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Abstract

If the interest is to calibrate two instruments then the functional relationship models are more appropriate
than regression models. Fitting a straight line when both variables are circular and subject to errors has not
received much attention.

In this paper, we consider the problem of detecting influential points in two functional relationship models
for circular variables. The first is developed based on the simple circular regression model, demoted by
(SC), while the second is derived from the complex linear regression model and denoted by (CL). The
covariance matrices are derived and then the COVRATIO statistics are formulated for both models. The cut-
off points are obtained and the power of performance is examined via simulation studies.

The performance of COVRATIO statistics depends on the concentration of error, sample size and level of
contamination. In the case of the linear relationship between two circular variables, COVRATIO statistics
of the (SC) model performs better than the (CL).

Furthermore, a novel diagram, the so-called spoke plot, is utilized to detect possible influential points. For
illustration purposes, the proposed procedures are applied on real data of wind directions measured by two
different instruments. COVRATIO statistic and the spoke plot were able to identify two observations as
influential points.
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1. Introduction

In practice, calibrating two or more instruments producing angular measurements can be
statistically handled via circular functional relationship models (see Caires and Wyatt,
2003, Hassan, et al, 2010). Taking into the account that the compared variables are
subjected to errors. Thus, the existence of one or more influential points in a data set is
more likely to affect the efficiency of a suggested model.

Up to date, there are only two published papers consider the problem of influential points
in the circular functional relationship models. The first studies the linear functional
relationship model for circular variables (SC) which proposed by Caires and Wyatt
(2003), and the COVRATIO statistic is derived to detect possible influential points by
Hussin, et al. (2010). The second paper treats the circular variables as complex numbers
and then the complex linear functional relationship model (CL) was developed and the
COVRATIO statistic was derived by Hussin and Abuzaid (2012).

Caires and Wyatt (2003) fixed the slope parameter to be one, later on Hussin, et al.
(2010) derived the COVRATIO based on the intercept and concentration parameters only.
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Thus, introducing the slope parameter into the model will make the covariance matrix
more informative.

On the other hand, the investigation of COVRATIO statistic performance for the (CL)
model is questionable, where the real and imaginary components were contaminated
separately, and as given by Hussin and Abuzaid (2012) the power of COVRATIO statistic
was more than 0.15 for free contamination case.

In this paper, we will compare the performances of the COVRATIO statistics in detecting
the influential points in the (SC) and the (CL) models by considering two issues: the first
is to introduce the slope parameter for the (SC) model, and the second is to contaminate
both model consistently.

The rest of the paper is organized as follows: the following section presents the
considered two functional relationship models of circular data. Section 3 discusses the
derivation of the COVRATIO statistics, calculation of the cut-off points and the power of
performance. A real data set is presented and analyzed in Section 4.

2. Functional Relationship Models of Circular Variables

Fitting a straight line when both variables are circular and subject to errors has not
received much attention. In the following two subsections we consider two functional
relationship models for circular variables and derive their corresponding COVRATIO
statistics.

2.1 Linear Functional Relationship Model for Circular Variables (SC)

For any two circular random variables X and Y measured with errors, Caires and Wyatt
(2003) proposed the following model:
1)

Xj = Xj+6; and y; =Y; +¢j,where Y =a+ Xj (mod2rx), fori=1,...,n,

where ¢o; and g are independently distributed with von Mises distributions, that is
0, ~VM (0,x) and & ~VM (0,v). Under the same assumptions, Hussin (2008) extended
model (1) to the (SC) model and it is given by:

)

Xi = Xj+0; and y; =Y; +¢&j,where Y; = a+ pX; (mod2r), fori=1,...,n,

where S is the slope parameter. There are (n+4) parameters to be estimated, i.e.,
a, p,x,v and the incidental parameters X, ..., X, . The MLE of the intercept parameter
a is given by:
tan1(S/C) $>0,C >0,
4= tan1(S/C)+x  C<O,
tanL(S/C)+2z S<0,C >0,
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where S:Zsin(yi —,5’xi) and C:Zcos(yi —Bxi). The slope and X, estimates are
ZXiSin(yi —a- X))
zxiCOS(Yi —a—BoX;)
Xy = Xig+ sin ( _2<‘°)+/1Aﬂzsm(y‘ ‘“fﬂﬁo) , where /3, and X,, are improvements
cos(x; — Xjo) + AB° cos(y; —a — fXjp)

of B, and X,,, respectively, and 1 =v/x .

given by B~ B+ and

Then we can find an estimate of « for any value of 4 from the equation

A(x) + AA(AK) = %{Zcos(xi ~Xj)+ A cos(y; — @ —,[S’Xi)},

For the case A4 =1, the estimate of concentration parameter, ¥ may be obtained by using
the approximation given in Fisher (1993):

2w+ w* +0.833w° w < 0.53,
A (w)={-0.4+1.39w+0.431-w)" 0.53<w<0.85,
(W2 —4w? +3w) ! w>0.85.

