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Abstract 

The autocorrelation function (ACF) measures the correlation between observations at different   distances 

apart. We derive explicit equations for generalized heteroskedasticity ACF for moving average of order q, 

MA(q). We consider two cases: Firstly: when the disturbance term follow the general covariance matrix 

structure  ,
i j

Cov w w   with ,
0

i j
   i j . Secondly: when the diagonal elements of  are 

not all identical but 
i, j 0 i j    , i.e.  11 22 ttdiag , , ,     . The forms of the explicit 

equations depend essentially on the moving average coefficients and covariance structure of the disturbance 

terms. 

Keywords:  Heteroscedasticity; Homoscedasticity; Autocorrelation; Moving Average; 

Covariance. 

1.   Introduction  

In time-series and regression models, basic forms of models make use of the assumption 

that the disturbances wi have the same variance across all observation points. When this 

assumption is violated, the disturbances have heteroscedasticity, and this behavior will be 

reflected in the disturbances estimated from a fitted model.  

 

Heteroskedasticity naturally occurs when the constant variance of the disturbance term is 

violated. The constant variance of the disturbance means   2 , 1,2,tVar w t  . With 

heteroskedasticity, this disturbance term variance is not constant. Instead, the variance of 

the distribution of the disturbance term depends on exactly which observation is being 

discussed,   2 , 1,2,ttVar w t   The most frequently specified model of 

heteroskedasticity relates the variance of the disturbance term to an exogenous variable 

such as Zi, for example   2 2 , 1,2,ttVar w Z t   where Z, the “proportionality 

factor,” may or may not be in the model, Studenmund (2011). 

 

In the case of heteroskedastic residual, the covariance matrix estimator is not consistent 

for the true estimator covariance, so that the most serious implications of heteroskedastic 

residual is not the resulting inefficiency of ACF but the misleading inference when 

standard tests are used.  
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The heteroskedasticity of the residuals exists, whenever the covariance matrix of the 

residuals is not a diagonal matrix, i.e. whenever  ,
i j

Cov w w   with ,
0

i j
   for 

some i j . 

 

A moving-average process is a time-series process in which the current value of a 

variable is modeled as a weighted average of current and past realizations of a white 

noise process and, optionally, a time-invariant constant. By convention, the weight on the 

current realization of the white-noise process is equal to one, and the weights on the past 

realizations are known as the moving-average (MA) coefficients. 

 

The regular autocorrelation function (ACF) produces spurious results when we do not 

account for heteroskedasticity of the residuals. In case the variance is proportional to the 

level of the series, a logarithmic transformation may make the series both homoscedastic 

and stationary in variance. But many time series do not have constant, or even stationary 

variance even after transformations, Stockhammar (2010).  

 

The ACF plays a crucial role in studying the correlation structure of weakly stationary 

time series, Dong et al. (2012). It is well known that for a causal MA(q) model, its ACF 

“cuts off” after lag q; that is, it is zero, (Cryer and Chan 2008). 

 

The basic ACF is modeled under an assumption of constant variance. This phenomena is 

known as homoscedasticity. If they are not, it causes serious problems for our estimates 

and must be corrected in order to obtain reliable estimates. The exact formula for ACF 

for MA(q) models can be obtained although its closed form when the disturbance terms 

are identically distributed, i.e. they have the same variance for all observations . 

However, for a general covariance structure of the disturbance terms, it is rather difficult 

to obtain an exact formula for the ACF.  

 

There is a large literature on estimating ACF in the presence of heteroscedasticity, see for 

example, Bera, A. et al. (2005), and Wallentin and Agren (2002). Studies of many 

econometric time series models for financial markets revealed that it is unreasonable to 

assume that conditional variance of the disturbance term is constant, as it for many 

stochastic processes. Various procedures are available to test for the possibility that the 

disturturbance terms of a linear regression model are autocorrelated in a first order 

process with a constant autoregressive coefficient. (See for example Bumb and Kelejian, 

1983). 

