.380310 

(0.172217) (0.217613) (0.011804) (0.495797) (0.345611) (0.012066) 

100 
3.36767 7.68878 0.354849 9.88059 12.04450 0.364419 

(0.087592) (0.107789) (0.006195) (0.256992) (0.168852) (0.006406) 

300 
3.11248 7.25726 0.349397 9.30716 11.32090 0.356236 

(0.028697) (0.036046) (0.002131) (0.085821) (0.056229) (0.002167) 

Table 8:  Bayes estimates (Exponential) of Burr Type X mixture parameters 

under PLF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
2.81632 5.44615 0.377792 5.60420 7.22505 0.391388 

(0.262129) (0.306887) (0.022090) (0.521610) (0.407127) (0.022505) 

50 
2.94209 6.07860 0.369035 6.81321 8.63802 0.380553 

(0.148991) (0.180117) (0.011772) (0.345029) (0.255956) (0.012140) 

100 
2.99418 6.48661 0.355187 7.74382 9.65180 0.361397 

(0.081478) (0.097179) (0.006215) (0.210726) (0.144598) (0.006318) 

300 
2.99668 6.83629 0.348832 8.54831 10.55130 0.359814 

(0.027978) (0.034746) (0.002128) (0.080078) (0.053628) (0.002168) 

Table 9:  Bayes Estimates (Uniform) of Burr Type X mixture parameters under 

WSELF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
3.43773 7.49636 0.344168 10.12221 11.71480 0.350418 

(0.381970) (0.468523) (0.023988) (1.124690) (0.732172) (0.024484) 

50 
3.19497 7.26792 0.351243 9.45622 11.29910 0.356714 

(0.177499) (0.227122) (0.012408) (0.525346) (0.353094) (0.012628) 

100 
3.09010 7.17604 0.343517 9.22026 11.18990 0.355046 

(0.088289) (0.110401) (0.006387) (0.263436) (0.172153) (0.006505) 

300 
3.01432 7.02753 0.346242 9.09046 11.05680 0.353429 

(0.028708) (0.036039) (0.002142) (0.086576) (0.056701) (0.002193) 
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Table 10:  Bayes Estimates (Jeffreys) of Burr Type X mixture parameters under 

WSELF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
2.94121 6.96661 0.343578 8.89329 10.97050 0.351393 

(0.367651) (0.46641) (0.024165) (1.111660) (0.731364) (0.024907) 

50 
2.96825 6.97154 0.349698 8.91495 10.97320 0.363096 

(0.174603) (0.224888) (0.012346) (0.524409) (0.349895) (0.012690) 

100 
2.99877 6.99661 0.345632 9.01686 10.98961 0.351578 

(0.088199) (0.109322) (0.006359) (0.263027) (0.171265) (0.006541) 

300 
3.00289 6.99948 0.347717 8.93985 10.99760 0.353594 

(0.028310) (0.036006) (0.002153) (0.085960) (0.056689) (0.002181) 

Table 11:  Bayes estimates (Gamma) of Burr Type X mixture parameters under 

WELF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
3.88854 9.20844 0.344651 10.86930 14.0801 0.355318 

(0.363457) (0.447387) (0.024142) (1.01594) (0.684076) (0.024890) 

50 
3.42251 8.15975 0.350421 9.92928 12.59300 0.358373 

(0.173743) (0.223049) (0.012402) (0.504056) (0.344234) (0.012587) 

100 
3.21551 7.51155 0.345565 9.39564 11.81140 0.355374 

(0.087619) (0.107951) (0.006369) (0.256021) (0.169747) (0.006594) 

300 
3.07914 7.19696 0.346770 9.15469 11.20710 0.356592 

(0.028858) (0.036060) (0.002149) (0.085799) (0.056153) (0.002192) 

Table 12:  Bayes estimates (Exponential) of Burr Type X mixture parameters 

under WELF 

n 1 3   
2 7   0.35w   1 9   

2 11   0.35w   

25 
2.42438 5.01342 0.344712 4.83713 6.56521 0.351672 

(0.269376) (0.313339) (0.023980) (0.537459) (0.410325) (0.024566) 

50 
2.74146 5.85477 0.349687 6.31033 8.30897 0.363016 

(0.152303) (0.182962) (0.012335) (0.350574) (0.259655) (0.012676) 

