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Abstract 

Burr type III is an important distribution used to model the failure time data. The paper addresses the 

problem of estimation of parameters of the Burr type III distribution based on maximum likelihood 

estimation (MLE) when the samples are left censored. As the closed form expression for the MLEs of the 

parameters cannot be derived, the approximate solutions have been obtained through iterative procedures. 

An extensive simulation study has been carried out to investigate the performance of the estimators with 

respect to sample size, censoring rate and true parametric values. A real life example has also been 

presented. The study revealed that the proposed estimators are consistent and capable of providing efficient 

results under small to moderate samples.  

Keywords: Maximum likelihood estimation, loss functions, prior distribution, Bayes 

risks.  

1. Introduction 

The Burr type iii distribution belongs to family of Burr distributions proposed by Burr 

(1942). The adaptability and flexibility of the Burr family of distributions make them 

attractive models for analysis of the data whose underlying distribution is unknown. 

Among the family of Burr distributions, most of the literature is available about the 

Bayesian and classical analysis of the Burr type x and xii distributions. Several papers 

have appeared addressing the estimation of the parameters of the Burr type x and xii 

distributions under Bayesian and classical frameworks. According to Dasgupta (2011) 

under certain assumptions, the Burr type xii distribution can be shown to follow an 

extreme value distribution. This property have motivated the authors to use this 

distribution for modeling extreme events such as flood frequencies, wind speeds, rainfalls 

and river discharge volumes. The details regarding these contributions can be seen from: 

Soliman (2002), Shao (2004a), Shao et al. (2004b), Soliman (2005), Wu and Yu (2005), 

Wahed (2006), Wu et al. (2007), Silva et al. (2008), Nadar and Alexandros (2011) and 

Feroze and Aslam (2012a). From other members of this family of distributions, the 

Bayesian analysis of Burr type VII and XI distributions have been discussed by Feroze 

and Aslam (2012b) and Feroze and Aslam (2012c) respectively. The rest of the 

distributions from this family have not been considered for analysis significantly. The 
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Burr type iii distribution has also not received the sizeable attention of the analysts yet. It 

can be used as an alternative to many lifetime distributions including Weibul and Burr 

type xii distributions. Recently, Abd-Elfattah and Alharbey (2012) have discussed the 

Bayesian and maximum likelihood estimation of the parameters of Burr type iii 

distribution under doubly censored samples, but the process they have used to calculate 

MLE is not very efficient which has also been suggested by the simulation results. 

Further, they have not derived the expressions for the Fisher information matrix. We have 

proposed a logical methodology to calculate the MLEs and to derive elements of Fisher 

information matrix on the basis of left censored samples. 

 

The probability density function (pdf) of the Burr type iii distribution is: 

   
1

1 1f x x x


 
 

      ; 0x  , , 0   .  (1) 

where  and   are the shape parameters of the distribution. It can be observed that the 

pdf of this distribution is very close to the Burr type xii distribution. With little 

transformations the Burr type xii distribution can be obtained. However, the Burr type iii 

distribution can cover wider region for the skewness and kurtosis plane. The cumulative 

distribution function for the Burr type iii distribution can be written as: 

   1F x x





 
        

(2)
 

 

The left censored data is very likely to occur in survivor analysis. It can happen where an 

event of interest has already occurred at the observation time, but it is not known exactly 

when. For example, the situations including: the infection with a sexually-transmitted 

disease such as HIV/AIDS, onset of a pre-symptomatic illness such as cancer and time at 

which teenagers begin to drink alcohol can lead to left censored data. In case of left 

censored samples, we can only observe those individuals whose event time is greater than 

some truncation point. This truncation point may or may not be the same for all 

individuals. For example, in case of actuarial life studies, the individuals those died in the 

womb are often ignored. Another example: suppose you wish to study how long patients 

who have been hospitalized for a heart attack survive taking some treatment at home. In 

such situations, the starting time is often considered to be the time of the heart attack. 

