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Abstract 

Malaysia is a unique country due to having both fixed and moving holidays. These moving holidays may 

overlap with other fixed holidays and therefore, increase the complexity of the load forecasting activities. 

The errors due to holidays’ effects in the load forecasting are known to be higher than other factors. If these 

effects can be estimated and removed, the behavior of the series could be better viewed. Thus, the aim of 

this paper is to improve the forecasting errors by using a dynamic regression model with intervention 

analysis.  Based on the linear transfer function method, a daily load model consists of either peak or 

average is developed.  The developed model outperformed the seasonal ARIMA model in estimating the 

fixed and moving holidays’ effects and achieved a smaller Mean Absolute Percentage Error (MAPE) in 

load forecast. 

Keywords:   Dynamic Regression, Linear Transfer Function, Moving Holidays’ Effects, 

SARIMA. 

1. Introduction 

Growing demands by stakeholders for efficient operation and dispatch of the power 

system has increased the need to have a more robust, reliable and accurate load 

forecasting. The forecasting errors for holidays are known to be higher than other factors.  

Malaysia has both fixed holidays such as Christmas and New Year, and moving holidays 

such as Aidil Fitri and Chinese New Year. The moving holidays are moving according to 

three different calendars. Chinese New Year follows Chinese lunar calendar, Aidil Fitri 

and Aidil Adha follow Islamic lunar calendar and Deepavalli follows Hindu calendar. 

Chinese New Year and Deepavalli move within two specific months of the Gregorian 

calendar but Aidil Adha and Aidil Fitri move forward from one period to the next over 
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the entire Gregorian calendar. As such the load will be affected more significantly by 

them compared to the fixed holidays and these effects are called ‘moving holidays’ 

effects’ (Lazim et al., 2006).   

 

A statistically based technique which has been applied successfully for many years in this 

area and enjoyed great success in practice for short term forecast as discussed in (Ismail 

and Jamaludin,2008; Ismail et al., 2009a) was related to these holidays effects. The 

Spanish system’s daily model was computed for forecasting the daily load up to ten days 

ahead, derived by starting from an ARIMA (auto-regressive integrated moving average) 

model with dummy variables to capture the influence of special days which include 

holidays was discussed in (Cancelo et al., 2008). The issue of identifying and eliminating 

deterministic seasonality due to holidays tied to the lunar calendar for Turkey was 

addressed in (Emre and Boragan, 2001). It was found out in (Lin and Liu, 2002) that 

adding holiday regressors can effectively control the impact of moving holidays and 

improve the seasonal decomposition of the selected series in Taiwan. The seasonal 

adjustment procedures using SEAM (Seasonal Adjustment for Malaysia) and  

Reg ARIMA (adjusted for Malaysia) were applied in (Lazim et al., 2006) to eliminate the 

presence of the moving holiday effects and seasonally adjusted the Malaysian economic 

time series data.  

 

The effects of New Year holidays were estimated in (Razak et al., 2010) by the dynamic 

regression (DR) model based on the intervention analysis applied on to the daily peak 

load.  The model achieved a smaller Mean Absolute Percentage Error (MAPE) value than 

the seasonal ARIMA (SARIMA) model based on seven days ahead and performed better 

in predicting the next New Year holiday ahead. The DR model was also discussed by 

Razak et al. (2011) to analyze the moving holidays’ effects and found that the observed 

series fit well with the predicted series. However the error made earlier by the DR model 

could be reduced if the sample size of the data is increased. Since the load will be 

affected more significantly by moving holidays compared to the fixed holidays, the DR 

model is developed further in this paper to deal with the sensitivity of the moving 

holidays using a larger sample size. A comparison is made between the DR model and 

SARIMA model in estimating the holidays’ effects and hence to forecast the daily peak 

and average load in Malaysia. The final selection of the appropriate models depends on 

the MAPE value and a variety of tools, which include the sample autocorrelation function 

(ACF), the sample partial autocorrelation function (PACF) and the Ljung-Box Chi-

squared statistics. 

 

The outline of the paper is as follows: Section 2 explains briefly the concepts of dynamic 

regression intervention model. Section 3 discusses the methodology of the modeling. 