100 
2.85994 6.40238 0.344886 7.36190 9.45204 0.350197 

(0.081713) (0.098498) (0.006382) (0.21034) (0.145416) (0.006543) 

300 
2.95728 6.77115 0.347872 8.41971 0.43219 0.354439 

(0.028165) (0.034724) (0.002152) (0.080188) (0.053498) (0.002182) 
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7.1. Graphical Representation of posterior Risks under Different Priors of 

Component Densities Graphs of Component density 1  
Graphs of Component 

density 2  

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

          
 

 

 

 

 

 

Fig. 12. Posterior Risks for  

assuming different priors under 

WSELF using and  

 

Fig. 9. Posterior Risks for 

assuming different priors under WSELF 

using  

Fig. 7. Posterior Risks for assuming 

different priors under SELF using 

 

 

Fig. 10. Posterior Risks for  

assuming different priors under SELF 

using and  

Fig. 8. Posterior Risks for assuming 

different priors under PLF using  

 

Fig. 11. Posterior Risks for  

assuming different priors under PLF using

and  
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The simulation study has displayed some interesting properties of the Bayes point 

estimates. The posterior risks of the estimates of the lifetime parameters seem to be quite 

large (small) for the relatively larger (smaller) values of the parameters. However, in each 

case the posterior risks of estimates of lifetime parameters are reduced as the sample size 

increases. 

 

The Bayes estimates under exponential prior are more precise with few exceptions than 

existing informative as well as non-informative counterparts as the averaged posterior 

risks of the mixture components are smaller than others. The Bayes (gamma) estimates of 

the first and second lifetime parameters are over-estimated whereas the Bayes 

(exponential) estimates of the lifetime parameters are under-estimated with having 

smaller posterior risks with few exceptions. Both the estimates of the lifetime parameters 

are overestimated under uniform and gamma priors but the tendency of over-estimation is 

greater in case of Bayes (gamma). On the other hand, estimates of the mixing proportion 

parameter are over-estimated/under-estimated. The trend of over-estimation is higher 

(lower) for smaller (larger) true values of the mixing parameter. In addition, in comparing 

the loss functions the posterior risks under PLF are less than SELF and WLF with few 

exceptions.  It may be mentioned here that because of space restriction, results for all the 

variations in the parameters are not shown graphically. Only selected figures are 

included. The figure 7, 8 and 9 are the show the estimated posterior risks of the parameter 

of first component density under different priors. Similarly, the figures 10, 11, and 12 are 

the show the estimated posterior risks of the parameter of second component density 

under the different priors. The graphs for other combinations of the parametric values 

have the similar patterns. It is observed that as n increases, the risks of all the estimators 

decrease in all the considered cases. The posterior risks, under the exponential prior, are 

smaller for the parameter of both component densities as compared to other priors. 

Therefore, the Bayesian point estimation suggests the preference of the exponential prior 

under PLF for estimation. 
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Table 13:  The lower limit (LL), the upper limit (UL) and the width of the 95% 

