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Abstract 

If the interest is to calibrate two instruments then the functional relationship models are more appropriate 

than regression models. Fitting a straight line when both variables are circular and subject to errors has not 

received much attention. 

 

In this paper, we consider the problem of detecting influential points in two functional relationship models 

for circular variables. The first is developed based on the simple circular regression model, demoted by 

(SC), while the second is derived from the complex linear regression model and denoted by (CL). The 

covariance matrices are derived and then the COVRATIO statistics are formulated for both models. The cut-

off points are obtained and the power of performance is examined via simulation studies.  

 

The performance of COVRATIO statistics depends on the concentration of error, sample size and level of 

contamination. In the case of the linear relationship between two circular variables, COVRATIO statistics 

of the (SC) model performs better than the (CL). 

 

Furthermore, a novel diagram, the so-called spoke plot, is utilized to detect possible influential points. For 

illustration purposes, the proposed procedures are applied on real data of wind directions measured by two 

different instruments. COVRATIO statistic and the spoke plot were able to identify two observations as 

influential points. 

Keywords:   Correlation, Radar, Errors, Estimation, Wind. 

1.   Introduction 

In practice, calibrating two or more instruments producing angular measurements can be 

statistically handled via circular functional relationship models (see Caires and Wyatt, 

2003, Hassan, et al, 2010). Taking into the account that the compared variables are 

subjected to errors. Thus, the existence of one or more influential points in a data set is 

more likely to affect the efficiency of a suggested model.  

 

Up to date, there are only two published papers consider the problem of influential points 

in the circular functional relationship models. The first studies the linear functional 

relationship model for circular variables (SC) which proposed by Caires and Wyatt 

(2003), and the COVRATIO statistic is derived to detect possible influential points by 

Hussin, et al. (2010). The second paper treats the circular variables as complex numbers 

and then the complex linear functional relationship model (CL) was developed and the 

COVRATIO statistic was derived by Hussin and Abuzaid (2012).  

 

Caires and Wyatt (2003) fixed the slope parameter to be one, later on Hussin, et al. 

(2010) derived the COVRATIO based on the intercept and concentration parameters only. 
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Thus, introducing the slope parameter into the model will make the covariance matrix 

more informative.  

 

On the other hand, the investigation of COVRATIO statistic performance for the (CL) 

model is questionable, where the real and imaginary components were contaminated 

separately, and as given by Hussin and Abuzaid (2012) the power of COVRATIO statistic 

was more than 0.15 for free contamination case.  

 

In this paper, we will compare the performances of the COVRATIO statistics in detecting 

the influential points in the (SC) and the (CL) models by considering two issues: the first 

is to introduce the slope parameter for the (SC) model, and the second is to contaminate 

both model consistently. 

 

The rest of the paper is organized as follows: the following section presents the 

considered two functional relationship models of circular data. Section 3 discusses the 

derivation of the COVRATIO statistics, calculation of the cut-off points and the power of 

performance. A real data set is presented and analyzed in Section 4. 

2.   Functional Relationship Models of Circular Variables 

Fitting a straight line when both variables are circular and subject to errors has not 

received much attention. In the following two subsections we consider two functional 

relationship models for circular variables and derive their corresponding COVRATIO 

statistics. 

2.1  Linear Functional Relationship Model for Circular Variables (SC) 

For any two circular random variables X and Y measured with errors, Caires and Wyatt 

(2003) proposed the following model: 

,...,1,=for),2(=where,=and= nimodXYYyXx iiiiiiii    
(1) 

where ii  and  are independently distributed with von Mises distributions, that is 

)(0, VMi ~  and )(0, VMi ~ . Under the same assumptions, Hussin (2008) extended 

model (1) to the (SC) model and it is given by: 

,...,1,=for),2(=where,=and= nimodXYYyXx iiiiiiii    
(2) 

where   is the slope parameter. There are (n+4) parameters to be estimated, i.e., 

 ,,,  and the incidental parameters nXX ,...,1 . The MLE of the intercept parameter

 is given by: 
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where   )ˆsin( ii xyS   and   )ˆcos( ii xyC  . The slope and iX
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where 1̂  and 1
ˆ

iX  are improvements 

of 0̂  and 0
ˆ

iX , respectively, and   . 