 

Demos (2000) discussed the statistical properties of conditionally heteroskedastic in 

mean models. He derived expressions for the autocovariance of the observed series under 

the assumption that the conditional variance follows a flexible parameterization. 

 

Safi (2009, 2011) derived explicit equations for ACF in the presence of heteroscedasticity 

disturbances in first order autoregressive, AR(1), and p-th order autoregressive, AR(p), 

model. He showed two cases: (1) when the disturbance follows the general covariance 

matrix, , and (2) when the diagonal elements of  are not all identical but 

i, j 0 i j    , i.e.  11 22 ttdiag , , ,     .  
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Praetz (2008) discussed the effect of auto-correlated disturbances when they are not 

modeled on the statistics used in drawing inferences in the multiple linear regression 

model. He derived biases for the F  and 2R  statistics and evaluates them numerically for 

an example. He discussed the reflections for empirical research on the causes, detection 

and treatment of autocorrelation. 

 

In this paper, for a general covariance structure of the disturbance terms, we investigate 

the ACF of heteroskedastic in the residuals for an MA(q) by employing a general 

formulation for MA models. In particular, we derive explicit equations for General 

Heteroscedastic Autocorrelation Function (GHACF) for the general moving average of 

order q, MA(q). We consider two cases: firstly when the disturbance terms follow the 

general covariance matrix structure  ,
i j

Cov w w   with ,
0

i j
   and all i j  and 

secondly when the diagonal elements of  are not all identical but 
i, j 0 i j    , i.e. 

 11 22 ttdiag , , ,     . The forms of the explicit equations depend essentially on the 

moving average coefficients and covariance structure of the disturbance terms. 

 

The rest of this paper is structured as follows. In section 2 we derive explicit equations 

for GHACF for an MA(q). Explicit equations for Heteroscedastic Autocorrelation 

Function (HACF) for an MA(q) are described in section 3. Section 4 summarizes the 

results and offers suggestions for future research on deriving explicit equations for ACF 

in the presence of heteroscedasticity disturbances for different time series mixed 

Autoregressive Moving Average Model (ARMA). 

2.   General Heteroscedastic Autocorrelation Function (GHACF) 

Suppose tZ is linearly dependent on a weighted finite number q of previous shocks or 

noise tw  such that 

  
0

,
t j t j

j

Z w





   (2.1) 

where 
0

1  , 
t t

Z Z    is the deviation of the model from some origin, or from its 

mean, if the model is stationary. Such a sequence of random variables 
1 2

, , ,
t t t

w w w
 

 is 

called a white noise model. 

 

Definition 2.1. Consider the special case of (2.1) when only the first q of the   weights 

are nonzero, and without loss of generality, assume 0  . The moving average model of 

order q, or MA(q) model, is defined to be (See for example, Shumway and Stoffer 2011) 

0

,
q

t j t j
j

Z w




   (2.2) 

where tZ  is the time series under investigation, 
0

1  , and 
t

w  is a Gaussian white noise 

series with mean zero and variance 2

w
 . There are q lags in the moving average and 
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 1 2
, , , 0

q q
     are parameters. The MA(q) model may be written in terms of 

backward shift operator B. 

  ,t tZ B w  (2.3) 

where   2

1 21 q

qB B B B         is called the moving average operator with 

j

t t jB w w   

 

For GHACF, we assume that the white noise term has mean zero,   0tE w  , and the 

covariance matrix  ,i jCov w w   where 

11 12 1

21 22 2

1 2

t

t

t t tt

  

  


  

 
 
 
 
 
 

 (2.4) 

 

Definition 2.2. The covariance between tZ  and t hZ  , separated by h intervals of time 

(which under the stationary assumption must be the same for all t) is called the 

autocovariance function at lag h (ACVF) and is defined by 

      ,t h t t h th Cov Z Z E Z Z          (2.5) 

 

In this paper we are assuming that tZ  has zero mean. We can always introduce a nonzero 

mean by replacing tZ  by 
tZ   throughout our equations. 