Only those patients who survive their stay in hospital are able to be included in the study. 

The more illustrations on left censoring can be seen from: Lawless and Jerald (2003), 

Sinha (2006), Asselineau et al. (2007), Antweller and Taylor (2008), Thompson et al. 

(2011), Feroze and Aslam (2012b) and Sindhu et al. (2013). These studies motivated the 

authors to conduct the current analysis under left censored samples. 

2. Materials and Methods 

This section contains the derivation of maximum likelihood estimates, elements of Fisher 

information matrix, variance covariance matrix and confidence intervals for the 

parameters of the Burr type iii distribution under left censored samples. The limiting 

behavior of the Fisher information matrix has also been discussed.  

2.1.  Maximum likelihood estimation 

Based on the left censored sample the likelihood function along with maximum 

likelihood estimators of the parameters of the Burr type iii distribution have been 
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discussed in the following. Let    1
...

r n
X X

  
be the last n r  ordered statistics from the 

Burr type iii distribution. Then, the likelihood function for the sample of  n r  left 

censored sample can be defined as: 

      ( 1) ( )

1

, , , , ,
nr

r i

i r

L F x f x     

 

   

 

Using (1) and (2), it can be written as: 

       
1

1

( 1) ( ) ( )

1

, 1 1
n

r n r

r i i

i r
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 

    
     



 

      (3) 

 

The log-likelihood function is given as: 

             ( 1) ( ) ( )

1 1

, ln 1 ln 1 ln 1 ln 1
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   
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(4)

 
 

The normal equations to derive the MLEs of parameters  and   are:  
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From (5), the MLE of   can be derived as a function of  that can be denoted as: 

 
   ( 1) ( )

1

ˆ

ln 1 ln 1
n

r i

i r
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 
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
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     (7)

 
 

It is observed from (6) that the MLE of the parameter  cannot be obtained in closed 

form. It can be obtained by solving a one dimensional optimization problem. A simple 

fixed point iteration algorithm can be used to solve this optimization problem. Firstly, the 

parameter   in log-likelihood (4) has been replaced by its MLE given in (7) the resultant 

log-likelihood becomes:  
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After some simplifications it can be presented as: 
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MLE of   can be obtained by maximizing (8) with respect to   and it is unique. Most 

of the standard iterative process can be used for finding the MLE. We propose the 

following simple algorithm. If  ̂  is the MLE of  , then it is obvious from  ' 0l   that 

̂ satisfies the following fixed point type equation;  g    

Where 
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(9) 

 

The iterated result of the above function has been considered as an MLE of   and 

denoted by̂ . Now the approximate MLE of  has been incorporated in (7) to obtain the 

MLE of  . 

2.2.  Approximate Fisher information matrix 

In this section, the efforts have been made to derive the elements of the Fisher 

information matrix for the parameters of the Burr type iii distribution under left censored 

samples. The variance covariance matrix for the parameters of the Burr type iii 

distribution can be obtained by inverting the Fisher information matrix. The Fisher 

information matrix can be defined as: 

 

2 2

2

2 2
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,
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I
l l
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      (10) 

 

The equations for the elements of the Fisher information matrix can be written as: 
2

2 2
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Now, the expected values of the (12) and (13) require the distribution of the thi  order 

statistics from the Burr type iii distribution which can be written as:  

   
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where
   ,
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 
 

 

The expectations necessary to derive the elements of the Fisher information matrix are 

given as: 
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(16) 
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where,  ,B x y  is a standard beta function and  
 
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' z
z

z
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



is a digamma function.  