Section 4 presents the results and discussion and Section 5 concludes.   

2. Dynamic Regression Intervention Model 

This paper aims to develop an improvedload forecasting model that can capture the 

influence of Malaysian fixed and moving holidays. Thus, a dynamic regression 

intervention model is considered since holidays can be the intervention variables which 

may exert their influence on the daily load dynamically across several future time 

periods. The basic concepts and modeling of the model will be discussed in this section.   



Dynamic Regression Intervention Modeling for the Malaysian Daily Load  

Pak.j.stat.oper.res.  Vol.X  No.1 2014  pp41-55 43 

2.1 Dynamic Regression Model  

Dynamic regression model provides all the advantages of a multiple regression model 

with the time series features of an ARIMA model. The basic form of the DR model in 

general is given by  

  ttt
NXfCY  )(

       (1) 

where
t

X 
 
is the explanatory or independent variable or input series, 

t
Y 

 
is the forecast 

variable or output series, C is the constant term, )(
t

Xf
 
is the transfer function which 

describes how a change in 
t

X  is transferred to 
t

Y 
 
across several time periods and 

t
N

 
is 

the stochastic disturbance series which is an ARMA process uncorrelated with 
t

X . The 

disturbance series 
t

N  represents the effects of all excluded inputs on the variability of 
t

Y  

whilst the constant C captures the effects of excluded inputs on the overall level of 
t

Y  

(Makridakis et al., 1998). 

2.1.1 Linear Distributed Lag 

The effect of any holiday
t

X  on the electrical load lasts for some time due to many 

customers going for a long break until the load would return back to normal. So, the daily 

electrical load
t

Y 
 
can be modeled as a transfer function )(

t
Xf  of the holiday and few 

days prior the holiday ..,, 
,.21  ttt

XXX . It can be written as a linear distributed lag of
t

X 

values given by 

ktktttt
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The coefficients 
0
 through 

k
v v  are called transfer function weights and k is the longest lag 

of X used. Equation (2) can be written in a simpler form using the backward shift 

operator B defined as
ktt

k XXB


 (Pankratz, 1991). 
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    (3) 

2.1.2 Rational Distributed Lag 

The lag k in Equation (3) can be a large number that involves a longer time in estimating 

the parameters
0

  through 
k

v v . Thus, )(Bv  is rewritten in terms of rational polynomial 

distributed lags defined as  

( )
( ) ,       -1 1

( )

bB
v B B

B


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where    

  
h

h
BBBB   ...)( 2

210      (5) 

r

r
BBBB   ...1)( 2

21      (6) 



Fadhilah Abd. Razak, Mahendran Shitan, Amir Hisham Hashim, Izham zainal Abidin 

Pak.j.stat.oper.res.  Vol.X  No.1 2014  pp41-55 44 

and the dead time denoted as b is the delay periods before 
t

X 
 
influences 

t
Y , h is the 

order of the   function that controls the number of transfer function coefficients before 

they begin to decay and r is the order of the   function that controls the decay pattern. 

Hence, the DR model given in Equation (1) yields to a simpler form as 

tbtt NX
B

B
CY  

)(

)(




      (7) 

 

Rational forms )(Bv as given in Equation (4) can capture a wide variety of patterns with 

just a few parameters in most applications (Pankratz, 1991).  Since holidays are the main 

contributing factors to the electrical load, they will be considered as interventions for the 

independent variable
t

X in the DR model and their precise impact will be measured using 

the intervention analysis.  Such model becomes a special case of a DR model and can be 

called DR intervention analysis model.  

2.2 Intervention Analysis Model 

The intervention may due to identified events or unexplained outliers (unusual observations) in a 

time series. There are two types of intervention analysis:  

2.2.1 Step Intervention 

Step intervention involves with a permanent change and expected to occur in a sudden 

drop or rise in the forecast variable (Makridakis et al., 1998). The step intervention 

occurred at time t is defined as the dummy deterministic variable
t

X . 