 

Definition 2.3. The autocorrelation function at lag h (ACF), that is the correlation 

between tZ  and t hZ   is defined by 

 
 

   

 

 

,
,

0, ,

t h t h
h

t h t h t t

 


 


 

 
 (2.6) 

where 2

0 Z   is the same at time t+h as at time t. 

 

The Cauchy-Schwarz inequality shows that  1 1h    for all h , enabling one to 

assess the relative importance of a given autocorrelation value by comparing with the 

extreme values -1 and 1.  
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Theorem 2.4. Consider the general MA(q) model, 
0

q

t j t j

j

Z w 



 , with   0tE w   and 

 ,i jCov w w  , where  is given in (2.4)  and 
,

0 
i j

i j    . Then the GHACF at 

lag h is given by 

  
 

,
0 0

,
0 0

,1

0,

q q

i j t i t h j
j i

q q

i j t i t j
j i

h q
h

h q

  

   

  
 

 
 

  


 
   

 

 
(2.7) 

 

Proof: Using (2.2) and (2.5), the ACVF at lag h for 1,2, ,h q is 

   

  

     

     

     

 

1 1 1 1

1 1

2

1 1 1 1 1 1 1

2 2 2 1 2 1 2 2

t t h

t t q t q t h t h q t h q

t t h t t h q t t h q

t t h t t h q t q t h q

t t h t t h q t t h q

q t q t h

h E Z Z

E w w w w w w

E w w E w w E w w

E w w E w w E w w

E w w E w w E w w

E w w



   

 

    

    

 



      

    

       

       

 



        

   

   

   

     2

1 1q t q t h q t q t h q
E w w E w w 

     
 

 

(2.8) 

 

Collecting terms, we find that the ACVF for MA(q) at lag h is 

  ,
0 0

, 0

0,

q q

i j t i t h j
j i

h q
h

h q

  


  
 

   
 
 

 

 

(2.9) 

 

Using (2.8), the ACVF for an MA(q) at lag 0, i.e. the variance of an MA(q) model is 

  ,
0 0

0
q q

i j t i t j
j i

   
 

 

    (2.10) 

 

Dividing (2.9) by (2.10), yields (2.7), and that completes the proof.  ■ 
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Special Cases 

The next corollaries (2.5) and (2.6) derive the GHACF at lag h for an MA(1) and MA(2) 

models. 

 

Corollary 2.5. Consider MA(1) model, 1t t tZ w w   , with   0tE w   and 

 ,i jCov w w  , where  is given in (2.4) and 
,

0 
i j

i j    . Then the GHACF for 

MA(1) at lag h is given by 

 
  2

, 1 , 2 1, 1 1, 2

2

, , 1 1, 1

, 1
2

0, 2

t t t t t t t t

t t t t t t

h
h

h

     

    

     

  

   


  




 (2.11) 

 

Proof: Using (2.8) we obtain the variance of for an MA(1) model, 

   

  

       

2

1 1

2 2 2

1 1 1

0
t

t t t t

t t t t t t

E Z

E w w w w

E w E w w E w w E w



 

  

 

  



    

   

 

 

Then, 

  2

, , 1 1, 1
0 2

t t t t t t
    

  
    (2.12) 

 

Using (2.8), the ACVF for an MA(1) at lag 1 is 

   

  

       

1

1 1 2

2

1 2 1 1 1 2

1
t t

t t t t

t t t t t t t t

E Z Z

E w w w w

E w w E w w E w w E w w



 

  



  

     



    

   

 

 

Then, 

    2

, 1 , 2 1, 1 1, 2
1

t t t t t t t t
      

     
     (2.13) 

Similarly,   0 for 2 h h . 