 

Now using (15), (16) and (17), the components of the Fisher information matrix become: 
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The variance covariance matrix can be obtained by inverting the Fisher information 

matrix as: 

 
   

   
1

ˆˆ ˆ ,
,

ˆ ˆˆ ,

V Cov
I

Cov V

  
 

  



 
 
 
    

where, the diagonal elements of the matrix are the variances of the MLEs of   and 

respectively and off diagonal elements are the covariances. The elements of the variance 
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covariance matrix can be used to construct the approximate confidence intervals for the 

said parameters. The approximate confidence intervals for  and   as discussed by Wu 

and Kus (2009) are: 

 /2
ˆ ˆ

kZ V   and  /2
ˆ ˆ

kZ V 
 
where  k is the level of significance.  

2.3.  Limiting Fisher information matrix 

This section discusses the asymptotic efficiencies and limiting information matrix when 

r
n

 converges to, say, p  which lies in (0,1) . According to Gupta et al. (2004), for the 

left censored observations at the time pointT , the limiting Fisher information matrix can 

be written as  

11 12

21 22

( , )
b b

I
b b

 
 

  
 

        (18) 

where  

( ln ( , ))( ln ( , )) ( ; )ij

i jT

b r y r y f y dy  
 


 


   and 

( ; )
( , ), ( , )

( ; )

f y
r y

F y


   


   the 

reversed hazard function.  Zheng and Gastwirth (2000) have shown that for location and 

scale family, the Fisher information matrix for Type-I and Type-II (both for left and right 

censored data) are asymptotically equivalent. They further described that for general case 

(not for location and scale family) the results for Type-II censored data (both for left and 

right) of the asymptotic Fisher information matrices are very difficult to obtain. We 

cannot obtain the explicit expression for the limiting Fisher information matrix for Burr 

type iii distribution under left censored samples as it does not belong to the location and 

scale family. Numerically, we have studied the limiting behavior of the Fisher 

information matrix by taking 5000n   (assuming it is very large) and compare them 

with the different small samples and different ‘p’ values. The numerical results have been 

presented in section (3). 

3. Numerical Results 

This section covers the discussions regarding the results of the simulation study along 

with real life example. The samples of size n = 20, 50, 100, 150 and 200 have been 

generated by inverse transformation technique using the function  
1/

1/ 1X U





 

where  Uniform 0,1U . The parametric space contains: 

      , 0.8,2,4,8,16 , 0.6,2,4,8,16   . Each sample has assumed to be 10% and 20% 

left censored. The purpose of the simulation study is to assess the behavior of the MLEs 

and confidence intervals for the parameters of the Burr type iii distribution. It has been 

observed that the MLE of parameter  cannot be obtained in the explicit form; therefore 

a fixed point iteration scheme has been suggested to have the approximate MLE of the 

parameter . The performance of the MLEs have been evaluated in terms of their mean 
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square errors (MSEs); while, the performance of the confidence intervals have been 

discussed on the basis of the widths of the intervals along with corresponding coverage 

probabilities. For the whole parametric space of the   we have assumed 0.6   and for 

the entire parametric space of   we assumed 0.8  . The entries in the tables below are 

the average of the results under 10000 replications. The maximum likelihood estimates 

(MLEs), MSE, 95% lower confidence limits (LCL), upper confidence limits (UCL), 

width of the confidence limits and associated coverage probabilities (proportion of the 

intervals containing the true parametric values to the total (10000) intervals) have been 

presented in the tables. 

Table 3.1:   MLEs, MSEs, LCLs, UCLs and coverage probabilities for α using n = 20 

α 

 (β = 0.6) 

MLE MSE LCL UCL Width 
Coverage 

Probability 

10% Censored Samples 

0.80 0.8487 0.0241 0.5446 1.1529 0.6083 0.966 

2 2.0774 0.0381 1.6947 2.4601 0.7654 0.963 

4 4.1398 0.0582 3.6669 4.6127 0.9457 0.961 

8 8.3361 0.1583 7.5563 9.1159 1.5596 0.955 

16 16.8364 0.3384 15.6963 17.9766 2.2803 0.969 

 
20% Censored Samples 

0.80 0.8733 0.0375 0.4938 1.2528 0.7589 0.963 

2 2.1376 0.0715 1.6136 2.6616 1.0480 0.961 

4 4.2597 0.1323 3.5468 4.9726 1.4258 0.957 

8 8.5775 0.3772 7.3738 9.7813 2.4074 0.952 

16 17.1557 0.6695 15.5520 18.7595 3.2075 0.964 

Table 3.2:   MLEs, MSEs, LCLs, UCLs and coverage probabilities for α using n = 50 

