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Abstract 

In this paper the asymptotic distribution of the absolute residual autocorrelations from generalized 

autoregressive conditional heteroscedastic (GARCH) models is derived. The correct asymptotic standard 

errors for the absolute residual autocorrelations are also obtained and based on these results, a diagnostic 

test for checking the adequacy of GARCH-type models are developed. Our results do not depend on the 

existence of higher moments and is therefore robust under heavy-tailed distributions. 
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1.   Introduction 

To capture the conditional variance structure of many financial time series the 

autoregressive conditional heteroscedastic (ARCH) model was introduced by Engle 

(1982). Later Bollerslev (1986) proposed the generalized ARCH (GARCH) model. Since 

then many extensions of GARCH models have been developed and among them the 

asymmetric model also known as GJR model is very popular among practitioners (see 

Glosten et al., 1993).  

 

There is a wide range of literature on modelling of these conditional heteroscedastic time 

series models but model checking and diagnostics have not been given due attention. 

Testing the adequacy of conditional heteroscedastic models is undoubtedly important for 

several economic and statistical reasons. Diagnostic is one of the important stages of 

model building and any misspecification in the model (in mean and variance) results in 

inconsistency and also loss of efficiency in the estimated parameters of the model. 

Residual autocorrelations are used to identify possible departure from the assumption that 

the white noise disturbances in the specified model are uncorrelated (see Box and 

Jenkins, 1970). 

 

To check the model adequacy the distribution of residual autocorrelations might be 

useful. The asymptotic distribution of autocorrelations was first used by Box and Pierce 

(1970). They formulate a portmanteau statistic for model checking and showed that this 

statistic follows a chi-square distribution. Ljung and Box (1978) modified the Box-Pierce 

test and showed that their modified statistic is much closer to that of a chi-square. A new 

portmanteau statistic using the squared residual autocorrelations was given by McLeod 

and Li (1983). Li and Mak (1994) showed that the Box-Pierce type statistic does not 

follow an asymptotic chi-square distribution and a portmanteau test was developed for 

checking the adequacy of ARCH/GARCH models. 

mailto:farhatiqb@gmail.com


Farhat Iqbal  

Pak.j.stat.oper.res.  Vol.IX  No.2 2013  pp171-180 172 

Wong and Li (1995) presented a portmanteau test using rank of squared residuals and 

showed through simulations that their test using ranks is a more robust alternative to the 

McLeod-Li (1983) statistic. Monte Carlo results was reported by Tse and Zuo (1997) for 

the finite sample performance of some commonly used diagnostics and found that the Li-

Mak (1994) test based performs favorably among the other versions of statistics. A 

simulation study of Chen (2002) showed that Ljung-Box (1978) and McLeod-Li (1983) 

tests are not robust to heavy-tailed data. Kwan et al. (2005) carried out a comparative 

study of the finite-sample performance of some frequently used portmanteau tests. Based 

on their Monte Carlo results they reported that for skewed data the empirical size of these 

tests are severely undersized and that the better alternative with mode power is the non-

parametric test. 

 

In this paper we examine goodness-of-fit test based on the absolute residual 

autocorrelations in the class of conditional heteroscedastic time series models. We are 

motivated by Li and Mak (1994) who developed a diagnostic test for time series model 

with conditional variance. They used the squared residual autocorrelations for which a 

finite fourth moment is needed. This excludes many heavy-tailed distributions, hence we 

derive asymptotic distribution of absolute residual autocorrelations from GARCH-type 

models. Our result is robust under heavy-tailed since it does not depend on higher order 

moments. Based on this result we construct a portmanteau statistic, for checking the 

model adequacy, which is asymptotically distributed as a chi-square,  

 

The rest of the paper is organized as follows: In Section 2, GARCH-type models and 

estimation method are introduced. In Section 3, the asymptotic distribution of absolute 

residual autocorrelations are derived and a useful diagnostic statistic is developed. 

Finally, Section 4 concludes the results. 

2.   GARCH-TYPE Model 

For the simple GJR (1, 1) model, the following representation of the return series 

          is assumed. Observer             such that 

     

 

             (2.1) 

                 
                    

 , 

 

where                  and 0 otherwise, with      a sequence of independent and 

identically distributed (i.i.d.) unobservable real-valued random variables and  

   [           ]
    the unknown parameter vector in the parameter space 

  {  [       ]                (    
 

 
 )   }    

 

Under these parameter constratints, model (1) is strictly stationary and hence covariance 

stationary under finite second moment. The GJR (1, 1) model reduces to the  

GARCH (1, 1) model when       and to the ARCH (1) model when both         . 
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By recursive substituions, we get 
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For     , define the variance function 
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and  note that           . 