Hence, <= A™}(w) where w= 2—1n{Zcos(xi —X,)+Xcos(y; —a — fX,)}

The second partial derivatives of the loglikelihood function with respect to the parameters
are obtained and then the Fisher's information matrix is formulated to find the covariance
matrix via finding its inverse. Then the following results can be obtained: (For detailed
derivation see Hussin, 2008).

) cov( ) — SO (C i) 0.
cov(d, &) = cov(p3, &) =0, V) = A DIy X2 -(EXx)1
. n(l+ 3?) Y _ K
O ey - ex M e R @ - A
cov(é, ) = L+ f)2X,

AR XZ - (2 X)*]

2.2 Complex Linear Functional Relationship Model for Circular variables (CL):

For any two circular random variables X and Y Hussin and Abuzaid (2012) proposed
the complex linear functional relationship model, and it is given by:

(cosx; +isin x;) = (cos X ; +isin X;) +5;, and
. 3 . (3)
(cosy; +isiny;)=(cosY; +isinY;) +¢;j,

where (cosY; +isinY;)=a+ B(cos X; +isin X;), for j=1,...,n,

Pak.j.stat.oper.res. Vol.IX No0.3 2013 pp333-342 335



ALi Hassan Abuzaid

where 6; and ¢; are independently distributed errors from the bivariate complex
Gaussian  distributions. The MLE of model parameters are given by:

dz%Z(cosyj ~ feos X)),

ﬁ:%Z(cosyj cos X ; +sin y; sin X ; —acos X ), and

\ Asinx; + Bsin y.

X; =tan‘1{ i+ psiny; . A} where A=0c}/of and
ACOSX; + fcosy; —af

of :%Z(Z—ZCOSXJ- cos X ; — 2sin x; sin Xj)+%2(1+0?2 + i +24(fcos X | —cosy;))

—%Z(cosyj cos X ; +sin y;sin X ;).

Due to the absence of the closed-form for &, 3, )Zj and 67 the estimates may be obtained

iteratively. The asymptotic properties of ¢ and 3 are obtained from Fisher’s information
matrix and given by:

var(@) = 3 b L var()) = a - N
(&, —b)(a, —bs) - (a, —by) (8, —b) (8, —b3) — (a, —by)
. oA b, —a ) A A2
cov(a, B) = 2__2 , and cov(&, 1) =cov(B,61) =0,
(8, —by)(a —bs) —(a; - b2)2
% 2 2
A67 A6y 2R; 2R 2R
2fsin X 2 o ..
and also, le:T&f’WjZZT&f(COSyjsm X —siny;cos X; —asin X;)
R, — 2 % +sinxsin X )+ 22 siny sin X in X - cos X
jj—6—f(cosxjcos j +sin x;sin j)+7&f(sm yjsin X +cosy;sin X; —acosX;).

For large values of n, these estimates are normally distributed and can be used to estimate
the standard error of o?,ﬁ and &7 (see Hussin and Abuzaid, 2012).

3. Covratio Statistic

3.1 COVRATIO Statistic

Many procedures are derived based on deletion one- row approach to identify influential
points in linear regression models (see Belsley, et al. 1980). COVRATIO statistic is
defined as the determination ratio of covariance matrixes for full and reduced data. The

COVRATIO is given by COVRATIO ;) =|COV ;|/[COV/|, where COV is the covariance
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matrix for full data set and COV/_;is the covariance matrix by excluding the ith row. If

the ratio is close to unity then there is no significant difference between the covariance
matrices, i.e. the ith observation is not influential.

Recently, COVRATIO statistic has been manipulated for circular regression models by
Abuzaid, et al. (2011). The determinant of coefficients covariance matrix for the (SC)
model can be written in the following form:

_ L+ 5% (4)
cov|= A (R)INT X - (ZX))°]

and the determinant of coefficients covariance matrix for the (LC) model is given by:

5
ICOV|=[(a, —b))(a ~by) (&, - b1 (5)

where a;,a,,b;,b,and b, are as given in Subsection 2.2. The ‘COVRATIO(_D —ﬂstatistic

is a logical formula to detect a suspected influential point when its value is exceeding the
cut-off point.

3.2 Cut-off points of COVRATIO statistic

Monte Carlo simulation study is carried out to obtain the cut-off points of COVRATIO
statistics for the (SC) and the (CL) models. Seven different sample sizes of
n=10,30,50,70,100, 150 and 200 are used.

Making use of the fact that the von Mises distribution with large concentration parameter,
« tends to the normal distribution with variance o =k (Fisher, 1993, Jammalamadaka
and SenGupta, 2001). We generate X variable of size n from von Mises distribution,
VM (77/ 4,3). Without loss of generality, the parameters of the (SC) and the (CL) models
are fixed at o =0 and S =1. Then the observed values of variable Y are calculated based
on models (2) and (3) separately.