α 

 (β = 0.6) 

MLE MSE LCL UCL Width 
Coverage 

Probabilit

y 10% Censored Samples 

0.80 0.8303 0.0149 0.5912 1.0694 0.4782 0.968 

2 2.0694 0.0274 1.7452 2.3936 0.6484 0.964 

4 4.1216 0.0405 3.7273 4.5159 0.7886 0.961 

8 8.1956 0.0749 7.6592 8.7320 1.0728 0.957 

16 16.6402 0.1821 15.8038 17.4766 1.6727 0.972 

 
20% Censored Samples 

0.80 0.8544 0.0253 0.5427 1.1661 0.6234 0.965 

2 2.0866 0.0405 1.6922 2.4810 0.7888 0.962 

4 4.1558 0.0633 3.6625 4.6490 0.9865 0.957 

8 8.3472 0.1635 7.5546 9.1398 1.5852 0.954 

16 16.6127 0.2111 15.7121 17.5132 1.8011 0.967 
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Table 3.3: MLEs, MSEs, LCLs, UCLs and coverage probabilities for α using n = 100 

α 

 (β = 0.6) 

MLE MSE LCL UCL Width 
Coverage 

Probabilit

y 
10% Censored Samples 

0.80 0.8176 0.0095 0.6262 1.0090 0.3827 0.970 

2 2.0369 0.0154 1.7936 2.2802 0.4865 0.972 

4 4.0925 0.0253 3.7808 4.4043 0.6235 0.969 

8 8.1912 0.0570 7.7235 8.6590 0.9355 0.971 

16 16.5512 0.1168 15.8815 17.2209 1.3394 0.971 

 20% Censored Samples 

0.80 0.8484 0.0158 0.6023 1.0945 0.4922 0.967 

2 2.0766 0.0251 1.7659 2.3873 0.6214 0.970 

4 4.1381 0.0396 3.7480 4.5282 0.7802 0.965 

8 8.3327 0.1204 7.6527 9.0127 1.3600 0.968 

16 16.6660 0.1737 15.8492 17.4829 1.6337 0.966 

Table 3.4: MLEs, MSEs, LCLs, UCLs and coverage probabilities for α using n = 150 

α 

 (β = 0.6) 

MLE MSE LCL UCL Width 
Coverage 

Probabilit

y 10% Censored Samples 

0.80 0.8093 0.0039 0.6874 0.9312 0.2438 0.971 

2 2.0435 0.0084 1.8642 2.2228 0.3586 0.979 

4 4.0995 0.0155 3.8554 4.3437 0.4882 0.969 

8 8.1669 0.0286 7.8356 8.4982 0.6626 0.973 

16 16.4680 0.0526 16.0183 16.9176 0.8993 0.967 

 20% Censored Samples 

0.80 0.8327 0.0086 0.6508 1.0147 0.3639 0.969 

2 2.0604 0.0150 1.8206 2.3003 0.4797 0.971 

4 4.1335 0.0294 3.7973 4.4698 0.6725 0.965 

8 8.3180 0.0950 7.7138 8.9222 1.2083 0.970 

16 16.4407 0.0641 15.9445 16.9370 0.9925 0.969 
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Table 3.5: MLEs, MSEs, LCLs, UCLs and coverage probabilities for α using n = 200 

α 

 (β = 0.6) 