0

1
t

t i
X

t i


 

         (8) 

2.2.2 Pulse Intervention 

Pulse intervention involves with a temporary change. Interventions such as holidays yield 

temporary effects on the load and thus are under the pulse-based interventions. Suppose a 

particular holiday  
t

X
 
occurs during time t = i and does not occur at other times. Then it 

is assigned as a binary independent variable as  

0

1
t

t i
X

t i


 

         

(9) 

 

If 
t

X is assumed to be any public holidays which occur at various time t, then the effect 

of the pulse intervention on series 
t

Y will involve a multi-period temporary response.  

 

Each type of holidays is defined as in Equation (9), and denoted as
,
  for 1,2,...

i t
X i  .  

Since all these holidays are pulse intervention variables the model given in Equation (7) 

can be written compactly as 

,
1
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( )
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This model is also studied as the intervention model for analyzing the impact of extreme 

change on the arrival of tourist into Bali (Ismail et al., 2009b), to examine the impact of 

policy guidance on transportation demand (Chen et al., 2003) and to investigate the 

effects of the road safety operations on road accidents in Malaysia (Ya’akob et al., 2011). 

2.3 ARIMA Model 

Many non-stationary series are represented by an autoregressive integrated moving 

average (ARIMA) models. The ARIMA model or process{ }
t

Y , denoted by ARIMA (p, d, 

q) is given by   
2

t(1 ) ( ) ( ) ,        {Z } ~ (0, )d

t tB B Y B Z WN   
   

(11) 

where )(B is an autoregressive (AR) operator of order p and )(B  is a moving average 

(MA) operator of order q as given by 

p

p
BBBB   ...1)( 2

21      (12) 
q

q
BBBB   ...1)( 2

21      (13) 

using the backward shift operator B to describe the process of differencing as defined by  

  ,...1,0   ,   ,
1




jYYBYBY
jtt

j

tt      (14) 

The integrated term of ARIMA is represented by d which is a degree of the first 

difference denoted as  (1 )B . Thus, a non-stationary ARIMA reduces to stationary 

ARMA (p, q) model whenever d = 0 (Brockwell and Davis, 2002). 

 

The ARIMA model can be extended to incorporate seasonality and known as seasonal 

ARIMA or SARIMA models. One can identify the existence of seasonality in the series 

from a large autocorrelation coefficient or partial correlation coefficient at the seasonal 

lags and significantly different from zero. It is a pattern that repeats itself over fixed 

intervals of time. So for a daily series, multiples of the seasonal lag 7, 14 … might be 

seen such as illustrated by the sample autocorrelation function (ACF) in Figure 1.  

 

Figure 1:   Seasonality apparent in a daily series 
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The general multiplicative SARIMA model { }
t

Y
 
denoted by ARIMA (p, d, q) (P, D, Q)s 

where (p, d, q) refers to the non-seasonal parameters and (P, D, Q)s refers to the seasonal 

parameters with s as the number of seasons.  The model }{
t

Y  is defined as 

t

s

t

Dsds ZBBYBBBB )()()1()1)(()(      (15) 

where d and D are nonnegative integers (Brockwell and Davis, 2002; Shumway and 

Stoffer, 2006). The seasonal polynomials ( )z  and ( )z  to represent the orders P of AR 

and Q of MA models respectively are multiplied into Equation (15). Since ARIMA 

model has a variety of order terms, the Box-Jenkins methodology is used to decide on the 

most appropriate SARIMA model for the disturbance series 
t

N  in the DR intervention 

model. 

3. Methodology 

The methodology of developing an appropriate dynamic regression intervention analysis 

model is based on the linear transfer function. The flowchart in Figure 2 summarizes the 

network of the stages involved in the method. The modeling activities for each stage will 

be presented in this section. The aim is to develop a daily load model that able to give the 

best estimate of the holidays’ effects and hence to forecast a week ahead of the series. A 

benchmark of ARIMA model will be used. 

 

Model Identification

Forecasting and Data 

Applications

Data Preparation

Parameter Estimation and

Model Checking

 

Figure 2:   Flow Chart of Intervention Modeling Activities 

3.1 Data Preparation 

Stage 1 of the modeling activities is data preparation. The data used in this paper was a 

power load profile measured in Megawatts (MW) and the plot shown in Figure 

3represented the peak daily load series 
t

Y  from January 1
st
, 2002 to December 31

st,
 2004. 
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The variance of the series is not constant and thus the natural logarithmic transformation 

is used to equalize the variability over the length of the series. The series also clearly 

shows an upward trend and a weekly seasonality with many troughs, possibly due to 

weekends and holidays. These patterns reveal that the series is not stationary and hence 

the data is differenced at lag 1 and 7 to obtain an approximate stationary time series. 