credible intervals under different priors 

n 1 3   
2 7   0.35w   

LL UL Width LL UL Width LL UL Width 

 
Uniform Prior 

25 1.5835

7 

5.6418

6 

4.0582

9 

4.3922

7 

11.524

1 

7.1252

3 

0.2022

6 

0.5566

7 

0.3544

1 50 1.9006

3 

4.7265

9 

2.8259

6 

4.9218

2 

9.7879

8 

4.8661

6 

0.2412

62 

0.4993

18 

0.2580

6 10

0 

2.1733

4 

4.1957

1 

2.0223

7 

5.4999 8.9266

4 

3.4267

4 

0.2636

07 

0.4477

38 

0.1841

3 30

0 

2.4929

7 

3.6513

4 

1.1583

7 

6.0841 8.0528

5 

1.9687

5 

0.2982

31 

0.4056

25 

0.1073

9 
 

Jeffreys Prior 

25 1.4590

1 

5.2054

3 

3.8464

2 

4.0562

0 

10.972

9 

6.9167 0.2010

9 

0.5521

4 

0.3510

6 50 1.7724

8 

4.5223

8 

2.7499 4.7424

8 

9.5339

5 

4.7914

7 

0.2405

7 

0.4964

2 

0.2558

5 10

0 

2.1013

5 

4.0953 1.9939

5 

5.4052

1 

8.8058

2 

3.4006

1 

0.2631

5 

0.4434

5 

0.1803

0 30

0 

2.4669

8 

3.6198

7 

1.1528

9 

6.0507

3 

8.0144

4 

1.9637

1 

0.2958

3 

0.4030

3 

0.1072

0 
 

Gamma Prior 

25 1.6191

6 

5.6359

8 

4.0168

2 

4.1144

6 

11.050

7 

6.9362

4 

0.2017

3 

0.5535

5 

0.3518

2 50 1.9192

5 

4.7315

5 

2.8123 4.7730

9 

9.5715

2 

4.7984

3 

0.2409

4 

0.4949

4 

0.2540

0 10

0 

2.1829

2 

4.2003

4 

2.0174

2 

5.4210

2 

8.8240

2 

3.403 0.2613

1 

0.4459

4 

0.1846

3 30

0 

2.4960

8 

3.6535

4 

1.1574

6 

6.0561

9 

8.0203

6 

1.9641

7 

0.2971

5 

0.4028

9 

0.1057

3 
 

Exponential Prior 

25 1.2127

9 

4.3208

6 

3.1080

7 

4.3922

7 

7.9255

2 

3.5332

5 

0.2019

1 

0.5513

4 

0.3494

3 50 1.6472

5 

4.0964

6 

2.4492

1 

4.9218

2 

8.0110

4 

3.0892

2 

0.2393

2 

0.4961

3 

0.2568

0 10

0 

2.0127

2 

3.8856

3 

1.8729

1 

5.4999 8.0398

1 

2.5399

1 

0.2629

2 

0.4452

3 

0.1823

1 30

0 

2.4283

8 

3.5567

5 

1.1283

7 

6.0841 7.7674

6 

1.6833

6 

0.2978

3 

0.4020

7 

0.1042

4  

 

Table 13 gives the results for interval estimation. It is interesting to see that all the 

credible intervals contain the true value of the parameter. The credible intervals tend to 

be more specific under the assumption of the exponential prior. The width of credible 

interval is inversely proportional to sample size. The findings of the interval estimation 

also advocate that in order to estimate 1 2,   and w , the use of exponential prior can be 

preferred. It should be noted that the credible intervals for the other combination of the 

parametric values have not been presented as they follow the similar patterns.  

9.  Real Life Example 

This section covers the analysis of real life data set regarding the breaking strengths of 64 

single carbon fibers of length 10, presented Lawless (2003). The idea has been to see 

whether the results and properties of the Bayes estimators, explored by simulation study, 

are applicable to a real life situation. We have taken n = 64 and T = 3.501 in order to 

have censoring rate close to 20% (that has been used in simulation study). The results of 

the analysis have been reported in the following tables. The amounts of posterior risks 

associated with each estimate have been presented in the parenthesis in the tables. 

1 3  2 7 

1 3  2 7 

1 3  2 7 
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Table 14:   Bayes estimates and posterior risks under real life data using 0.35w   

Loss Function 
1  2  w  

1  2  w  

Uniform Jeffreys 

SELF 
586.64784 684.96707 0.36710 581.87619 683.80672 0.36561 

(5998.50714) (6139.78479) (0.03126) (5963.70792) (6103.83917) (0.03112) 

PLF 
590.09875 689.01264 0.37445 585.49791 688.33968 0.37322 

(6.90183) (8.09115) (0.01469) (7.24344) (9.06591) (0.01520) 

WSELF 
577.62248 674.96094 0.35092 571.51824 671.49608 0.34893 

(9.02535) (10.00612) (0.01618) (10.35795) (12.31064) (0.01668) 

 
Gamma Exponential 

SELF 
594.25344 709.85097 0.36769 570.01915 666.24748 0.35989 

(5954.74938) (6076.50709) (0.03069) (5645.80140) (6006.24078) (0.02945) 

PLF 
596.46348 713.06151 0.37289 571.94323 668.29623 0.36344 

(4.42009) (6.42107) (0.01039) (3.84816) (4.09751) (0.00909) 

WSELF 
587.48067 700.92605 0.35209 563.57439 660.81255 0.34767 

(6.77277) (8.92492) (0.01560) (6.44476) (5.43493) (0.01222) 

Table 15:   Bayes estimates and posterior risks under real life data using 0.45w   

Loss 

Function 
1  2  w  

1  2  w  

Uniform Jeffreys 

SELF 
578.77102 675.89204 0.44713 574.04339 674.76413 0.44572 

(5725.84773) (8807.06835) (0.03831) (5680.47114) (80343.45159) (0.03848) 

