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Abstract 
Peakedness measures the concentration around the central value. A classical standard measure 
of peakedness is kurtosis which is the degree of peakedness of a probability distribution. In view 
of inconsistency of kurtosis in measuring of the peakedness of a distribution, Horn (1983) 
proposed a measure of peakedness for symmetrically unimodal distributions. The objective of this 
paper is two-fold. First, Horn’s method has been extended for bivariate normal distribution. 
Secondly, to show that computer algebra system Mathematica can be extremely useful tool for all 
sorts of computation related to bivariate normal distribution. Mathematica programs are also 
provided. 
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1.   Introduction 
Well-known characteristics of any probability distribution are location, dispersion, 
skewness and peakedness. Peakedness is a statistical measure and its notion is 
easy to understand; however, is not uniquely defined in the literature. The term 
‘peakedness’ is usually employed synonymously with ‘concentration’ or inversely 
with ‘dispersion’ or ‘scatter’ (Wang and Serfling, 2005) but may be somewhat 
confusing because in essence it is a measure of the fatness of the tails of the 
density function.  
 
A classical standard measure of peakedness of a probability distribution is 
kurtosis which is the degree of ‘flatness’ or ‘peakedness’ of a univariate 
probability distribution (Sahai and Khurshid, 2002). There is much confusion 
about how kurtosis is related to the shape of distributions. Many researchers 
have asserted that kurtosis is a good measure of the peakedness of distributions, 
which is not strictly true. One can generate examples of distributions that are 
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flatter or more peaked, but have the same kurtosis. There seems to be 
disagreement about the meaning and interpretation of kurtosis which has been 
described as ‘vague concept’ (Mosteller and Tukey, 1977). Kaplansky (1945) 
voiced concern about the way kurtosis is typically interpreted and with examples, 
demonstrates that the peakedness of different probability distributions does not 
go with the common interpretations of kurtosis which is not as straight forward to 
interpret as is commonly thought. Balanda and MacGillivray (1988) wrote “it is 
best to define kurtosis vaguely as the location- and scale-free movement of 
probability mass from the shoulders of a distribution into its centre and tails.” See 
also Balanda and MacGillivany (1990), Darlington (1970), De Carlo (1997), 
Groeneveld and Meeden (1984), Hogg (1974), Oja (1981), Ruppert (1987) for 
various criticisms on the inconsistency of kurtosis in the meaning the peakedness 
of a distribution.  
 
Several alternative measures of peakedness have been proposed in the 
literature, for example Horn (1983), Ruppert (1987) and recently by Wu (2002) 
and Schmid and Trede (2003). In view of inconsistency of kurtosis in measuring 
of the peakedness of a distribution, Horn (1983) proposed a measure of 
peakedness for symmetric unimodal distributions defined by the ratio  

p
p A

pfM −= 1)(            (1) 

for a given probability distribution )(xf , p  and pA  as shown in Figure 1. 
 
Kurtosis is usually of interest only when dealing with approximately symmetric 
distributions. Skewed distributions are always leptokurtic (Hopkins and Weeks, 
1990). Ahmed et al. (1990) modified Horn’s measure of peakedness for Pareto 
model and Haq et al. (1991) for unimodal and skewed distributions including 
distributions for which moments do not exist. Akram (1998) developed some 
results for applied truncated continuous probability distributions. Blest (2003) 
proposed the one which adjusts the measurement of kurtosis to remove the 
effect of skewness. 
 

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

                          Symmetric f(x)                           Shaded area Ap 
 
 

Figure 1:  Symmetrical curves 
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In bivariate distributions, the property of peakedness is important and has two 
impending problems i.e. the marginal distributions corresponding to a bivariate 
distribution would have peakedness (i) separately and (ii) jointly with relationship 
parameter, usually given by the linear correlation coefficient. Kurtosis is one such 
property which has not been studied for a bivariate model according to the theory 
developed by Horn (1983). Quraishi and Haq (1999) and Hussain et al. (2000) 
modified the Horn’s measure for bivariate discrete probability distributions and 
bivariate normal distribution respectively. In this article Horn’s measure of 
peakedness is modified for the bivariate normal distribution. It is also shown that 
computer algebra system Mathematica can easily be used in computation for 
peakedness and plotting its contour (Wolfram, 1991).  