 

Then we can find an estimate of   for any value of   from the equation 
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For the case 1= , the estimate of concentration parameter, ̂  may be obtained by using 

the approximation given in Fisher (1993): 
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The second partial derivatives of the loglikelihood function with respect to the parameters 

are obtained and then the Fisher's information matrix is formulated to find the covariance 

matrix via finding its inverse. Then the following results can be obtained: (For detailed 

derivation see Hussin, 2008). 
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2.2   Complex Linear Functional Relationship Model for Circular variables (CL): 

For any two circular random variables X  and Y  Hussin and Abuzaid  (2012) proposed 

the complex linear functional relationship model, and it is given by: 

 jjjjj XiXxix  )sin(cos)sin(cos , and

 jjjjj YiYyiy  )sin(cos)sin(cos ,  

where  njXiXYiY jjjj ...,1,=for  ,)sin(cos)sin(cos   , 

 

(3) 
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where j  
and j  are independently distributed errors from the bivariate complex 

Gaussian distributions. The MLE of model parameters are given by: 
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Due to the absence of the closed-form for jX̂,ˆ,ˆ  and 2
1̂  the estimates may be obtained 

iteratively. The asymptotic properties of ̂  and ̂  are obtained from Fisher’s information 

matrix and given by: 
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For large values of n, these estimates are normally distributed and can be used to estimate 

the standard error of  ˆ,ˆ
 and 2

1̂  (see Hussin and Abuzaid, 2012). 

3.   Covratio Statistic 

3.1  COVRATIO Statistic 

Many procedures are derived based on deletion one- row approach to identify influential 

points in linear regression models (see Belsley, et al. 1980). COVRATIO statistic is 

defined as the determination ratio of covariance matrixes for full and reduced data. The 

COVRATIO is given by   COVCOVCOVRATIO ii /)(  , where COV is the covariance 
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matrix for full data set and )( iCOV  is the covariance matrix by excluding the ith  row. If 

the ratio is close to unity then there is no significant difference between the covariance 

matrices, i.e. the ith  observation is not influential. 

 

Recently, COVRATIO statistic has been manipulated for circular regression models by 

Abuzaid, et al. (2011). The determinant of coefficients covariance matrix for the (SC) 

model can be written in the following form: 
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and the determinant of coefficients covariance matrix for the (LC) model is given by: 

 
12

223111 ])())([(  bababaCOV  
(5) 

where 2121 ,,, bbaa and 3b  are as given in Subsection 2.2. The 1)( iCOVRATIO statistic 

is a logical formula to detect a suspected influential point when its value is exceeding the 

cut-off point. 

3.2   Cut-off points of COVRATIO statistic 

Monte Carlo simulation study is carried out to obtain the cut-off points of COVRATIO 

statistics for the (SC) and the (CL) models. Seven different sample sizes of 

n=10,30,50,70,100, 150 and 200 are used.  

 

Making use of the fact that the von Mises distribution with large concentration parameter, 

 tends to the normal distribution with variance 12   (Fisher, 1993, Jammalamadaka 

and SenGupta, 2001). We generate X variable of size n from von Mises distribution,

 3,4/VM . Without loss of generality, the parameters of the (SC) and the (CL) models 

are fixed at  =0 and  =1. Then the observed values of variable Y are calculated based 

on models (2) and (3) separately. 

 

Assuming that the ratio of concentration parameters 1 , a random error from von 

Mises distribution with mean 0 and concentration parameter  =5,10,15,20 and 30 are 

added to the observed variables as given in model (2). Thus, the variance of the random 

error of the (CL) model are 0.2, 0.1, 0.067, 0.05 and 0.03, respectively. The values of 

error concentration parameters are determined to minimize their variation compared to 

the modeled variables.   

 

The generated circular data are fitted by models (2) and (3) independently. The COV  for 

the (SC) and the (CL) models by using expressions (4) and (5) are calculated. Next the 

ith  row from the generated data ( ni ,...,1 ) are excluded subsequently to compute the 

values of  1)( iCOVRATIO  and to specify the maximum value. 
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The process is repeated 2000 times for each combination of sample size n and 

concentration parameter  (and variance values). Then the 10%, 5% and 1% upper 

percentiles of the maximum values of 1)( iCOVRATIO  are calculated. The results 

show that the percentiles are independent of the variation parameters, where the values of 

standard deviations for the obtained cut-off points based on the considered variation are 

ranged between 0.001 and 0.019. Table 1 presents the cut-off points which are the mean 

of the percentiles associated with the standard deviation in the parentheses for each 

sample size n. 