PLF 
582.13541 680.07069 0.45661 577.43224 680.12762 0.45596 

(6.72878) (8.35729) (0.01895) (6.67769) (7.72698) (0.02049) 

WSELF 
571.06410 661.19582 0.42753 566.79832 661.61529 0.42410 

(7.70692) (14.69623) (0.01960) (7.24507) (13.14884) (0.02162) 

 
Gamma Exponential 

SELF 
586.29208 700.42877 0.44837 570.65717 667.87697 0.41940 

(5670.51313) (9689.56536) (0.03779) (5280.48484) (7600.81798) (0.03613) 

PLF 
588.44681 704.01181 0.45426 571.34555 669.45127 0.42444 

(4.30948) (7.16607) (0.01178) (1.37675) (3.14860) (0.01007) 

WSELF 
579.21176 688.99712 0.43218 564.21325 656.67974 0.40908 

(7.08031) (11.43165) (0.01619) (6.44392) (11.19723) (0.01332) 

 

 

The tables 14-15 contain the Bayes estimates and posterior risks for the mixture 

distribution using real life data. It can be observed from the analysis that the performance 

of the informative priors is better than the non-informative priors. In comparison of 

informative priors, the least amounts of the posterior risks have been observed under 

exponential prior for each loss function. On the other hand, the performance of the PLF 

seems better than SELF and WSELF for all priors. The increase in the value of the 

mixing parameter has a positive impact on the performance of the estimates for the 
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parameter of the first component of the mixture. This is due to the reason that the 

increase in the values of the mixing parameter will add more values for the analysis of the 

first component of the mixture. Therefore, the findings from the analysis of real life data 

are in accordance with those of simulation study, suggesting the preference of 

exponential prior under PLF. 

10.   Hazard Rate for the Mixture of Burr Type X Distribution 

The hazard rate is a useful way of describing the distribution of ‘time to event’ because it 

has a natural interpretation that relates to the aging of a population. The hazard function 

is the risk of failure in a small time interval, given survival at the beginning of the time 

interval. As a function of time, a hazard function may be increasing; meaning as time 

increases the rate for failure increases, for example, when a patient is untreated for a 

disease such as cancer or the medication do not work properly; may be decreasing, for 

example, as a person is recovering from severe trauma like a surgery; or may be constant, 

meaning the rate of failure is the same regardless of how much time has passed. The 

constant hazard rate is mostly unrealistic. The hazard rate for the mixture of Burr Type X 

distribution has been compared under a range of parametric values. 

 

Hazard rate function for mixture of Burr Type X distribution is: 

 
           

        

1 2

1 2

1 1
2 2 2 2

1 2

2 2

2 exp 1 exp 1 2 exp 1 exp

1 1 exp 1 1 exp

x x x x x x
H t

x x

 

 

   

 

 

       


      

 (22) 

 

The graphs for the hazard rate of the mixture model, for different parametric values and 

for the various ranges of the variable, are presented in the following. The abbreviations in 

the graphs are: HR: hazard rate; PR1: θ1 = 0.50, θ2 = 0.75; PR2: θ1 = 0.75, θ2 = 2.00; θ1 = 

1.50, θ2 = 3.00; PR4: θ1 = 2.50, θ2 = 4.00. 

 

 

 

Fig. 13: Graph of hazard rates for mixture 

of model using π = 0.25 and 0 < t < 5 

 

Fig. 15: Graph of hazard rates for mixture 

of model using π = 0.75 and 0 < t < 5 
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Fig. 14: Graph of hazard rates for mixture 

of model using π = 0.25 and 0 < t < 5 

 

Fig. 16: Graph of hazard rates for mixture 

of model using π = 0.75 and 0 < t < 5 

 

 

Fig. 17: Graph of hazard rates for mixture 

of model using t = 2 and 0 < π < 1 

 

Fig. 18: Graph of hazard rates for mixture 

of model using t = 1 and 0 < π < 1 

 

 

The graphs suggest that the hazard rate for the mixture model tend to decrease for smaller 

‘t’ and larger parametric values. However, for t > 3 the choice of parametric values does 

not have a significant impact on the behavior of the hazard rate. The figures simply 

suggest that the hazard rate is an increasing function. The increase in the value of the 

mixing parameter (w) increases the hazard rate. The results are in accordance with the 

theory; because by increasing the mixing weight there are chances of more failures. 