Dividing (2.13) by (2.12), yields (2.11), and that completes the proof.  ■ 
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Corollary 2.6. Consider MA(2) model, 1 1 2 2t t t tZ w w w     , with   0tE w   and 

 ,i jCov w w  , where  is given in (2.4)  and
,

0 
i j

i j    . Then the GHACF for 

an MA(2) at lag h is given by 

 

   

 
, 1 1 , 2 1, 1 2 , 3 2, 1

2 2

1 1, 2 2 2, 3 1 2 1, 3 2, 2

2

, 1 , 1 2 , 2 1 1, 1 1, 1

2

1 2 1, 2 2 2, 2 1 2, 1 2 2, 2

1

t t t t t t t t t t

t t t t t t t t

t t t t t t t t t t

t t t t t t t t

      

      


      

       

      

       

    

      

    
 
     

    
 
     

 

 

   , 2 1 , 3 1, 2 2 , 4 2, 2

2 2

1 1, 3 2 2, 4 1 2 1, 4 2 1 2, 3

2

, 1 , 1 2 , 2 1 1, 1 1, 1

2

1 2 1, 2 2 2, 2 1 2, 1 2 2, 2

2

t t t t t t t t t t

t t t t t t t t

t t t t t t t t t t

t t t t t t t t

      

       


      

       

      

       

    

      

    
 
     

    
 
    

 

  0 3h for h    

(2.13) 

 

Proof: Using (2.8) we obtain the variance for an MA(2) model, 

   

         

       
1

2

2

2 2 2

1 1 2 2 1 1 1

2 2

1 2 1 2 2 2 2 1 2 1 2

0
t

t t

t

t t t t t t

t t t t t t h

E Z

E w E w w E w w E w w E w

E w w E w w E w w E w



   

    





  

     



    

   

 

 

Collecting terms, then the variance for an MA(2) model is  

  2

, 1 , 1 2 , 2 1 1, 1 1, 1

2

1 2 1, 2 2 2, 2 1 2, 1 2 2, 2

0
t t t t t t t t t t

t t t t t t t t

       

       

    

      

    

   
 

(2.14) 

 

Using (2.8), the ACVF for an MA(2) at lag 1 is 

   

         

       

1

2

1 1 2 2 3 1 1 1 1 1 2

2

1 2 1 3 2 2 1 2 1 2 2 2 2 3

1
t t

t t t t t t t t t t

t t t t t t t t

E Z Z

E w w E w w E w w E w w E w w

E w w E w w E w w E w w



   

    



      

       



    

   
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Collecting terms, then the ACVF for MA(2) at lag 1 is, 

     

 
, 1 1 , 2 1, 1 2 , 3 2, 1

2 2

1 1, 2 2 2, 3 1 2 1, 3 2, 2

1
t t t t t t t t t t

t t t t t t t t

       

      

      

       

    

   
 

(2.15) 

 

Similarly, the ACVF for MA(2) at lag 2 is 

           

       

2

2 1 3 2 4 1 1 2 1 1 3

2

1 2 1 4 2 2 2 2 1 2 3 2 2 4

2
t t t t t t t t t t

t t t t t t t t

E w w E w w E w w E w w E w w

E w w E w w E w w E w w

    

    

      

       

    

   
 

 

Collecting terms, then the ACVF for MA(2) at lag 2 is, 

     , 2 1 , 3 1, 2 2 , 4 2, 2

2 2

1 1, 3 2 2, 4 1 2 1, 4 2 1 2, 3

2
t t t t t t t t t t

t t t t t t t t

       

       

      

       

    

   
 

(2.16) 

Similarly,   0 for 3h h   . 

Dividing (2.15) and (2.16), respectively, by (2.14), yield (2.13), and that completes the 

proof.  ■ 

3.   Heteroscedastic Autocorrelation Function (HACF) 

Heteroscedasticity exists if the diagonal elements of   in (2.4) are not all identical and 

the disturbance term is free from autocorrelation. In other words, the disturbances are 

pairwise uncorrelated. This assumption is likely to be realistic one when using cross-

sectional data. In this case   can be written as a diagonal matrix with the i-th diagonal 

element is given by ii . We assume   0tE w  , and  ,i jCov w w  , where 

 11 22
, , ,

tt
diag    . Thus 

11

22

0 0

0 0

0 0
tt








 
 
 
 
 
 

 (3.1) 

 

Theorem (3.1) derives the HACF, at lag h when 
,

0
i j

   for all i j , i.e. 