Table 1:   Cut-off points for the null distribution of 1)( iCOVRATIO  statistic. 

n Model 

200 150 100 70 50 30 10 

0.011 

(0.001) 

0.057 

(0.004) 

0.178  

(0.011) 

0.209  

(0.004) 

0.314  

(0.008) 

0.41 

(0.007) 

1.117 

(0.003) 

90%  

 

SC 0.020 

(0.001) 

0.061 

(0.006) 

0.191 

(0.001) 

0.257 

(0.003) 

0.336  

(0.002) 

0.462 

(0.001) 

1.337 

(0.019) 

95% 

0.042 

(0.007) 

0.084 

(0.013) 

0.220 

(0.005) 

0.301 

(0.010) 

0.374 

(0.008) 

0.619 

(0.007) 

1.857 

(0.012) 

99% 

0.177 

(0.001) 

0.212 

(0.003) 

0.386 

(0.018) 

0.494  

(0.013) 

0.628 

(0.003) 

0.841 

(0.012) 

5.577 

(0.016) 

90%  

 

 

CL 

0.219 

(0.001) 

0.306 

(0.009) 

0.419 

(0.013) 

0.503 

(0.008) 

0.680 

(0.005) 

0.870 

(0.008) 

6.695 

(0.001) 

95% 

0.291 

(0.003) 

0.428 

(0.006) 

0.474 

(0.028) 

0.536 

(0.003) 

0.741 

(0.011) 

0.960 

(0.004) 

7.201 

(0.007) 

99% 

 

For all sample sizes, the cut-off points of COVRATIO statistics of the (SC) model are less 

than its corresponding of the (CL) model. For small sample size (n=10), the values of the 

cut-off points exceed the value of one, reflecting the inappropriateness of COVRATIO 

statistics for both models to detect influential points in small samples. Furthermore, at 

certain level of significance, the cut-off points is a decreasing function of the sample size, 

which may refer to the relative effect of one point to the total weight of sample size.  

3.3  Power of Performance 

The performance of the two statistics are examined numerically via a series of simulation 

studies by considering five sample sizes, n=10,30,50,70 and 100 and two values of 

concentration parameter  =10 and 20. 

 

Two different types of association between circular variables are considered. The first is a 

linear association (  =1 ), and the second is a nonlinear form of association.  
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Making use of the fact that bivariate von Mises distribution with a large concentration 

parameter,   tends to a bivariate normal distribution with variance )/( 222   , 

where   is the circular correlation between two circular random variables (Singh, et al, 

2002). A similar procedure to that described in Subsection 3.2 is used to generate the 

data, and for the purpose of comparison between COVRATIO statistics for the (SC) and 

the (CL) models, the generated data are contaminated at observation d  as follows: 

   
),2(mod*  dd yy  

where 
*
dy

 
is the value of dy

 
after contamination and   is the level of contamination  

( 10   ). 

 

In order to generate two observed circular dependent random variables X and Y, for each 

sample size n, a set of bivariate von Mises distribution ),,( κ0MVM is generated based 

on the rejection sampling algorithm, which proposed by Best and Fisher (1979), where 

)3,3(κ and  =1. Thus, the variance of the each variable becomes 0.375. 

 

The process is repeated 2000 times and the power of performance is calculated as the 

percentage of the correct detection of the contaminated observation at position d . The 

results of simulation study show that: in all cases, the power of performance is an 

increasing function of the contamination level  , Figure 1 shows the power of 

performance is a decreasing function of the sample size n. On the other hand, Figure 2 

shows that the COVRATIO statistic for the (SC) model performs more efficient than the 

(CL) model when the association between the circular random variables is linear.  

 

  

Fig. 1: Power of 1)( iCOVRATIO  

statistic for  the SC model with =10. 