MLE MSE LCL UCL Width 
Coverage 

Probabilit

y 
10% Censored Samples 

0.80 0.8050 0.0023 0.7114 0.8985 0.1871 0.982 

2 2.0325 0.0048 1.8971 2.1679 0.2708 0.976 

4 4.0645 0.0068 3.9031 4.2260 0.3230 0.976 

8 8.1232 0.0144 7.8879 8.3585 0.4706 0.981 

16 16.4293 0.0330 16.0734 16.7851 0.7117 0.982 

 20% Censored Samples 

0.80 0.8242 0.0040 0.7002 0.9481 0.2478 0.979 

2 2.0173 0.0042 1.8908 2.1438 0.2529 0.974 

4 4.0200 0.0057 3.8724 4.1676 0.2953 0.972 

8 8.0949 0.0127 7.8736 8.3161 0.4425 0.978 

16 16.1903 0.0234 15.8903 16.4904 0.6001 0.977 

Table 3.6:   MLEs, MSEs, LCLs, UCLs and coverage probabilities for β using n = 20 

β  

 (α = 0.8) 

MLE MSE LCL UCL Width 
Coverage 

Probabilit

y 10% Censored Samples 

0.60 0.5145 0.0418 0.1136 0.9154 0.8018 0.963 

2 1.8740 0.0712 1.3511 2.3969 1.0458 0.967 

4 3.8093 0.1226 3.1231 4.4956 1.3726 0.969 

8 7.6441 0.2692 6.6272 8.6610 2.0338 0.959 

16 15.6413 0.4222 14.3678 16.9149 2.5471 0.968 

 20% Censored Samples 

0.60 0.5120 0.0489 0.0784 0.9456 0.8672 0.960 

2 1.8651 0.0878 1.2843 2.4459 1.1616 0.965 

4 3.7912 0.1516 3.0281 4.5542 1.5261 0.965 

8 7.6076 0.3334 6.4760 8.7393 2.2634 0.956 

16 15.5667 0.5418 14.1240 17.0094 2.8854 0.964 
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Table 3.7:   MLEs, MSEs, LCLs, UCLs and coverage probabilities for β using n = 50 

β  

 (α = 0.8) 

MLE MSE LCL UCL Width 
Coverage 

Probabilit

y 
10% Censored Samples 

0.60 0.5409 0.0223 0.2480 0.8338 0.5858 0.966 

2 1.9140 0.0392 1.5258 2.3022 0.7763 0.968 

4 3.8526 0.0774 3.3074 4.3978 1.0904 0.969 

8 7.7470 0.1563 6.9721 8.5219 1.5498 0.961 

16 15.6624 0.3364 14.5256 16.7992 2.2737 0.972 

 20% Censored Samples 

0.60 0.5383 0.0279 0.2110 0.8656 0.6546 0.963 

2 1.9049 0.0521 1.4575 2.3522 0.8947 0.966 

4 3.8342 0.1007 3.2122 4.4562 1.2440 0.965 

8 7.7100 0.2066 6.8192 8.6009 1.7817 0.958 

16 15.5877 0.4421 14.2844 16.8910 2.6066 0.967 

Table 3.8: MLEs, MSEs, LCLs, UCLs and coverage probabilities for β using n = 100 

β  

 (α = 0.8) 

MLE MSE LCL UCL Width 
Coverage 

Probabilit

y 10% Censored Samples 

0.60 0.5606 0.0129 0.3379 0.7833 0.4454 0.965 

2 1.9172 0.0320 1.5666 2.2677 0.7010 0.969 

4 3.8589 0.0655 3.3573 4.3605 1.0032 0.971 

8 7.7598 0.1315 7.0492 8.4704 1.4213 0.961 

16 15.6882 0.2872 14.6379 16.7386 2.1007 0.971 

 20% Censored Samples 

0.60 0.5531 0.0161 0.3044 0.8018 0.4974 0.963 

2 1.8914 0.0446 1.4773 2.3054 0.8281 0.967 

4 3.8070 0.0987 3.1912 4.4229 1.2316 0.967 

8 7.6554 0.2093 6.7587 8.5522 1.7934 0.958 

16 15.4773 0.4757 14.1255 16.8291 2.7036 0.966 
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Table 3.9: MLEs, MSEs, LCLs, UCLs and coverage probabilities for β using n = 150 

