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Abstract 

This paper deals with the problem of estimation of population mean in two-phase sampling. A ratio-product 

estimator of population mean using known coefficient of kurtosis of two auxiliary variates has been 

proposed. In fact, it is a two-phase sampling version of Tailor et al. (2010) estimator and its properties are 

studied. Proposed estimator has been compared with usual unbiased estimator, classical ratio and product 

estimator in two-phase sampling, and two-phase sampling versions of Singh (1967) and Singh et al. (2004) 

estimators respectively. To judge the merits of the proposed estimator over other estimators an empirical 

study is also carried out. 

Keywords: Population mean, Coefficient of kurtosis, Two-phase sampling, Bias and 

Mean squared error. 

1.   Introduction 

Auxiliary information plays a very important role in improving the efficiencies of 

estimator(s) of population parameter(s). Ratio, product and regression methods are good 

examples in this context. These methods require knowledge of population mean of 

auxiliary. Use of coefficient of kurtosis of auxiliary variate has also been in practice for 

improving the efficiency of the estimators of finite population mean. In some practical 

situations population coefficient of variation and coefficient of kurtosis of auxiliary 

variate x are known. 
[1]

Ajagaonkar (1975) and 
[12]

Sisodia and Dwivedi (1982) discussed 

double sampling procedure using single auxiliary variate whereas 
[3]

Khan and Tripathi 

(1967), 
[6]

Rao (1975) and 
[7]

Singh and Namjoshi (1988) considered the use of 

multiauxiliary variates in double sampling. 
 

[10]
Singh (1967) used information on two auxiliary variates and defined a ratio-product 

estimator assuming that population mean of auxiliary variates are known. In the line of 
[11]

Sisodia and Dwivedi (1981) 
[9]

Singh et al. (2004) proposed a ratio type estimator using 

coefficient of kurtosis. 
[18]

Tailor et al. (2010) suggested a ratio-cum-product estimator 

using coefficient of kurtosis of two auxiliary variates in simple random sampling while 
[16]

Tailor and Sharma (2013) suggested a ratio-cum-product estimator using double 

sampling. In this research paper authors have suggested 
[18]

Tailor et al. (2010) ratio-

product estimator in two phase sampling. 
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Let us consider a finite population  NUUUU ,...,, 21  of size N . Let y , 1x  and 2x  be 

the study variate and auxiliary variates taking values iy  ix1  and ix2  respectively on 

),...,2,1( NiU i  . Let the auxiliary variables 1x and 2x be positively and negatively 

correlated with the study variate y respectively.  

 

Let us suppose that 
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mean of the study variate y  and auxiliary variates ),( 21 xx  respectively.   

 

Let 
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22 /  be the unbiased estimators of 

population mean Y , 1X  and 2X respectively.  

 

The classical ratio and product estimators for estimating population mean Y  are 

respectively defined by  
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Assuming that population means 1X and 2X  of the auxiliary variables 1x and 2x are 

known, 
[9]

Singh et al. (2004) defined a ratio and product type estimators using coefficient 

of kurtosis )( 12 x and )( 22 x  respectively as  
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[10]
Singh (1967) suggested a ratio-product estimator using information on two auxiliary 

variates 1x and 2x to estimate population mean Y  as 
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The problem of estimating population mean Y  of y when the population means 1X   and 

2X  of 1x and 2x are known, has been dealt at a great length in the literature see 
[8]

Singh 

and Tailor (2005), 
[17]

Tailor and Tailor (2008) and many others. However, in many 

practical situations when no information is available on the population means 1X  and 2X  

of 1x  and 2x in advance before starting the survey, we estimate Y  from a sample 

obtained through a two phase selection. Adopting simple random sampling without 
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replacement (SRSWOR) scheme at each phase, the two-phases (or double) sampling 

scheme is as follows:  

i. A first phase sample 1S  of fixed size n' is drawn form U to observe only 1x and 

2x to estimate 1X  and 2X  respectively. 

ii. A second phase sample 2S  of fixed size n is drawn from 1S  to observe y only or 

second phase sample may be drawn independently to the first sample i.e. two cases, 

designated as-  

Case I  :   As a sub sample from the first phase sample, 

Case II :  Draw independently to the first phase sample. 

 

In two-phase or double sampling, the usual ratio and product estimators of population 

mean Y  are respectively defined as  
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where y , 1x and 2x  are sample means based on second phase sample of size n whereas 







1n

1i

i1

1

1 x
n

1
x  and 






2n

1i

i2

2

2 x
n

1
x are the first phase sample means of 1x  and 2x , which 

are unbiased estimates of population means 1X  and 2X  respectively of auxiliary variate 

x. 

 

Two-phase sampling versions of 
[9]

Singh et al. (2004) ratio and product type estimators of 

population mean Y  are defined by 
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Two-phase sampling version of 
[10]

Singh (1967) ratio-product estimator of population 

mean Y  is defined by 
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We obtain the bias and mean squared error of two-phase sampling versions of estimators 

considered in this section to the first degree of approximation. 
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IIIIII (.)MSEand(.)MSE,(.)B,(.)B  denote the bias and the mean squared error under 

case I and II respectively which are given as  

),K1(CfY)Ŷ(B 01
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2

x3

2

y1

2

I

)d(

R 1
 ,     (1.21) 

 )K21(CfCfY)Ŷ(MSE 02
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It is well known under Simple random sampling without replacing (SRSWOR) variance 

of unbiased estimator is defined as 

2

y1
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2.   Proposed Ratio-Product Estimator  

