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Abstract 

Test statistics based on likelihood function, order statistics, population quantiles are suggested to 

discriminate between log-logistic distribution and Rayleigh distribution. Because of non tractability 

of their exact sampling distributions, the percentiles of the proposed test statistics are tabulated with 

the help of simulated sampling distributions of the test statistics. The power of the test statistics are 

also tabulated and a comparative study w.r.t . the powers for a given sample and the level of 

significance are worked out. 
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1.   Introduction 

The probability density function (pdf) of Log-logistic distribution with scale 

parameter σ and shape parameter β is given by 
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Its cumulative distribution function (cdf ) is 
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The probability density function (pdf ) of Rayleigh distribution with scale parameter σ 

is given by 
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Its cumulative distribution function (cdf ) is 
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Many people have studied the importance of these two distributions as life testing 

models. In fact inferential properties of Rayleigh distribution are simple, efficient and 

mathematically tractable, where as it is not the same case with log logistic 

distribution. We are therefore motivated to study whether Rayleigh distribution is a 

reason- able alternative to log-logistic distribution at least for the sake of adopting the 

analytical, powerful inferential characteristics of Rayleigh distribution for the data 

following log logistic distribution. With this backdrop we suggested three different 

test statistics to discriminate log logistic distribution (LLD) and Rayleigh distribution 

(RD). The research works on LLD and RD of recent origin include, Kantam et al. 

(2001), Kantam and Srinivasa Rao (2002), Gupta  and Kundu (2004), Kantam and 

Srinivasa Rao (2004), Gupta et al (2005), Kantam et al. (2006), Kantam  et al. (2007), 

Sultan (2007), Rosaiah et al (2007), Rosaiah et al. (2007), Srinivasa Rao and Kantam 

(2010). The rest of the paper is organized as follows. The proposed test statistics 

based on likelihood function,  order statistics, population quantiles are respectively 

explained in Section 2, Section 3 and Section 4 along with their percentiles and 

power values. A comparative s tudy of the three statistics with respect to their powers 

is presented in Section 5. 

2.   Test statistics based on likelihood ratio 

Let us consider LLD with shape parameter 3 and scale parameter 1 as the null 

population say  0P , the RD with scale parameter 1 is considered as the alternative 

population say  1P . If a random sample of 1 2, ,..., nx x x  is drawn from 0P
 
evaluate the 

estimation of the parameters of 0P using the given sample of 1 2, ,..., nx x x . Let 0P̂  

denote the value of the likelihood function of the sample 1 2, ,..., nx x x  w.r.t. to null 

population, at the estimates of its parameters using 1 2, ,..., nx x x . Let 
1P̂  denote the 

value of likelihood function w.r.t to alternative population, the estimates of 1P  using 

the sample 1 2, ,..., nx x x . The ratio 1

0

L

L
 in a way represents the ratio of the likelihood 

of 1P  to that of 0P  with a sample drawn from 0P . Therefore 1

0

P

P
 is the ratio of a 

smallest probability to a larger probability and hence is expected to be small. The null 

hypothesis “ H0: The sample is drawn from P0” can be tested using the percentiles of 

the likelihood ratio 1

0

L

L
.  Therefore statistics 1

1

0

L
T

L
  can be taken as test statistics to test 

the above null hypothesis. Since the distribution of 1

0

L

L
 

is not analytical, we have 
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computed the percentiles of empirical sampling distributions of 1
1

0

L
T

L
  with the help of 

10,000 simulation runs of sample size n=2,..,10 are given in table 1. 

Table 1:   Percentiles of sampling distributions of 1
1

0

L
T

L
  

n 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 

2 1.7717 1.3158 1.2315 1.1206 0.4558 0.4532 0.4520 0.1769 

3 1.5436 1.2517 0.9609 0.8393 0.3102 0.3061 0.2314 0.0132 

4 1.4393 1.1596 0.8482 0.6369 0.2113 0.2078 0.0983 0.0014 

5 1.0590 0.8585 0.6987 0.4994 0.1454 0.1407 0.0515 0.0000 

6 0.9915 0.8405 0.6151 0.4121 0.0990 0.0916 0.0084 0.0000 

7 0.9656 0.5941 0.4558 0.3334 0.0692 0.0534 0.0041 0.0000 

8 0.7245 0.5132 0.3883 0.2715 0.0484 0.0264 0.0019 0.0000 

9 0.7367 0.4417 0.3068 0.2165 0.0330 0.0141 0.0004 0.0000 

10 0.4876 0.3649 0.2467 0.1772 0.0228 0.0062 0.0002 0.0000 

 

The power of the test statistics 1T  is also tabulated for two levels of significance (5% and 

10%) at sample sizes n=2,..,10 by simulating samples from 1P  and using the values of 1T . 

The count of 1T  value that fall beyond the table values of Table 1 shall speak of the 

power of 1T . These are given in table 2. 

Table 2:   Power of 1T  

n 0.99 0.95 

2 0.7230 0.7420 

3 0.9170 0.9350 

4 0.9410 0.9760 

5 0.9830 0.9920 

6 0.9910 0.9960 

7 0.9960 0.9970 

8 0.9980 0.9980 

9 0.9980 0.9990 

10 0.9980 1.000 

 

These tables indicate that even with the help of a small sample of size as small as n=2 the 

power remains to be at more than 80% and is increasing as n increases. It is therefore 

concluded the 1T  statistic proposed in this section can discriminate between the null and 

alternative population with a high power values as given in table 2. 
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3.   Test statistics based on Order Statistics 

Let 1 2, ,..., nx x x  denote sample from Log logistic distribution. The correlation-type 

goodness-of-fit test in this case using order statistics can be formed as 
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         (3.1) 

where i  is expected value of i
th order statistic in a sample of size n drawn from 0P  

and ix
 

is the i
th order sample observation i can be borrowed from Balakrishnan 

and Malik (1987). This statistic represents the correlation between ix  and i , 

1,2,...,i n . The statistic 2T  is simulated through Monte-Carlo method based on 

10,000 simulations. Table 3 represents the percentiles of 2T  for sample sizes n=2,.., 10 

and various levels of significance.  