Thus, Equation (10) yields to  

tti

j

i i

b

i
t NX

B

BB
Y

i

ln
)(

)(
ln 7,7

1

7  
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
    (16) 

where the constant term C is deleted due to its insignificance after differencing. 
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Figure 3:   The three-year-series of Peak Daily Load 

 

The next step of data preparation is to fit the model in Equation (16) to get the estimates 

of the regression parameters. An approximate low-order proxy autoregressive (AR) 

model such as AR (1) is used for the errors or disturbance series
t

N 
 
in the model. The 

sample ACF of the residuals is studied to check how quickly the autocorrelation 

coefficients go to zero. Repeat the estimation of the preliminary model until the errors in 

the disturbance series become stationary. 

3.2 Model Identification 

Stage 2 of the intervention modeling is model identification. It is considered once the 

disturbance or frequently called residual series is stationary to identify the transfer 

function for the intervention variable and the ARMA model for the disturbance series 

based on the estimated parameters. The Box-Jenkins’ principle of parsimony is applied in 

the identification of both models. More parsimonious form of models requires less 

parameter to estimate but able to adequately describe the data. Redundant parameters 
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may lead to unstable estimates in the models (Box et al., 1994). Linear transfer function 

method is used for the identification of both models as explained next. 

3.2.1 Identification of Transfer Function 

The linear transfer function method involves in selecting proper orders of one or more 

tentative rational form for the transfer function  ( )v B  for each intervention variable
,
 

i t
X . 

The transfer function can be identified initially by a hypothesis and then followed by an 

empirical approach. There are four commonly encountered types of pulse responses 

(Pankratz, 1991): 

 

a) 0,0,0,)(
0

 rhbBv   

b) 1,0,0,
1

)(
1

0 


 rhb
B

Bv



 

c) 0,1,0,)(
10

 rhbBBv   

d) 1,1,0,
1

)(
1

10 



 rhb

B

B
Bv





      

(17) 

 

Since the intervention variables consist of different types of holidays, the dead time is 0 b

indicating an immediate or no delay period response. 

 

If any intervention gives a one-period temporary effect at time it  , its transfer function is 

function (a) where 
0

  is the size of the displacement of the load  
t

Y
 
during time t. On the other 

hand, if the response is gradual then the function is in part (b) which occurs most.   

The function (c) illustrates a dynamic response of the intervention on a series
t

Y  which 

rises by 0
  units during period i and by added 

1
 units during period 1i   and remains at 

the equilibrium level after 1  it . On the other hand, if the response is gradual after

1  it  with the function 1  that controls the decay pattern until the intervention 

slowly disappears, then the function is part (d). The application of these linear transfer 

functions will be discussed in later section. 

3.2.2 Identification of ARMA Disturbance 

The next step is to identify the appropriate ARMA model for the disturbance series or to 

calculate the residuals 
t

N  from the DR model after been captured by the intervention 

variables. The estimated residual series 
t

N  for daily load model can be calculated to get 

  
7 7 7 ,

1

( )
ln ln

( )

bij
i

t t i t
i

i

B B
N Y X

B





            (18)
 

Plots of the sample ACF and partial autocorrelation function (PACF) of residuals are 

examined for the potential seasonal ARIMA (p, d, q) (P, D, Q)s model for
t

N . 
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3.3 Parameter Estimation and Model Checking 

Stage 3 of the intervention modeling is parameter estimation and model checking. It 

involves in refitting the complete DR intervention analysis model for daily load series 

using the new fitted ARMA model for 
t

N  from Equation (18). Each parameter in both 

potential models of ARMA disturbance and the transfer function  ( ) for 1,2,...,
i

v B i j
 
of 

the intervention variables are re-estimated using the conditional least squares and 

maximum likelihood estimation method. Besides being significant parameters for the 

potential model, these parameters has to satisfy certain requirements of stationarity, 

invertibility and stability for both seasonal and non-seasonal parameters (See Pankratz, 

1991). Any insignificant parameters will be deleted if they are any. 