11.   Model Comparison Criteria 

Bernardo (1979) proposed that under Bayesian inference, the performance of a model is 

based on the posterior predictive distribution. The criterion used to compare them is 

based on the use of the logarithmic score as a utility function in a statistical decision. 

When the uncertainty is contained in the value of a future observation 1ny x  the 

logarithmic score   log xkg y  is used, where  xkg y  denotes the posterior predictive 

density under model Mk. Then, the posterior predictive expected utility is given by: 

    log x xk k kU g y g y dy  . The optimal solution to the decision problem of 

choosing among the competing models M0, M1, .... , Mw is given by the model Mk*, such 

that: 
 

*

0,1,...,
max kk

k w

U U


 . Practically, the 
kU can be estimated as:   

1

1ˆ log x
m

k k i

i

U g y
m 

  . 
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where y1, y2, ... , ym are an independent and identically distributed random sample from 

 xkg y . This criterion can be used for selection of a suitable prior for the posterior 

analysis. The prior for which the posterior predictive distribution produces the maximum 

amount of posterior predictive expected utilities can be considered to be the best model.  

The more details can be seen from: Martin and Perez (2009). For numerical illustration, 

we have generated a random sample of size 30 from mixture of Burr type x distribution 

with for λ1 = 1.80, λ2 = 2.00 and w = 0.35. The values of the sample are:  

Table 16:  Simulated sample from mixture of Burr type x distribution for λ1 = 1.80, 

λ2 = 2.00 and w = 0.35 

0.571361 0.926639 1.102480 1.247594 1.456517 1.689385 

0.666807 0.967292 1.137095 1.270262 1.499276 1.715857 

0.748350 1.005153 1.162367 1.316861 1.545267 1.848867 

0.830025 1.034984 1.190743 1.368140 1.600780 1.940499 

0.881668 1.058690 1.215792 1.411192 1.643376 2.127397 

 

Now a sample of size 1000 for the parameters of the posterior distribution under each 

prior is generated. Based on these samples the estimated values for the posterior 

predictive expected utilities have been presented in the following table. 

Table 17:   The posterior predictive expected utilities under different priors 

Uniform Jeffreys Gamma Exponential 

-1.77146 -1.75013  -1.70721 -1.63065 

 

Now based on these posterior predictive expected utilities it can be assessed that the 

posterior distribution under exponential prior is the best among all the posterior densities. 

Hence, the most suitable prior is exponential prior. The findings from the model 

comparison criteria endorsed the preference of the exponential prior as suggested by the 

analysis of simulated and real life data sets. 

12.   Conclusion 

The study has been planned to select a suitable prior for the Bayesian analysis of the 

parameters of the two-component mixture of the Burr Type X distribution. Four 

informative and non-informative priors have been assumed for posterior analysis under 

three loss functions. The model selection criterion for selection of a suitable prior has 

also been introduced. The findings of the study suggest that the exponential prior is the 

most suitable prior for the estimation of the parameters of the mixture density. The study 

is useful for the analysts looking to model the heterogeneous data through some lifetime 

distributions under censored samples. The study can further be extended by considering 

some other censoring scheme or mixing two different distributions from Burr family. 



Tabassum Naz Sindhu, Navid Feroze, Muhammad Aslam 

Pak.j.stat.oper.res.  Vol.X  No.1 2014  pp17-39 38 

References 

1. Afify, W. M. (2011). Classical estimation of mixed Rayleigh distribution in type i 

progressive censored, Journal of Statistical Theory and Applications, 10(4),  

619-632.  

2. Ahmad, K. E., Fakhry, M. E. and Jaheen, Z. F. (1997). Empirical Bayes 

estimation of P(Y < X) and characterization of Burr-type X model, Journal of 

Statistical Planning and Inference, 64, 297-308. 

3. Aslam, M. (2003). An application of prior predictive distribution to elicit the prior 

density, Journal of Statistical Theory and Applications. 2(1), 70-83. 

4. Bernardo, J. M. (1979). Expected information as expected utility. Ann. Statist. 7, 

686-690. 

5. Bolstad, W. M. (2004). Introduction to Bayesian Statistics. John Wiley and Sons, 

Inc. New York. 

6. Burr, I. W. (1942). Cumulative frequency distribution, Annals of Mathematical 

Statistics, 13, 215-232. 