β  

 (α = 0.8) 

MLE MSE LCL UCL Width 
Coverage 

Probabilit

y 10% Censored Samples 

0.60 0.5838 0.0064 0.4265 0.7412 0.3147 0.968 

2 1.9581 0.0162 1.7084 2.2078 0.4993 0.970 

4 3.9027 0.0399 3.5113 4.2941 0.7828 0.971 

8 7.8478 0.0749 7.3113 8.3844 1.0731 0.963 

16 15.8662 0.1572 15.0892 16.6433 1.5540 0.974 

 
20% Censored Samples 

0.60 0.5760 0.0110 0.3706 0.7814 0.4108 0.965 

2 1.9317 0.0299 1.5928 2.2707 0.6780 0.968 

4 3.8502 0.0738 3.3177 4.3828 1.0652 0.967 

8 7.7423 0.1496 6.9841 8.5005 1.5164 0.960 

16 15.6529 0.3267 14.5326 16.7732 2.2406 0.969 

Table 3.10: MLEs, MSEs, LCLs, UCLs and coverage probabilities for β using n = 200 

β  

 (α = 0.8) 

MLE MSE LCL UCL Width 
Coverage 

Probability 

10% Censored Samples 

0.60 0.5955 0.0038 0.4739 0.7171 0.2431 0.978 

2 1.9777 0.0095 1.7867 2.1686 0.3818 0.982 

4 3.9808 0.0144 3.7452 4.2163 0.4712 0.984 

8 7.9263 0.0384 7.5424 8.3102 0.7678 0.973 

16 16.0249 0.0756 15.4861 16.5637 1.0777 0.983 

 20% Censored Samples 

0.60 0.5874 0.0049 0.4507 0.7240 0.2733 0.975 

2 1.9507 0.0152 1.7090 2.1923 0.4833 0.980 

4 3.9264 0.0282 3.5973 4.2555 0.6582 0.980 

8 7.8181 0.0807 7.2611 8.3750 1.1139 0.970 

16 15.8061 0.1763 14.9831 16.6291 1.6460 0.979 
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Table 3.11: Elements of variance-covariance matrix including  ˆV   and 

 ˆˆ ,Cov  
 
for 10% censored data, the covariance terms have been 

presented in parenthesis 

β Sample Size 

(α = 0.8) 20 50 100 150 200 5000 

0.6 
0.0181 0.0126 0.0088 0.0037 0.0022 0.0018 

(0.0834) (0.0663) (0.0554) (0.0334) (0.0202) (0.0161) 

2 
0.0281 0.0195 0.0136 0.0057 0.0034 0.0027 

(0.1106) (0.0879) (0.0735) (0.0443) (0.0269) (0.0214) 

4 
0.0398 0.0276 0.0192 0.0080 0.0049 0.0039 

(0.1162) (0.0923) (0.0772) (0.0465) (0.0282) (0.0225) 

8 
0.0662 0.0459 0.0319 0.0133 0.0081 0.0064 

(0.2138) (0.1698) (0.1421) (0.0855) (0.0519) (0.0413) 

16 
0.0743 0.0515 0.0359 0.0150 0.0091 0.0072 

(0.6689) (0.5314) (0.4445) (0.2677) (0.1624) (0.1292) 

Table 3.12:  Elements of variance-covariance matrix including  ˆV   and 

 ˆˆ ,Cov  
 
for 20% censored data, the covariance terms have been 

presented in parenthesis 

β Sample Size 

(α = 0.8) 20 50 100 150 200 5000 

0.6 
0.0241 0.0179 0.0099 0.0059 0.0025 0.0024 

(0.0886) (0.0704) (0.0589) (0.0355) (0.0215) (0.0171) 