2.   Methodology  

2.1  Bivariate Normal Distribution 
Bivariate normal distribution provides a useful visual model for bivariate 
relationships just as the univariate normal distribution provides a useful 
probability model for a single variable. A pair of random variables 1X  and 2X  
have a bivariate normal distribution if their joint density is given by  
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where ,, 21 ∞<<∞− xx  ℜ∈21 ,μμ , 0, 21 >σσ  and 1.1 +<<− ρ  
 
It has five parameters namely 2121 ,,, σσμμ , and .ρ  Of these, 1μ  and 2μ  are 
location parameters at which the maximum ordinate of the probability distribution 
is located. Changes in the values of 1μ  and 2μ  do not change the peakedness of 
the probability distribution. However, 1σ  and 2σ  are those parameters which 
effect the variability of the bivariate model of probability and certainly change the 
peakedness. For smaller values of 1σ  and 2σ , the variability in the random 
variables 1X  and 2X  respectively gets smaller and smaller and as a 
consequence the peak of the probability model, which is located at ( 1μ  and 2μ ) 
gets higher and higher. ρ  is a correlation coefficient between 1X  and 2X . An 
overview about bivariate normal distribution and its properties and applications is 
provided by Kotz et al. (2000). One may also refer to Rose and Smith (1996) with 
Mathematica implementation. A brief review of Mathematica and commands 
used in this article are provided in Appendix 1. 
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Figure 2: Standardized Bivariate Normal distribution 
 
The graph in Figure 2 has been drawn by Mathematica, and program code is 
provided in Appendix 2. 
 
The following graphs are for standard bivariate normal distribution for different 
values of ρ. 
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Figure 3: Standard bivariate normal plots for ρ = 0.0, 0.25, 0.5 and 0.75 
 

From the above graphs it is evident that for ρ = 0.75, distribution is highly peaked 
and as values of ρ decrease, it becomes flattened.  
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2.2  Standard bivariate normal distribution contour 
The bivariate surface is perfectly understood only when the counter are drawn 
which are obtained by cutting bivariate normal surface with planes that are 
parallel to the xy-plane, and intersect at the given Z-values are heights of the 
parallel planes, at which these intersect the surface, as shown in Figure 4. For 
the Mathematica statement for contours see Appendix 3. 
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Figure 4: Standard bivariate normal contours plots for ρ=0.0, 0.25, 0.5 & 0.75 

 
It is obvious from Figure 4 that, for ,0=ρ  the surface is symmetrical and the 
contours are circular; but for ,0≠ρ  the contours are ellipses which are more 
concentrated. 
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3.   Results 

3.1  Peakedness with Mathematica 
The mode in a standardized bivariate normal distribution occurs at (0, 0); and a 
major portion of probability is concentrated, on the volume defined by cubic: 
 

210 4 kkV =         (3) 
where 111 kXk ≤≤−  and .222 kXk ≤≤−  
 
The probability that is concentrated on volume of standardized random variable 

1x  and 2x  is given by 

[ ] ∫ ∫=<<<<
b
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To evaluate Equation (4), it can be expressed as a mixed difference equation 

[ ] ],[],[],[],[, 21 caFdaFcbFdbFdXcbXaPr +−−=<<<<  (5) 
 

which is a function of ρ , where ],[ 21 kkF  is joint cumulative distribution function 
(cdf). 
 
For some selected intervals for 3,2,1, 21 ±±±=kk  calculated joint probabilities 
are displayed in Table 1. (For Mathematica code see Appendix 3). 