 

The usual diagnostic tests for model checking were performed to validate the final derivation of 

both the intervention part and the disturbance part in the full complete DR intervention model 

before forecasting. The residual plots of ACF and PACF are observed to make sure that there are 

no autocorrelations significantly different from zero. These plots should behave as the white noise 

for an adequate disturbance ARIMA model.  White noise data have a sampling distribution that 

can be approximated by a normal curve with mean zero and standard error 1/ n  where n is the 

number of observations in the series.  

 

There is a Ljung-Box χ
2 

statistic test to detect an inadequate disturbance ARIMA model. 

If the test statistic value is less than the χ
2 

critical value at the 5% level, then the 

approximate χ
2
test does not suggest inadequacy in the disturbance ARIMA model. 

3.4 Forecasting and Model Applications 

The final stage of the intervention modeling is forecasting and model applications. Once 

the complete DR model is identified with all the estimated parameters, the forecasts of 

future values of the load are produced. The DR intervention daily peak load model will 

be used to forecast seven days ahead based on public holidays’ effects. Five-year series 

of daily average load model will be applied to forecast other scenarios. 

 

The fitted model can be assessed further by looking into the forecasting accuracy 

criterion.  The criterion chosen to measure the accuracy of the forecast in this study is the 

Mean Absolute percentage Error (MAPE) which is given by; 

MAPE =
1

| |

 .100%

n
i

i

x x

x

n




      
(19) 

where 
i

x  and ˆ
i

x  are the actual observed values and the predicted values respectively 

while n is the number of predicted values. The rational justification of using the MAPE 

compared to the other criteria is due to its scale free and relative or percentage error 

measures. 
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4. Results and Discussion 

The results obtained based on the linear transfer function methodology of developing an 

appropriate dynamic regression intervention analysis model is presented in this section.  

Two cases are considered as follows:  

4.1 Three-Year Series of Daily Peak Load 

The 3-year series daily peak load was prepared as in Section 3.1. The potential models 

fitted for the disturbance series 
t

Nln
7
  in Equation (18) are seasonal ARIMA (p, d, q) 

(P,D,Q)s models with three different parameters as (1, 1, 1) (0, 1, 1)7, (2, 1, 1) (0, 1, 1)7 

and (1, 1, 2) (0, 1, 1)7. As such there will be three respective potential DR intervention 

models for the load 
t

Yln
7
  as given in Equation (16). The goodness of fit of the 

potential models is justified by the significant Ljung-Box chi-squared test at 5% level 

shown by Table 1. Besides the MAPE measures shown by the table as the model fit 

statistics, the normalized Bayesian Information Criterion (BIC) measures are also 

recorded. The BIC criterion is an order selection criteria for ARIMA models. Similarly to 

MAPE, the smallness of the criterion value is indicative of a more appropriate model. 

However, both model fit statistical measures of BIC and MAPE recorded for seasonal 

ARIMA and DR intervention models are about the same for each respective parameter.   

Table 1:   Model Fit Statistics for the potential Models 

    Model Fit Statistics Ljung-Box Q(18) 

Model Parameters  BIC MAPE statistics (df=15) Sig 

Seasonal ARIMA (111)(011)7 12.439 3.159 16.68 0.34 

(No predictors) (112)(011)7 12.442 3.147 14.39 0.42 

 

(211)(011)7 12.442 3.146 14.87 0.39 

DR Intervention  (111)(011)7 11.989 2.49 16.68 0.34 

(4 predictors) (112)(011)7 11.991 2.49 14.39 0.42 

  (211)(011)7 11.992 2.49 14.87 0.39 

 

Based on smaller MAPE relative error measures for the model fitting, DR intervention models 

may perform better than seasonal ARIMA models in forecasting public holidays. A comparison is 

done further by calculating the peak daily load forecasts. The significant intervention variables 

considered in each potential DR intervention model which act as predictors are 3 moving 

holidays: Aidil Adha 
t

X
,1

, Aidil Fitri 
t

X
,2
, Chinese New Year

t
X

,3
; and New Year 

t
X

,4
 as a 

selected public holiday. The linear transfer functions )(Bv given in Equation (17) are referred 

when estimating each holiday’s effect.   It is expected that Aidil Fitri holidays give the most 

impact on the load, followed by Chinese New Year, Aidil Adha and finally New Year.  Due to 

their different holiday patterns, the function defined in part (d) is fitted to both Aidil Fitri 
t

X
,2

 

and Chinese New Year
t

X
,3

while the same rational forms of function in part (a) are fitted to Aidil 

Adha 
t

X
,1

and New Year
t

X
,4
.    