 

 

In (2.1), if  f denotes the error density, then the conditional density of      given past will 

be   
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       -         Now a random quantity as a minimizer of the 

negative log-likelihood function can be defined as 

      
 

 
 ∑     

 

   

        

where  
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Then the derivative of the log-likelihood is  
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Throughout for a function    ̇      ̈ will denote the first and second derivatives, 

respectively, whenever they exist.  

 

We can then define    in the model (2.1) as a solution of the equation  

       ∑     

 

   

     

where   
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+ ,
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-                                  

 

Since           are unobservable,        ’s are non observable and hecne   ’s are 

noncomputable. Define an observable approximation    ̂         to the variance 

functions             as  

 ̂     
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Then  ̂  is defined as a solution of  

 ̂      ∑ ̂    
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Under the usual regualrity conditions (see Hall and Heyde, 1980), it can be shown that 

for maximum likelihood estimators, 

 
 

  ( ̂    )
    
→     [      ]  

where  

           ,
 ̇      ̇ 

     

  
     

-  

and 
      
→    denotes convergence in distribution. 

 

It can also be shown that  
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It can be shown that 

 ̈     

  
     

where     (
 

 
)   Therefore, we have             

3.   Asymptotic Distribution of the Absolute Residual Autocorrelations 

The asymptotic distribution of the absolute residual autocorrelations is derived in this 

section. Based on results, a useful portmanteau test is developed that can be used to check 

the adequacy of GARCH-type models. 

The estimated residuals are defined as 

  ̂  
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Following Li and Mak (1994), we defined the lag-k standardized residual autocorrelation 

as  
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for          where    ̅  
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   and for convenience we write   ̂
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If the model is correct, then by the ergodic theorem 
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Now condsider the asymptotic distribution of the absolute residual autocorrelation 

  ̃    ̃   ̃     ̃    for some integer M  > 0. If the model is correct, 
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Hence we only need to consider the asymptotic distribution of 
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   , for some integer M >0. Similarly,   ̂ and 

  can be defined. By Taylor’s expansion of   ̂  about    and evaluated at   ̂   we have  
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where 
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By the ergodic theorem, we obtain 
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Then   ̂ in (3.1) can be approximated by 

                      ̂        ( ̂     )       (3.2) 

where       
      

     
 

The proof of the following lemma may be shown by simple calculations. 

Lemma 1: 

For any constant vector              
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Lemma 2: 
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Proof:  

By (2.1), (2.2) and (3.4), we have 
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Lemma 3: 

The joint distribution of √          √   ̂      is asymptotically normal with mean 

zero and covariance 
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Proof: 

Let   ̃           be any constant vector and   ̃  ̃      where the dimension of   is 

same as that of    
 

Now by (2.3) and (3.3), we have  
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It can be shown that (  √ ) ∑    
                 

      is a martingale and by 

(3.5), Lemma 1 and Lemma 2, 
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Hence the proof completes by using Bilingsley’s (1961) martingale central limit theorem 

and (3.6). 

Theorem:  

√  ̂  
    
→    [    

   ]                        

√  ̃   
    
→    [    ]                             

where 

      
         

  
 

{
 

  
 

 

 
 } 

Proof: 

This follows from (3.2) and Lemma 3. 
 

Hence for the absolute residual autocorrelations the correct asymptotic standard errors are 

obtained. In general, the matrix    is not an idempotent matrix even asymptotically, 

therefore   ̂  ̂  is not asymptotically distributed as a chi-squared. However, if the model 

is specified correctly, the portmanteau statistic 

        ̂ [  ]   ̂ 

will be asymptotically distributed as a    with M degrees of freedom. Rejecting this 

statistic will imply that there is a temporal dependence in variances of the series under 

investigation. The adequacy of GARCH-type models can checked using this new 

portmanteau statistic. It is worth mentioning here that only the existence of a second-

order-moment is required in this case.  

 

If the distribution of      is known, the exact values of   
    and    can be obtained. For 

example when    follows the standard normal distribution and the squared residual 

autocorrelations are considered, we have    
                    Hence, after 

some calculation we get the asymptotic covariance matrix of squared residual 

autocorrelations as in Li and Mak (1994). Furthermore, if     is constant over time, the 

asymptotic standard error of the squared residual autocorrelations is exactly    √   and 

we get McLeod and Li (1983) result. 
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Since the distribution of       is not known in practice, the estimates of d and     can be 

obtained as 

 ̂   . ̂  
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An estimate of     can be obtained from [ ̂]
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Also,   
  can be replaced by ( ̂ 
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. Using these sample estimates, we can define an 

estimate of   as 

 ̂     
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,
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 -   

4.   Conclusion 

This paper deals with the diagnostic checking of ARCH/GARCH models. The asymptotic 

covariance matrix of the absolute residual autocorrelations is derived. The correct 

asymptotic standard errors are obtained and these give more accurate standard errors than 

  √   for the residual autocorrelations. Based on these results, a portmanteau test is 

developed for diagnostic checking of GARCH-type models. Our results are valid under 

weaker moment condition. 
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