Table 1:   Joint probabilities for ρ = 0.00, 0.25, 0.50, 0.75 

21 XX  ρ  11 2 +<<− X  22 2 +<<− X  33 2 +<<− X  
11 1 +<<− X  0.00 

0.25 
0.50 
0.75 

0.4661 
0.4735 
0.4980 
0.5467 

0.6517 
0.6549 
0.6640 
0.6769 

0.6808 
0.6812 
0.6821 
0.6826 

22 1 +<<− X  0.00 
0.25 
0.50 
0.75 

0.6517 
0.6549 
0.6640 
0.6769 

0.9111 
0.9125 
0.9171 
0.9260 

0.9519 
0.9521 
0.9527 
0.9538 

33 1 +<<− X  0.00 
0.25 
0.50 
0.75 

0.6808 
0.6812 
0.6821 
0.6826 

0.9519 
0.9521 
0.9527 
0.9538 

0.9946 
0.9946 
0.9948 
0.9952 

 

It is obvious from the Table 1 that concentration of probabilities increases in each 
interval, with an increase in the values of ρ. 
 

Using the same area over 214 kk , another quantity, TV , can be found, which 
defines the volume that stands on the same area as given above, but whose 
vertical height is equal to ),0,0( ρf  as 

)1(

2
2

21

ρπ −
=

kk
VT        (6) 

which is also the function of .ρ   
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Figure 5: Volume VT and standard bivariate normal together 

 
Using Horn’s idea for measuring peakedness in the univariate distributions, we 
have modified it for bivariate distributions by defining 
 

TV
V

M 01)( −=ρ        (7) 

where 0V  is the probability/volume captured in given interval by bivariate normal 
distribution, and TV  the total cubic volume over the given  interval . 

3.2  Computation for Peakedness 
Some values of the parameters have been selected for the standardized 
bivariate normal distribution for which peakedness measure, )(ρM , has been 
found, as shown in the Table 2 using Mathematica (For Mathematica code see 
Appendix 3). 

Table 2:   M(ρ) for ρ = 0.0 (0.25) 0.75 and k1 = k2 = ± 1, ± 2, ± 3 

21 XX  ρ 11 2 +<<− X 22 2 +<<− X  33 2 +<<− X
11 1 +<<− X  0.00 

0.25 
0.50 
0.75 

0.2679 
0.2798 
0.3226 
0.4320 

0.4882 
0.5020 
0.5484 
0.6485 

0.6435 
0.6546 
0.6907 
0.7636 

22 1 +<<− X  0.00 
0.25 
0.50 
0.75 

0.4882 
0.5020 
0.5484 
0.6485 

0.6422 
0.6530 
0.6881 
0.7595 

0.7508 
0.7586 
0.7840 
0.8348 

33 1 +<<− X  0.00 
0.25 
0.50 
0.75 

0.6435 
0.6546 
0.6907 
0.7639 

0.7508 
0.7587 
0.7840 
0.8348 

0.8264 
0.8319 
0.8496 
0.8851 
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It is important to note the relationship between the correlation coefficient ρ  and 
the shape of the joint normal density. In order to get some idea as to how the 
shape changes with the value of ρ , let us compare the joint density in figure 
when 0=ρ  with the given figure when .0.25 and 0.5 0.75,=ρ  The dependence 
takes the form of a ‘squashed’ joint density. This effect can easily be seen on the 
equal probability contours which are circular in the case 0=ρ  and ellipses in the 
case .0≠ρ  From the graphs in it is obvious that the more squashed the density 
(and the ellipses) the higher the correlation.  

4.   Conclusion 
Peakedness in probability distributions has been discussed extensively by using 
the kurtosis. There are various definitions of kurtosis in literature. However, 
Pearsons’s measure and Fisher’s measure are dependent on the values of the 
mathematical expectations or moments (i.e. 42 ,μμ ), which do not exist for some 
probability distributions (for example, Cauchy) and hence it is not possible to 
compute kurtosis. Further, a small value of kurtosis is usually understood, as 
showing low peakedness and a higher value of kurtosis as showing a higher 
value of peakedness which in practice is not the case.  
 