Fig. 2: Power of 1)( iCOVRATIO  

statistic for the SC and the CL models for 

n=50 and  =10 and 20 ( 2
1 =0.1 and 0.05) 

 

Unlike the procedure used by Hussin and Abuzaid (2012) for contaminating the real and 

imaginary parts in (CL) model separately, we contaminate the generated data before the 

transformation into the complex form. Thus, the results we have obtained are more 

0.0 0.2 0.4 0.6 0.8 1.0



0

20

40

60

80

100

n =10

n=30

n=50

n=100

Power

0.0 0.2 0.4 0.6 0.8 1.0



0

20

40

60

80

100

CL, sig2=0.1

SC, k=10

CL, sig2=0.05

SC, k=20

Power



ALi Hassan Abuzaid 

Pak.j.stat.oper.res.  Vol.IX  No.3 2013  pp333-342 340 

reasonable and consistent where the power starts at almost zero when  =0 and 

approaches to 100% when   goes to 1. 

  

Contrasting with the case when the circular variables are linearly correlated, Figure 3 

shows that the COVRATIO statistic for the (SC) model performs less efficient than the 

(CL) model when the association is nonlinear. 

 

 

 

Fig. 3: Power of 1)( iCOVRATIO  statistic, with 

n=50, for SC and CL models,  =10 and 2
1 =0.1, 

respectively. 

Fig. 4: Spoke plot of wind direction 

data measured by both techniques. 

4.   Numerical Example 

A real data set consisting of 129 pairs of observations of wind direction are recorded by 

two different instruments: an HF radar system and an anchored wave buoy. Figure 4 

shows the spoke plot of wind direction data (Zubairi, et al., 2008). The inner ring 

represents the HF radar while the outer ring represents the anchored wave buoy. Since 

almost all the lines do not cross the inner circle, it means that the data are highly 

correlated with estimated correlation parameter 952.0ˆ cr . Furthermore, there are only 

two lines crossing the inner ring, which are associated with observations number 38 and 

111. This indicates that the pairs corresponding to the two observations may be 

influential. The data are fitted by the (SC) model giving ),2( 0.989 0.125= modXY   

with .4811ˆ  , and the (CL) model is given by

   XiXYiY sincos 0.977 10527.7sincos 4    with 0.148ˆ 2  . 

 

The values of   1iCOVRATIO  for the (SC) and the (CL) models are obtained and 

given in Figure 5 and Figure 6, respectively. The statistics are able to define two 

observations as influential points which are 38 and 111. To investigate the effect of these 

two points they are deleted and the data are refitted using the  (SC) and the (CL) models. 

The values of parameter estimates and their standard errors are given in Table 2. It is 

noticeable that for both models the estimates of intercept and slope become closer to zero 
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and one, respectively. The standard error of the slope parameter in the (SC) model for the 

reduced data is less than the full data. On the other hand, for the (CL) model the standard 

error is almost the same. This indicates the efficiency of the COVRATIO statistic for the 

(SC) model more than the (CL) model in the considered data. 

 

 
 

Fig. 5: The 1)( iCOVRATIO  statistic of 

wind data fitted by (SC) model. 

Fig. 6: The 1)( iCOVRATIO  statistic of 

wind data fitted by (CL) model. 

Table 2:    Parameters estimates of the (SC) and the (CL) models associated with the 

standard error 

Model SC CL 

Parameter Full data Reduced data Full data Reduced data 

̂  0.125 (0.072) 0.104 (0.059) 7.52
510 (2.5

510 ) -0.90
510 (2.0

510 ) 

̂  0.989 (0.017) 0.999 (0.014) 0.977(1.88
210 ) 1.00 (1.88

210 ) 

̂  11.468 (0.004) 16.739 (0.001) - - 

2̂  - - 0.148 (8.38
310 ) 0.118 (8.17

310 ) 

Conclusion 

COVRATIO statistic as an identifier of the influential points in functional relationship 

models of circular variables is derived and tested for two types of models. If two circular 

variables are correlated linearly, then the COVRATIO statistic of the (SC) model performs 

better than the (CL) model, vice versa for other types of association. 

 

The contamination procedure of the (CL) model has shown a reasonable performance 

compare to the procedure used previously by Hussin and Abuzaid (2012). The 

application of the proposed statistics for both models on wind data has shown a consistent 

conclusion of detecting two points as influential points. 

 

Other functional relationship models for circular data based on nonlinear association 

between variables need to be studied.  
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