7. Gauss, C. F. (1810). M´ethode des Moindres Carr´es. M´emoire sur la Com-

bination des Observations. Transl. J. Bertrand (1955). Mallet-Bachelier, Paris. 

8. Demidenko, E. (2004). Mixed Models: Theory and applications. Wiley, New 

Jersey. 

9. Eberly, L. E. and Casella, G. (2003). Estimating Bayesian credible intervals. 

Journal of Statistical Planning and Inference, 112, 115-132.  

10. Erisoglu, U., Erisoglu, M. and Erol, H. (2011). A mixture model of two different 

distributions approach to the analysis of heterogeneous survival data, World 

Academy of Science, Engineering and Technology, 78, 41-45. 

11. Ghosh, S. K. Ebrahimi, N. (2001). Bayesian analysis of the mixing function in a 

mixture of two exponential distributions. Tech. Rep. 2531, Institute of Statistics 

Mimeographs, North Carolina State University, North Carolina State University. 

12. Ismail, S. A. and El-Khodary, I. H. (2001). Characterization of mixtures of 

exponential family distributions through conditional expectation, Annual 

Conference on Statistics and Computer Modeling in Human and Social Sciences, 

13, 64-73. 

13. Jaheen. Z. F. (1996). Empirical Bayes estimation of the reliability and failure rate 

functions of  the Burr type X failure model, Journal of Applied Statistical 

Sciences, 3, 281-288. 

14. Legendre, A. (1805). Nouvelles M´ethodes pour la D´etermination des Orbitesdes 

Com.etes. Courcier, Paris. 

15. McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models, John Wiley and 

Sons, New York. 

16. Martin, J. and Perez, C. J. (2009). Bayesian analysis of a generalized lognormal 

distribution, Computational Statistics and Data Analysis, 53, 1377-1387. 

17. Mcculloch, C. E. and Searle, S. R. (2001). Generalized, Linear and Mixed 

Models, Wiley, New York. 



Preference of Prior for Bayesian Analysis of the Mixed Burr Type X Distribution under Type I Censored Samples  

Pak.j.stat.oper.res.  Vol.X  No.1 2014  pp17-39 39 

18. Mendenhall, W. and Hadar, R. J. (1958). Estimation of parameters of mixed 

exponen-tially distributed failure time distributions from censored life test data. 

Biometrika, 45(3-4), 504-520. 

19. Nair, M. T. and Abdul, E. S. (2010). Finite mixture of exponential model and its 

applications to renewal and reliability theory, Journal of Statistical Theory and 

Practice, 4(3): 367-373. 

20. Raqab, M. Z. (1998). Order statistics from the Burr type X model, Computers 

Mathematics and Applications, 36, 111-120. 

21. Saleem M. and Aslam M. (2008). Bayesian analysis of the two component 

mixture of the Rayleigh distribution assuming the Uniform and the Jeffreys prior 

from censored data, J. App. Statist. Science, 16(4), 105-113. 

22. Saleem, M., Aslam, M. and Economou, P. (2010).  On the Bayesian analysis of 

the mixture of Power function distribution using the complete and the censored 

sample. J. Applied Statistics, 37(1), 25-40. 

23. Saleem, M., Aslam, M. and Economou, P. (2010). On the Bayesian analysis of the 

mixture of power function distribution using the complete and the censored 

sample, Journal of Applied Statistics, 37(1), 25-40. 

24. Sartawi, H. A. and Abu-Salih, M. S. (1991). Bayes prediction bounds for the Burr 

type X model, Communications in Statistics - Theory and Methods, 20,  

2307-2330. 

25. Shi, Y. and Yan, W. (2010). The EB estimation of scale parameter for two 

parameter exponential distribution under the type-I censoring life test, J. Phys. 

Sci. 4, 25-30. 

26. Sultan, K. S., Ismail, M. A. and Al-Moisheer, A. S., 2007. Mixture of two inverse 

Weibull distributions: properties and estimation, Computational Statistics & Data 

Analysis, 51, 5377-5387. 

27. Surles, J. G. and Padgett, W. J. (2001). Inference for reliability and stress-strength 

for a scaled Burr Type X distribution, Lifetime Data Analysis, 7, 187-200. 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Nair%2C+Maya+T.)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Abdul%2C+E.+Saleem)
http://www.tandfonline.com/loi/ujsp20?open=4#vol_4
http://www.tandfonline.com/toc/ujsp20/4/3