 11 22
, , ,

tt
diag     for an MA(q) model. 
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Theorem 3.1. Consider the general MA(q) model, 
0

q

t j t j

j

Z w 



 , with   0tE w   and 

   11 22, , , ,i j ttCov w w diag    as given in (3.1). Then the HACF for an MA(q) at 

lag h is given by 

 

,
0

2

,
0

, 1

0,

q h

i i h t i h t i h
i

q

i t i t i
i

h q
h

h q

  

  



    


 


 


 
  

 

 (3.2) 

 

Proof: Using (2.8) with 0,h   and    11 22, , , ,i j ttCov w w diag    as given in 

(3.1). Then the ACVF for an MA(q) at lag 0 is 

         2 2 2

1 1 1 2 2 2

2 2 2

, 1 1, 1 2 2, 2 ,

0
t t t t t t q t q t q

t t t t t t q t q t q

E w w E w w E w w E w w   

      

     

     

    

    
 

 

 

Then the ACVF for an MA(q) at lag 0, i.e. the variance of an MA(q) model is 

  2

,
0

0
q

i t i t i
i

  
 



   (3.3) 

 

Using (2.8) with 1,h   and    11 22, , , ,i j ttCov w w diag    as given in (3.1). Then 

the ACVF for an MA(q) at lag 1 is 

       1 1 1 2 1 2 2 1

1 1, 1 2 1 2, 2 1 ,

1 ,
1

1
t t t t q q t q t q

t t t t q q t q t q

q

i i t i t i
i

E w w E w w E w w     

       

  

      

      

  


   

   

 

 

 

 

Then the ACVF for an MA(q) at lag 1 is 

 
1

1 1, 1
0

1
q

i i t i t i
i

   


    


   (3.4) 

 

Similarly, the ACVF for an MA(q) at lag h for 1,2, ,h q is 

  ,
0

, 0

0,

q h

i i h t i h t i h
i

h q
h

h q

  




    


  
 
 

 (3.5) 

Dividing (3.5) by (3.3), yields (3.2), and that completes the proof.  ■ 

The next corollaries (3.2) and (3.3) derive the HACF at lag h for an MA(1) and MA(2) 

models. 
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Corollary 3.2. Consider MA(1) model, 1t t tZ w w   , with   0tE w   and 

   11 22, , , ,i j ttCov w w diag    as given in (3.1). Then the HACF for an MA(1) at 

lag h is given by 

 
1, 1

2

, 1, 1

, 1

0, 2

t t

t t t t

h
h

h



  

 

 




 
 

 (3.6) 

 

Proof: Using (2.8) with 0,h   and    11 22, , , ,i j ttCov w w diag    as given in 

(3.1). Then the ACVF for an MA(1) at lag 0 is  

 

 

Then the variance of an MA(1) model is, 

  2

, 1, 1
0

t t t t
   

 
   (3.7) 

 

The ACVF for an MA(1) at lag 1 is  

 
 

Collecting terms, then the ACVF for an MA(1) at lag 1 is, 

  1, 1
1

t t
 

 
  (3.8) 

Similarly,   0 for 2h h    

Dividing (3.8) by (3.7), yields (3.6), and that completes the proof.  ■ 

 

Corollary 3.3. Consider MA(2) model, 1 1 2 2t t t tZ w w w     , with   0tE w   and 

   11 22, , , ,i j ttCov w w diag    as given in (3.1). Then the GHACF for MA(2) at 

lag h is given by 

  1 1, 1 1 2 2, 2

2 2

, 1 1, 1 2 2, 2

1
t t t t

t t t t t t

    


    

   

   




 
 

  2 2, 2

2 2

, 1 1, 1 2 2, 2

2
t t

t t t t t t

 


    

 

   


 

 

                                     
  0 3h for h    

(3.9) 

 

    

       

1 1

2

1 1 1 1

0  

   

    