[18]
Tailor et al. (2010) proposed ratio-product estimator of population mean Y  using 

information on coefficient of kurtosis )(&)( 2212 xx   of auxiliary variates 1x  and 2x  as 
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The estimator TŶ  requires the knowledge of 1X  and 2X . When information is not 

available, we define TŶ  in two-phase sampling as 



























)x(x

)x(x

)x(x

)x(x
yŶ
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To obtain the bias and mean squared error of )(ˆ d

TY  we write 
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SRŶ  if  

0C2

x2
    or   

2

tKt2
K 2121

02


       (3.4) 

 

From (1.24) and (2.6) it is observed that the suggested estimator I

)d(

T )Y
ˆ

(  is more efficient 

than the two-phase sampling version of Singh et al. (2004) product type estimator )d(
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Comparison of (1.25) and (2.6) that the suggested estimator I
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Expressions (3.1) to (3.6) are conditions for case I under which suggested estimator has 

less mean squared error than usual unbiased estimator y , usual two-phase sampling ratio 
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T )Ŷ(  

From (1.26), (1.27), (1.28), (1.29), (1.30), (1.31) and (2.7) it is observed that the 

suggested estimator )d(
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x

Kttf2Kf2)1t)(ff()1t(

)ff(tKf2t

C

C

1

2




    (4.3) 

(iv)  Singh et al’s (2004) two-phase sampling ratio type estimator )d(

SRŶ  if 

0C2

x2
     or   

2

t)ff(Kt2
K 221121

02


       (4.4) 

(v)  Singh et al’s (2004) two-phase sampling product type estimator )d(

SPŶ  if 

1221

211011

2

x

2

x

Ktf2

)ff(tKf2

C

C

1

2


         (4.5) 

(vi)  Singh (1967) two-phase sampling ratio-cum-product type estimator )d(

SRPŶ  if 

 
  12022112110212122

0112111

2

x

2

x

KK(2)ff(Ktf2Kf2)ff(tt

)Kf2)ff)(t1()t1(

C

C

1

2




   (4.6) 
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Expressions (4.1) to (4.6) are the conditions in which proposed estimator )d(

TŶ  in case II 

would be more efficient than  simple  mean estimator y , usual two-phase sampling ratio 

and product estimators )d(

Ry  and )d(

Py , two-phase sampling versions of estimators  

suggested by 
[9]

Singh et al. (2004) ( )d(

SRŶ  and )d(

SPŶ ) and 
[10]

Singh (1967) two-phase 

sampling ratio-product type estimator )d(

SRPŶ  respectively.  

5.   Empirical Study 

To analyze the performance of the proposed estimator of population mean Y  in two-

phase sampling in comparison to other estimators, one natural population data set is being 

considered. We have computed Percent relative efficiencies (PREs) of )(ˆ d

RY , )(ˆ d

PY , )(ˆ d

SRY , 

)(ˆ d

SPY and )(ˆ d

SRPY , I

d

TY )ˆ( )(  and II

d

TY )ˆ( )(  with respect to y . The description of the population 

is given below.  

Population:   [Source: Steel and Torrie (1960, p.282)] 

 y  = Log of leaf burn in seconds, 

1x Potassium percentage, 

2x Chlorine percentage, 

 

N=30,                      n=6,                             n’=14, 

Y = 0.6860,            yC = 0.4803,                 )( 12 x =1.56,               01 = 0.1794,  

1X = 4.6537,          
1xC = 0.2295,                )( 22 x =1.40,               02 = -0.4996,  

2X = 0.8077,         
2xC = 0.7493,                 and                              12 = 0.4074. 

Table - 5.1: Percent relative efficiencies of  )(ˆ d

RY , )(ˆ d

PY , )(ˆ d

SRY , )(ˆ d

SPY , )(ˆ d

SRPY  and )(ˆ d

TY  

or I

d

TY )ˆ( )(  (Under case-I) with respect  to y  

 

Estimator 

y  )(ˆ d

RY  
)(ˆ d

PY  
)(ˆ d

SRY  
)(ˆ d

SPY  
)(ˆ d

SRPY  

)(ˆ d

TY  or 

I

d

TY )ˆ( )(
 

PRE 100.00 96.01 61.54 100.02 121.16 81.18 141.60 
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Table - 5.2:  Percent relative efficiencies of )(ˆ d

RY , )(ˆ d

PY , )(ˆ d

SRY , )(ˆ d

SPY , )(ˆ d

SRPY  and )(ˆ d

TY  or 

II

d

TY )ˆ( )(  (Under case-II) with respect  to  y  

 

Estimator 

y  )(ˆ d

RY  )(ˆ d

PY  
)(ˆ d

SRY  )(ˆ d

SPY  )(ˆ d

SRPY  

)(ˆ d

TY  or 

II

d

TY )ˆ( )(  

PRE 100.00 89.12 73.92 96.50 117.85 85.26 139.2 

Conclusion 

Table 5.1 and 5.2 exhibits that the suggested estimators I

d

TY )ˆ( )(
 and II

d

TY )ˆ( )(
 [Under case 

I and II] are more efficient than the usual unbiased estimator y , ratio estimator in two-

phase sampling )(d

Ry , two-phase sampling product estimator )(d

Py , two-phase sampling 

versions of Singh et al. (2004) ratio and product type estimators )(ˆ d

SRY  and )(ˆ d

SPY  

respectively,  and two-phase sampling version of  Singh (1967) estimator. 

 

Larger gain in efficiency is observed by using proposed estimators over other estimators. 

It is also observed that I

d

TY )ˆ( )(  (When samples taken as a sub sample from the first phase 

sample) is giving better result as compare to II

d

TY )ˆ( )(  (When samples drawn 

independently to the first phase sample). Therefore suggested estimators I

d

TY )ˆ( )(
 and 

II

d

TY )ˆ( )(  may be recommended for use in practice.  
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