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1.   Introduction 

Order statistics and their moments have assumed considerable interest in recent years. 

There is a vast literature on both theory and application of the moments of order statistics. 

Many recurrence relations for the single and product moments of the order statistics from 

different distributions have been revealed. These relations provide advantages in 

computation of the lower and higher moments of order statistics.  

 

Joshi and Balakrishnan (1982) obtained several recurrence relations and identities for 

product moments of order statistics in a random sample of size n from an arbitrary 

continuous distribution. Balakrishnan and Joshi (1982) established independent and 

identically distributed results for the Pareto and doubly-truncated Pareto models, at the 

same time these results allow us to evaluate all the single and product moments of order 

statistics. Balakrishnan et al. (1988) and Malik, et al. (1988) reviewed several recurrence 

relations and identities for single and product moments of order statistics for specific 

distributions. Mohie El-Din et al. (1997) derived expressions for the moments and 

product moments of the order statistics from the doubly truncated linear-exponential 

distribution. Childs and Balakrishnan (1998) generalized the I.I.D. results for the Pareto 

and doubly-truncated Pareto models established by Balakrishnan and Joshi (1982). 

Ahmad (2001) derived some general recurrence relations satisfied by single and product 

moments of order statistics from doubly truncated continuous distributions. Afify (2006) 

derived some recurrence relations of single and product moments of order statistics from 

identical Pareto distribution and estimated the parameters of the first order statistics and 

the mean, variance and the coefficient of variation were also computed. Bekçi (2009) 

examined order statistics of a random sample of size n drawn from uniform distribution 

and derive some recurrence relations for the single and product moments of these order 

statistics. Nadarajah (2010) derived exact and explicit expressions for moments of order 

statistics from Pareto distributions. 
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A good deal of work has appeared in the literature on characterizing a distribution by 

means of the conditional expectation of nkX :1  
(or its function) given nkX : .  

 

More specifically, Franco and Ruiz (1999) characterized a distribution by means of

)(])([ ::1 zgXXψE znknk  , under some mild conditions of  (.)ψ  and (.)g . Gupta and 

Ahsanullah (2004) attempted to characterize a distribution by means of 

)(])([ :: zgXXψE znknsk  , under some mild conditions of  (.)ψ  and (.)g . Khan and 

Faizan (2013) characterized two families of probability distributions through the 

conditional expectations of dual generalized order statistics. Various characterizations of 

the class of exponential distributions are presented by Hamedani (2013).  

 

Suppose that the random variable X  has the distribution function (d.f.) given by 
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where   is a positive parameter, )(xh  is assumed to be non-decreasing, continuous and 

differentiable function on ),( ba  such that 0)( ah  and  )(bh . Different choices of 

)(xh  lead to distributions that is important in life testing as well as other areas of 

statistics (Ahmad, 2001). Put xxh ln)(  , ),1( x , 
v

1
 , 0)( ah , 0v  then the d.f. 

(1) reduces to Pareto distribution in the form 

vxxF 1)( , ),1( x , 0v       (2) 

and probability density function (p.d.f.) 

)1()(  vvxxf , ),1( x , 0v .       (3) 

 

We note that )(xf and )(xF satisfy the relation 

)(1)( xf
v

x
xF  . 

Let nXXX ,...,, 21 be independent random variables with d.f. nFFF ,...,, 21  respectively and 

let nnnn XXX ::2:1 ...  denote the corresponding order statistics. In the theory of order 

statistics it is usually assumed that nXXX ,...,, 21  are identically distributed. However in 

many practical situations it is necessary to allow for non-identical nFFF ,...,, 21 . 

 

Suppose nXXX ,...,, 21  have independent and identical d.f. )(xF  and p.d.f. )(xf . The 

p.d.f. of nrX :  ( nr 1 ) is denoted by (David, 1981) 

rnr

nrX xFxfxF
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n
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where  x .  
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The joint p.d.f. of nrX :  and nsX : ( nsr 1 ) is denoted by (David, 1981) 

snrsr
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where yx  . 
 

The joint p.d.f. of ndrnrnr XXX ::2:1
,...,,

 
( nd 1  and 1...0 1210   nrrrrr dd )   is 

denoted by  (Reiss, 1989) 
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where dxxx  ...21 , 0)( 0 xF  and 1)( 1 dxF . 