2 
0.0373 0.0277 0.0154 0.0092 0.0039 0.0037 

(0.1175) (0.0934) (0.0781) (0.0470) (0.0285) (0.0227) 

4 
0.0527 0.0392 0.0217 0.0130 0.0056 0.0052 

(0.1359) (0.1080) (0.0903) (0.0544) (0.0330) (0.0263) 

8 
0.0877 0.0652 0.0362 0.0216 0.0093 0.0087 

(0.2500) (0.1986) (0.1661) (0.1000) (0.0607) (0.0483) 

16 
0.0985 0.0733 0.0406 0.0243 0.0104 0.0098 

(0.7822) (0.6214) (0.5198) (0.3130) (0.1899) (0.1511) 
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Table 3.13:  Elements of variance-covariance matrix including  ˆV   and 

 ˆˆ ,Cov   for 10% censored data, the covariance terms have been 

presented in parenthesis 

α Sample Size 

(β = 0.6) 20 50 100 150 200 5000 

0.8 
0.0233 0.0143 0.0103 0.0074 0.0050 0.0040 

(0.0834) (0.0663) (0.0554) (0.0334) (0.0202) (0.0161) 

2 
0.0361 0.0221 0.0160 0.0115 0.0078 0.0062 

(0.1451) (0.0733) (0.0531) (0.0382) (0.0259) (0.0207) 

4 
0.0510 0.0313 0.0226 0.0163 0.0110 0.0088 

(0.1678) (0.0848) (0.0614) (0.0442) (0.0300) (0.0240) 

8 
0.0849 0.0520 0.0377 0.0271 0.0184 0.0147 

(0.3085) (0.1560) (0.1130) (0.0813) (0.0551) (0.0441) 

16 
0.0953 0.0584 0.0423 0.0304 0.0206 0.0165 

(0.9654) (0.4881) (0.3536) (0.2545) (0.1725) (0.1380) 

Table 3.14:  Elements of variance-covariance matrix including  ˆV   and 

 ˆˆ ,Cov   for 20% censored data, the covariance terms have been 

presented in parenthesis 

α Sample Size 

(β = 0.6) 20 50 100 150 200 5000 

0.8 
0.0367 0.0291 0.0244 0.0147 0.0089 0.0071 

(0.1162) (0.0588) (0.0426) (0.0306) (0.0208) (0.0166) 

2 
0.0478 0.0314 0.0181 0.0187 0.0089 0.0085 

(0.1541) (0.0779) (0.0565) (0.0406) (0.0275) (0.0220) 

4 
0.0676 0.0445 0.0256 0.0265 0.0126 0.0120 

(0.1782) (0.0901) (0.0653) (0.0470) (0.0319) (0.0255) 

8 
0.1125 0.0739 0.0426 0.0440 0.0210 0.0199 

(0.3278) (0.1657) (0.1201) (0.0864) (0.0586) (0.0469) 

16 
0.1263 0.0830 0.0479 0.0495 0.0236 0.0223 

(1.0257) (0.5186) (0.3757) (0.2704) (0.1833) (0.1466) 

 

It is immediate for the above analysis that the shape parameter   has been over 

estimated; while the parameter   has been under estimated for all sample sizes and 

under each censoring rate. The degree of over/under estimation is relatively severe for 

larger true parametric values and higher censoring rates; however lager choice of sample 

size can prevent this problem. It has also been assessed that the estimates of parameter 
are comparatively closer to the actual values. The magnitudes of MSEs associated with 

the estimates of  are also smaller. This indicates that the estimation of shape parameter 

  will be more efficient than that of  . It is interesting to note that the magnitudes of 

the mean square error (MSE) associated with the estimates of both the parameters tend to 

decrease by increasing the sample size. The larger sample sizes impose a positive impact 
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on the performance of the interval estimation, that is, the bigger sample sizes lead to the 

smaller widths of the confidence intervals and larger coverage probabilities. This simply 