 



Dynamic Regression Intervention Modeling for the Malaysian Daily Load  

Pak.j.stat.oper.res.  Vol.X  No.1 2014  pp41-55 51 

The MAPE is calculated based on seven-day-ahead forecasts each starting with four 

different festival events. The results are presented in Table 2. DR intervention models 

achieved less than 4% for the MAPE measures of accuracy compared to Seasonal 

ARIMA models due to their better recognition of the interventions’ effects. Thus, 

Seasonal ARIMA models failed to explain well the variation in the electrical load due to 

these festival events especially dealing with moving holidays.   

Table 2:   The MAPE for Peak Daily Load Forecasts  

      Seasonal ARIMA 
 

 DR Intervention  

 Festival 

Events 
(111) (011)7 (112) (011)7 (211) (011)7 (111) (011)7 (112) (011)7 (211) (011)7 

New Year 

2005 
3.45 3.28 3.26 1.48 1.5 1.5 

Chinese New 

Year 2004 
7.61 7.9 7.91 3.01 2.99 3.01 

Aidil Adha 

2003 
8.07 8.22 8.22 2.21 2.34 2.29 

Aidil Fitri 

2003 
9.22 9.68 9.69 3.27 3.38 3.38 

 

Among the three potential DR intervention models, seasonal ARIMA (111) (011)7 model is 

chosen for the disturbance series 7 ln tN  . The reason is due to a smaller MAPE value as 

highlighted in Table 2 and also due to a less significant parameter estimate of both non-seasonal 

MA2 and AR2  in ARIMA (112) (011)7 and ARIMA (211) (011)7 respectively. The chosen model 

is defined as  

7

1 1
7 7

1

(1 )(1 )
ln  

(1 )(1 )
t t

B B
N a

B B





 
  

 
     

(20) 

where 
t

a  is the white noise residuals.  

 

Table 3 presents all the parameter estimates obtained in the full DR intervention model 

t
Y

 
satisfying the required conditions of invertibility, stationarity and stability. These 

parameters are also significant at better than 5 % level. The absolute t-values are all 

greater than 2 indicating that the model 
t

Y  is appropriate and it is given by  
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where 
t

X
,1
,

t
X

,2
 ,

t
X

,3
and 

t
X

,4
 represent the holidays with their fitted transfer functions.   
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Table 3:   Estimated Parameters for DR Intervention Model of Peak Daily Load 

Variable Parameter Estimate Std.  Error t Value p-Value 

AR1 
1
  0.336 0.034 9.796 0.000 

MA1 
1
  0.961 0.010 91.856 0.000 

MAS1 
1

  0.996 0.026 38.359 0.000 

Aidil Adha 
1,0

  -0.223 0.022 -10.183 0.000 

Aidil Fitri 
2,0

  -0.320 0.024 -13.057 0.000 

 
1,2

  0.175 0.029 6.078 0.000 

 
2,1

  0.661 0.035 19.000 0.000 

Chinese New Year 
3,0

  -0.255 0.024 -10.609 0.000 

 
3,1  0.070 0.029 2.416 0.016 

 
3,1

  0.735 0.040 18.359 0.000 

New Year 
4,0

  -0.181 0.011 -16.461 0.000 

 

The MAPE errors recorded by DR intervention model can be reduced by increasing the 

sample size of observations and including other significant factors.  A similar application 

on a five-year series of daily average load is discussed next.     