 

The aim of this paper is to obtain closed form expressions for the moments of the 

truncated Pareto order statistics. The contents of this paper are organized as follows. At 

first we give materials and methods. Then, we compute the moments of order statistics 

from left truncated Pareto variables, right truncated Pareto variables and doubly truncated 

Pareto variables. Later, we derive some results for the moments of the truncated Pareto 

order statistics. We consider Pareto distribution since it has a wide use in economic and 

finance. 

2.   Materials and Methods 

The conditional distribution of the sth order statistic, nsX :  given that the rth order statistic 

nrX : is equal to x , is expressed as 
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where nsr 1  and 
  yx . After substituting (4) and (5) into (7) and some 

manipulation, we can be obtained that 
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where )(
:: 

yf
xnrXnsX

 is the left truncated p.d.f. of sth order statistic. We note that 
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are the d.f. and p.d.f. of the population whose distributions 

is obtained by truncating the distribution )(xF on the left at x . 

 

Similarly, the conditional distribution of the rth order statistic, nrX :  given that the sth 

order statistic nsX : is equal to y , is expressed as 
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where nsr 1 , 
  yx  and )(

:: 
xf

ynsXnrX
 is the right truncated p.d.f. of rth order 

statistic.  
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We note that 
)(
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



yF

xF
and 

)(

)(





yF

xf
are the d.f. and p.d.f. of the population whose 

distributions is obtained by truncating the distribution )(xF on the left at y . 

 

The conditional distribution of the uth order statistic, nuX :  given that the rth order 

statistic nrX : is equal to x  and sth order statistic nsX : is equal to y , is expressed as, 
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where nsur 1  and 
  yzx . After substituting (5) and (6) into (10) and some 

manipulation, we can be obtained that 
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where )(
:,:: 


zf

ynsXxnrXnuX
 is the doubly truncated p.d.f. of rth and sth order statistic. 

We note that 
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are the d.f. and p.d.f. of the population 

whose distributions is obtained by truncating the distribution )(xF on the left at x and 

right at y . 

3.   Moments of Truncated Pareto Order Statistics 

In this section, we compute the moments of order statistics from truncated Pareto 

variables by means of the conditional expectation. First, we will establish the moment of 

the left truncated order statistics from the Pareto distribution. Let us denote the moments 

)( :: xnrns XXE by
nrns ::

 , is given by 







x

xnrXnsXnrns
dyyfy )( 

::::
 ,      (12) 

where nsr 1  and .1   yx  

Theorem 3.1.  

The moment of the left truncated order statistics from Pareto distribution by means of the 

conditional expectation is given by  
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Proof. Let )( xF and )( xf be as in (2) and (3). By using properties of binom and some 

manipulation, (8) can be expressed as 
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After substituting (14) into (12) and then integrating them we can be obtained (13). 

 

Then, we will establish the moment of the right truncated order statistics from the Pareto 

distribution. Let us denote the moments )( :: ynsnr XXE
 
by 

nsnr ::
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where nsr 1  and .1   yx  

Theorem 3.2.  

The moment of the right truncated order statistics from Pareto distribution by means of 

the conditional expectation is given by  
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Proof. Let )( xF and )( xf be as in (2) and (3). By using properties of binom and some 

manipulation, (9) can be expressed as 
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After substituting (17) into (15) and then integrating them we can be obtained (16). 

 

Finally, we will establish the moment of the doubly truncated order statistics from the 

Pareto distribution. Let us denote the moments ),( :::  ynsxnrnu XXXE by 
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where nsur 1  and .1   yzx  

Theorem 3.3 

The moment of the doubly truncated order statistics from Pareto distribution by means of 

the conditional expectation is given by  
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Proof. Let )( xF and )( xf be as in (2) and (3). By using properties of binom and some 

manipulation, (11) can be expressed as 
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After substituting (20) into (18) and then integrating them we can be obtained (19). 

4.   Results for Moments of Truncated Pareto Order Statistics 

In this section, we derive some results for the moments of the truncated Pareto order 

statistics. 
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For 1r  in (16) the moment of the conditional p.d.f. of smallest order statistics given 

ynsX :  is given by 
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For kr  , 1 ku  and 2 kr  in (19) the moment of the conditional p.d.f. of order 
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