indicates that the estimators of the parameters are consistent. The coverage probabilities 

do not provide any pattern with respect to change in the true parametric values. However, 

it is good to see that coverage probabilities regarding all the confidence intervals are 

greater than 0.95 (which are greater than concerned confidence coefficient) that indicates 

the reliability of the interval estimation. The confidence intervals for parameter ( ) are 

skewed to right, while the intervals regarding parameter (  ) are left aligned. As a natural 

consequence, the increased censoring rate results in: slower convergence of estimates, 

inflated MSEs, wider confidence intervals and smaller coverage probabilities. However, 

it has been observed that the affects of the left censored observations are not that much 

severe in case of bigger sample sizes. Further for fixed sample size and censoring rate, 

the higher actual values of the parameters impose a negative impact on the performance 

(in terms of MSEs, convergence rate and widths of confidence intervals) of the estimates. 

It leads to the conclusion that the estimation of extremely large values of the parameters 

of the Burr type iii distribution may become difficult and the Fisher information matrix 

may be the decreasing function of the parameters. But the moderate to huge sample sizes 

can face off this problem. 

 

In the tables 3.11-3.14, we have discussed the limiting behavior of the variance 

covariance matrix obtained by inverting the fisher information matrix given in (11). As 

the analytical results of the Fisher information matrix for ncannot be obtained, we 

have calculated the entries of the Fisher information/variance covariance matrix by taking 

n = 5000 (extremely large). Different levels of the censoring rate have been employed for 

the analysis. The covariance terms have been presented in the parenthesis. It is interesting 

to note that efficiency of the estimates in the moderately large samples is close to that in 

limiting case. The variance covariance terms are decreasing by increasing the sample 

size. This simply suggests that the parameters of the Burr type iii distribution can 

efficiently be estimated by using moderately large left censored samples. 

 

Now we consider the analysis of real life data set regarding the breaking strengths of 64 

single carbon fibers of length 10, presented Lawless and Jerald (2003). The idea has been 

to see whether the results and properties of the estimators, explored by simulation study, 

are applicable to a real life situation. We have used the Kolmogorov-Smirnov and chi 

square tests to see whether the data follow the Burr type III distribution. These tests say 

that the data follow the Burr type III distribution at 5% level of significance with p-values 

0.2173 and 0.7352 respectively. The results of the analysis have been reported in the 

following table.  

Table 3.15:   Estimation under real life data 

Censoring 

Rate 

Parameter MLE Variance LCL UCL Width 

10% 
α 0.87094 0.00817 0.69378 1.04810 0.35432 

β 0.68242 0.01010 0.48541 0.87942 0.39401 

20% 
α 0.86084 0.00889 0.67602 1.04566 0.36965 

β 0.67342 0.01100 0.46790 0.87894 0.41104 
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The estimated values of the parameter ( ) are relatively higher than those of parameter  

(  ). The real life analysis replicated the patterns observed under simulation study in a 

sense that the variances associated with MLEs of   are smaller than those for MLEs of 

 . The widths of confidence intervals are also smaller in case of estimation for 

parameter  . Similar patterns were observed for the near values of   and   in case of 

simulation study.  

4.   Conclusion 

The article aims to discuss the maximum likelihood estimation of the parameters for Burr 

type iii distribution under left censored samples. The behavior and performance of the 

estimates have been investigated with respect to sample sizes, true parametric values and 

censoring rates. The findings of the study suggest that even the small samples sizes with 

higher censoring rates are closely related to the limiting figures of the variance 

covariance matrix. It leads to the conclusion that the approximate variance covariance 

matrix can effectively be used for analysis of the unknown parameters of the Burr type iii 

distribution. It further indicates that the proposed maximum likelihood point and interval 

estimates can efficiently be applied to the real life situations using moderate sample sizes. 

The results of the real life data analysis further strengthened these arguments. The study 

is useful for scientists from different fields dealing with analysis of left censored failure 

time data.  
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