   

t t t t

t t t t t t t t

E w w w w

E w w E w w E w w E w w

  

  

    

       

1 1 2

2

1 2 1 1 1 2

1   

     

    

   

t t t t

t t t t t t t t

E w w w w

E w w E w w E w w E w w

  

  
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Proof: Using (2.8) with 0,h   and    11 22, , , ,i j ttCov w w diag    as given in 

(3.1).  Then the variance for an MA(2) model, 

         2 2

1 1 1 2 2 2
0

t t t t t t
E w w E w w E w w  

   
    

 

Then, 

    2 2

, 1 1, 1 2 2, 2
0

t t t t t t
     

   
    (3.10) 

 

Using (2.8) with 1,h   and    11 22, , , ,i j ttCov w w diag    as given in (3.1). Then 

the ACVF for an MA(2) at lag 1 is  

       1 1 1 1 2 2 2
1

t t t t
E w w E w w  

   
   

 

Collecting terms, then the ACVF for an MA(2) at lag 1 is, 

    1 1, 1 1 2 2, 2
1

t t t t
    

   
   (3.11) 

 

Similarly, the ACVF for an MA(2) at lag 2 is 

     2 2 2
2

t t
E w w 

 
  

 

Collecting terms, then the ACVF for MA(2) at lag 2 is, 

    2 2, 2
2

t t
  

 
  (3.12) 

Similarly,   0 for 3h h   . 

Dividing (3.11) and (3.12), respectively, by (3.10), yield (3.9), and that completes the 

proof.  ■ 

Special Cases: Homoscedasticity exists if the diagonal elements of   in (2.4) are all 

identical and the disturbance term, w , is free from autocorrelation, i.e. 0ij i j    . In 

this case, the disturbance term is a sequence of independent, identically distributed 

random variables.  

 

The next Corollaries (3.4) through (3.6) show the ACF for MA models by using Theorem 

(3.1) and Corollaries (3.2) and (3.3). 

Corollary 3.4. Consider the general MA(q) model, 
0

q

t j t j

j

Z w 



 , with   0tE w   and 

    2,i j tCov w w Var w t   . By setting 
2

, ,t i t i t i h t i h          in (3.2). 

Then the ACF for an MA(q) at lag h is given by 

   0

2

0

 for 1 and 0 for ,

q h

i i h
i

q

i
i

h h q h h q
 

 










    


 

which is the well known ACF for an MA(q) model. 
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Corollary 3.5: Consider MA(1) model, 1t t tZ w w   , with   0tE w   and 

    2,i j tCov w w Var w t   . By setting   
2

, 1, 1t t t t      in (3.6). Then the 

ACF for an MA(1) at lag h is given by 

   
2

for 1 and 0 for 2,
1

h h h h


 


   


 

which is the well known ACF for an MA(1) model. 

 

Corollary 3.6. Consider MA(2) model, 
1 1 2 2t t t t

Z w w w 
 

   , with   0tE w   and 

    2,i j tCov w w Var w t   . By setting   
2

, 1, 1 2, 2t t t t t t          in (3.9). 

Then the ACF for an MA(2) at lag h is given by 

 
 

   1 2 2

2 2 2 2

1 2 1 2

1
1 , 2 , 0 3,

1 1
h for h

  
  

   


   

   
 

which is the well known ACF for an MA(2) model. 

4.   Summary and Future Research 

This paper has investigated an important statistical problem concerning the 

autocorrelation function, ACF, in the presence of heteroscedasticity disturbances in q-th 

order moving, MA(q), models. We have derived explicit equations for GHACF for an 

MA(q) when the disturbance terms follow the general structure covariance 

matrixstructure,  , and when  11 22 ttdiag , , ,     . The forms of the explicit 

equations depend essentially on the moving average coefficients and covariance structure 

of the disturbance terms. 

 

The plan of the future research is to extend the explicit equations that we have derived in 

this paper for ACF in the presence of heteroscedasticity disturbances in the general form 

of the autoregressive moving average models with orders p and q, ARMA,(p,q). 
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