Table 3:   Percentiles of 2T  based on order statistics 

n 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 

2 1.0000 1.0000 0.9997 0.9985 0.9544 0.9255 0.9499 0.9490 

3 0.9993 0.9985 0.9972 0.9950 0.9408 0.9349 0.9307 0.9243 

4 0.9977 0.9965 0.9952 0.9929 0.9339 0.9271 0.9210 0.9101 

5 0.9970 0.9954 0.9939 0.9914 0.9290 0.9220 0.9154 0.8989 

6 0.9965 0.9950 0.9931 0.9904 0.9260 0.9185 0.9119 0.8893 

7 0.9960 0.9946 0.9929 0.9903 0.9238 0.9166 0.9087 0.8796 

8 0.9957 0.9941 0.9923 0.9897 0.9227 0.9144 0.9060 0.8730 

9 0.9954 0.9939 0.9921 0.9895 0.9217 0.9124 0.9031 0.8701 

10 0.9951 0.9936 0.9919 0.9893 0.9215 0.9114 0.9016 0.8557 

 

As we can see from Table 3, the percentiles of 2T  increase as the sample size increases 

as well as the significance level increases. The power of the test statistics 2T  is also 

tabulated for two levels of significance (5% and 10%) at sample sizes  by n=2,..,10   

simulating samples from 1P  and using the values of 2T . The count of 2T  value that 

fall beyond the table values of Table 3 shall speak of the power of T2. These are 

given in table 4. 
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Table 4:   Power of 2T  

n 0.99 0.95 

2 0.9465 0.8867 

3 0.9578 0.9064 

4 0.9689 0.9278 

5 0.9746 0.9851 

6 0.9805 0.9529 

7 0.9869 0.9674 

8 0.9913 0.9729 

9 0.9952 0.9811 

10 0.9968 0.9859 

4.   Test statistics based on Quantiles 

Let 1 2, ,..., nx x x  denote sample from Log logistic distribution. The correlation-type 

goodness-of-fit test in this case using percentiles can be formed as 
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        (4.1) 

This statistic represents the correlation between ix  and iv , 1,2,...,i n  where iv  is 

the i
th quantile of the null population. The statistic 3T  is simulated through Monte-

Carlo method based on 10,000 simulations. Table 3 represents the percentiles of 3T  for 

sample sizes  2 1 10n   and various levels of significance. 

Table 5:   Percentiles of 3T  based on quantiles 

n 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 

2 1.0000 0.9999 0.9998 0.9992 0.9760 0.9618 0.9435 0.9220 

3 0.9998 0.9991 0.9982 0.9964 0.9636 0.9422 0.9171 0.8792 

4 0.9986 0.9978 0.9968 0.9952 0.9570 0.9311 0.9001 0.8616 

5 0.9980 0.9969 0.9957 0.9941 0.9523 0.9226 0.8858 0.8451 

6 0.9973 0.9963 0.9950 0.9932 0.9472 0.9133 0.8793 0.8338 

7 0.9971 0.9958 0.9946 0.9926 0.9442 0.9094 0.8709 0.8207 

8 0.9967 0.9955 0.9942 0.9922 0.9408 0.9055 0.8686 0.8136 

9 0.9964 0.9953 0.9938 0.9919 0.9381 0.9013 0.8631 0.8105 

10 0.9961 0.9949 0.9936 0.9915 0.9357 0.8985 0.8592 0.7923 
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As we can see from Table 5, the percentile points of 3T  increase as the sample size 

increases as well as the significance level increases. The power of the test statistics 3T  

is also tabulated for two levels of significance (5% and 10%) at sample sizes 

 2 1 10n   by simulating samples from 1P  and using the values of 3T . The count of 3T  

value that fall beyond the table values of table 5 shall speak of the power of 3T . 

These are given in Table 6. 

Table 6:   Power of 3T  

n 0.99 0.95 

2 0.9454 0.8843 

3 0.9344 0.8621 

4 0.9419 0.8729 

5 0.9353 0.8798 

6 0.9363 0.8759 

7 0.9382 0.8706 

8 0.9462 0.8766 

9 0.9499 0.8871 

10 0.9551 0.8914 

5.   Comparative study 

The powers given in tables 2, 4 and 6 for the test statistics 1T , 2T , and 3T , 

respectively indicate that all the three statistics discriminate between log-logistic and 

Rayleigh distributions quite significantly. This is true even in small samples of size as 

small as 3. But the statistics based on the formulae 1T
 
and 2T  require a sound method 

of estimator or specially tabulated expected values of order statistics of samples 

drawn from log-logistic distribution. However, the statistic 3T  is based on the 

population quantiles of log-logistic distribution corresponding to a given sample of 

size n that can be easily calculate by inverting the analytical expression of the 

population distribution function of log-logistic distribution. This inversion does not 

require any specific tables and accordingly simpler. We can see that the coverage 

probability based on order statistics ( 2T )  is more powerful than those on likelihood 

ratio and population quantiles. 
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