4.2 Five-Year Series of Daily Average Load  

The average daily load instead of the peak daily load data is studied next for the 

predictions of seven-days prior to, during and ahead of moving holidays. The observed 

data 
t

Y is a 5-year series taken from 1
st
 September 2000 to 31

st
 August 2005. The daily 

data still behave similarly as before and as such the same ARIMA(1,1,1)(0,1,1)7 model is 

fitted successfully for the differenced disturbance series Nt. After considering all i 

significant moving and fixed holidays as intervention variables 
,i t

X  at different time t, the 

DR intervention model for the average daily load is obtained in the same form as in 

Equation (16). The parameters of each transfer function for 
,i t

X  and parameters for 

ARIMA model are optimally estimated. The adequacy of the model is justified 

significantly at 5% level with the Ljung-Box chi-squared statistic value 2 24.26   and 

the MAPE  records 1.595. Two different predictions are considered as follows: 

4.2.1 Predictions based on Moving Holidays’ Effects 

The DR intervention model is used to predict seven days before, during and after each 

moving holiday from Year 2003 to 2004. Table 4 presents the MAPE from 1.02 % to 

3.75% based on each moving holiday’s effect on the electrical load occurring in a 

fortnight period. The highest errors corresponding to Aidil Fitri and Deepavalli in Year 

2004 are due to their overlapping holidays which make it difficult to get good 

predictions. However, the MAPE is less than 3% on the average and it shows that the 

model is satisfactory.  
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Table 4:   The MAPE based on The Effects of Moving Holidays 

Year Aidil Fitri Aidil Adha 

Chinese New 

Year Deepavalli 

2003 1.36 1.12 2.66 1.02 

2004 3.75 2.73 1.79 3.62 

Average MAPE 2.56 1.92 2.22 2.32 

4.2.2 Prediction based on  2005 Chinese New Year’s  Effects 

The DR intervention model is applied again to the daily average data based on a 5-year 

series. The predictions are based on seven days before, during and after Chinese New 

Year 2005 which fall on Wednesday 9
th

 February. The same predictions using Seasonal 

ARIMA (1, 1, 1) (0, 1, 1)7 model (SARIMA) are also produced. Figure 4 illustrates the 

comparison between these two models with the actual daily load (the line with circles). It 

is apparent from the figure that SARIMA model (the line with crosses) failed to capture 

the critical-days’ effect from Monday 7
th

 to Sunday 13
th

 February due to the holiday 

compared to the DR model (the line with squares). 

 

 

Figure 4:   Comparison of models for Chinese New Year 2005 
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This period is the most challenging to predict as the long weekend effect is uncertain to 

occur either before or after such Wednesday holiday. However, DR intervention model 

still records a good MAPE measure of 2.46% compared to SARIMA model with more 

than 5 % error. The DR intervention model is expected to be improved better in detecting 

such occurrence if more samples are available.  

5. Conclusion 

Two types of dynamic regression (DR) intervention model forecasts which are equally 

good in their performance are discussed in this chapter for the power system company to 

deal with the sensitivity of the Malaysian public holidays. The peak and average daily 

load are aimed at producing forecasts up to seven days ahead for network outage 

planning. The modeling is based on the linear transfer function method which able to 

explain well the variation in the electrical load due to any interventions such as holidays.  

The forecasting performance was evaluated by analyzing the errors based on the effects 

of holidays.  Since these effects reduce significantly the routine activities for the periods 

in the vicinity of the holiday dates, the predictions for seven days before holidays are also 

calculated.  

 

DR intervention model for the peak daily load achieved less than 4% for the MAPE value 

compared to SARIMA model based on seven-day-ahead forecasts.Similarly as for the 

average daily load DR intervention model.  It recordedthe average MAPE of less than 3 

% based on the effects of Chinese New Year 2005 compared to SARIMA which record 

the MAPE measure of more than 5%.Thus, the role of the intervention variables in the 

DR model is significant in explaining the variation in the electrical load especially 

dealing with moving holidays.  

 

DR intervention model can be proposed for forecasting the electrical load during any 

public holidays in Malaysia. The result of this study may help the utility company to 

predict the future demand of the customers better and to minimize inaccuracies with 

respect to over or under forecast when predicting for any future load forecasts especially 

dealing with overlapping or consecutive holidays.  The model will be designed to capture 

the load characteristics using the predefined intervention variables. 
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