Horn’s measure has been defined even for those distributions for which moments 
do not exit. Also, its values are less for less peakedness and large for higher-
peaked probability distributions. However, Horn’s approach just works for 
symmetric unimodal distributions. We propose a modification of Horn’s measure 
to bivariate normal distribution for evaluating peakedness. The graphs are also 
drawn for different values of the correlation coefficient using Mathematica. It is 
therefore concluded that Horn’s measure of peakedness is also useful for 
bivariate continuous distributions. 
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Appendix 1: About Mathematica 

Computers have been used in variety of ways to enhance the concepts in 
probability and statistics. A computer algebra system (CAS) such as 
Mathematica opens up new opportunities for developing insights. CAS creates a 
new paradigm for designing, analyzing and drawing conclusions from models in 
science and engineering. The technology in the CAS allows concepts to be 
paramount while computation and details become less important. A CAS can 
provide a deeper understanding of basic concepts and are potentially useful tools 
for the mathematical statistics. 
 
With advancing technology, most work in applied statistics involves computers, 
but it is less common to use computers to do symbolic manipulation in 
mathematical statistics. However in recent years, number of books have 
appeared that try to hybrid statistical probability and statistical concepts using 
CAS Mathematica (for example, Abell et al.; 1998; Kinney, 2002; Rose and 
Smith, 2002). 
 
Mathematica is general system for doing mathematical computation. It can be 
used in various ways for example as a (i) calculator, (ii) numerical operations, (iii) 
symbolic and algebraic operations and (iv) graphics. Builtin packages are 
available to facilitate the users. Further Mathematica has its own language, one 
can write own program. One of the most important things about Mathematica is 
that it is highly extensible. For detail see web site www.woolfram.com. 
 
Explanation of some basic Mathematica commands used which are used in this 
paper: 
 
Plot 

Ÿ Plot[f, ax, xmin, xmaxa] generates a plot of f as a function of x from xmin to 
xmax.  
Ÿ Plot[aa, a, … a, ax, xmin, xmaxa] plots several functions a.  
 
Plot3D 

Ÿ Plot3D[f, ax, xmin, xmaxa, ay, ymin, ymaxa] generates a three-dimensional 
plot of f as a function of x and y.  
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Ÿ Plot3D[af, sa, ax, xmin, xmaxa, ay, ymin, ymaxa] generates a 
three-dimensional plot in which the height of the surface is specified by f, and the 
shading is specified by s.  
P 
ContourPlot 

Ÿ ContourPlot[f, ax, xmin, xmaxa, ay, ymin, ymaxa] generates a contour plot of f 
as a function of x and y.  

Appendix 2 
(* load tke packeg once *) 
<< Statistics`MultinormalDistribution` 
(* Run this block for differnt values of c1 *) 
(* This block plots bivariate normal pdf p and its and contour *) 
 
c1 = 0.75; 
(r = {{1, c1}, {c1, 1}}; 
    ndist = MultinormalDistribution[{0, 0}, r]); 
p[r_] := PDF[ndist, {x1, x2}]; 
 
p = Plot3D[p[t], {x1, -3, 3}, {x2, -3, 3}, PlotRange -> All]; 
 
c = ContourPlot[p[t], {x1, -2, 2}, {x2, -2, 2}]  

Appendix 3 
[(* once load the pakage *) 
<< Statistics`MultinormalDistribution`] 
 
[(*This block computes joint probability p and Horn measure pk *) 
(* In this block c1 is the value of correlation coefficient ndist is joint  
pdf *) 
(* change the values of c1 for new computation *) 
c1 = 0.0 
(r = {{1, c1}, {c1, 1}}; 
    ndist = MultinormalDistribution[{0, 0}, r]); 
l[{k1_, k2_}] := CDF[ndist, {k1, k2}]; 
Clear[v, p, p1, pk] 
c1 = .75 
For[i = 1, i < 4, 
k1 = i; 
For[j = 1, j < 4, 



Anwer Khurshid, Ehtisham Hussain, Masood-ul-Haq 

Pak.j.stat.oper.res.  Vol.III  No.2 2007  pp75-86 86 

k2 = j; 
vt = (2*k1*k2)/(Pi*Sqrt[1 - c1^2]); 
v = N[vt] 
p = l[{k1, k2}] - l[{-k1, k2}] - l[{k1, -k2}] + l[{-k1, -k2}] ; 
p1[i, j] = p; 
pk[i, j] = 1 - p/vt; 
j++]; i++] 
 
 