Assuming that the ratio of concentration parameters A =1, a random error from von
Mises distribution with mean 0 and concentration parameter x =5,10,15,20 and 30 are
added to the observed variables as given in model (2). Thus, the variance of the random
error of the (CL) model are 0.2, 0.1, 0.067, 0.05 and 0.03, respectively. The values of
error concentration parameters are determined to minimize their variation compared to
the modeled variables.

The generated circular data are fitted by models (2) and (3) independently. The |COV| for

the (SC) and the (CL) models by using expressions (4) and (5) are calculated. Next the
ith row from the generated data (i =1,...,n) are excluded subsequently to compute the

values of [COVRATIO ;, —1] and to specify the maximum value.
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The process is repeated 2000 times for each combination of sample size n and
concentration parameter x (and variance values). Then the 10%, 5% and 1% upper

percentiles of the maximum values of [COVRATIO ;-1 are calculated. The results

show that the percentiles are independent of the variation parameters, where the values of
standard deviations for the obtained cut-off points based on the considered variation are
ranged between 0.001 and 0.019. Table 1 presents the cut-off points which are the mean
of the percentiles associated with the standard deviation in the parentheses for each
sample size n.

Table 1: Cut-off points for the null distribution of |COVRATIO; —ﬂ statistic.

Model n
10 30 50 70 100 150 200

90% | 1.117 0.41 0314 | 0209 | 0.178 | 0.057 | 0.011
(0.003) | (0.007) | (0.008) | (0.004) | (0.011) | (0.004) | (0.001)

SC | 9596 | 1.337 | 0.462 | 9336 | 0.257 | 0.191 | 0.061 | 0.020
(0.019) | (0.001) | (0.002) | (0.003) | (0.001) | (0.006) | (0.001)
99% | 1.857 | 0.619 | 0.374 | 0.301 | 0.220 | 0.084 | 0.042
(0.012) | (0.007) | (0.008) | (0.010) | (0.005) | (0.013) | (0.007)
90% | 5.577 | 0.841 | 0.628 | g494 | 0.386 | 0.212 | 0.177
(0.016) | (0.012) | (0.003) | (0.013) | (0.018) | (0.003) | (0.001)
95% | 6.695 | 0.870 | 0.680 | 0.503 | 0.419 | 0.306 | 0.219
CL (0.001) | (0.008) | (0.005) | (0.008) | (0.013) | (0.009) | (0.001)

99% | 7.201 | 0.960 | 0.741 | 0.536 | 0.474 | 0.428 | 0.291
(0.007) | (0.004) | (0.011) | (0.003) | (0.028) | (0.006) | (0.003)

For all sample sizes, the cut-off points of COVRATIO statistics of the (SC) model are less
than its corresponding of the (CL) model. For small sample size (n=10), the values of the
cut-off points exceed the value of one, reflecting the inappropriateness of COVRATIO
statistics for both models to detect influential points in small samples. Furthermore, at
certain level of significance, the cut-off points is a decreasing function of the sample size,
which may refer to the relative effect of one point to the total weight of sample size.

3.3 Power of Performance

The performance of the two statistics are examined numerically via a series of simulation
studies by considering five sample sizes, n=10,30,50,70 and 100 and two values of
concentration parameter x =10 and 20.

Two different types of association between circular variables are considered. The first is a
linear association ( #=1), and the second is a nonlinear form of association.
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Making use of the fact that bivariate von Mises distribution with a large concentration
parameter, x tends to a bivariate normal distribution with variance o? = x/(x? —1?),
where 7 is the circular correlation between two circular random variables (Singh, et al,

2002). A similar procedure to that described in Subsection 3.2 is used to generate the
data, and for the purpose of comparison between COVRATIO statistics for the (SC) and
the (CL) models, the generated data are contaminated at observation d as follows:

Vg = VY4 <7 (mod2r),

where y, is the value of y, after contamination and ¢ is the level of contamination
(0< ¢ <1).

In order to generate two observed circular dependent random variables X and Y, for each
sample size n, a set of bivariate von Mises distribution MVM (0, x,7) is generated based
on the rejection sampling algorithm, which proposed by Best and Fisher (1979), where
x = (3,3)and r=1. Thus, the variance of the each variable becomes 0.375.

The process is repeated 2000 times and the power of performance is calculated as the
percentage of the correct detection of the contaminated observation at position d . The
results of simulation study show that: in all cases, the power of performance is an
increasing function of the contamination level ¢, Figure 1 shows the power of
performance is a decreasing function of the sample size n. On the other hand, Figure 2
shows that the COVRATIO statistic for the (SC) model performs more efficient than the
(CL) model when the association between the circular random variables is linear.

Power
. Power

100~ P e 100 -

00 ' o.‘z ' 0_‘4 ' 0{6 ' 0{8 ‘ l_r( 0.0 0.2 0.4 L; 0.6 0.8 1.0
Fig. 1: Power of [COVRATIO ;) -1 Fig. 2: Power of [COVRATIO ;) -1
statistic for the SC model with x =10. statistic for the SC and the CL models for

n=50 and x =10 and 20 (o =0.1 and 0.05)

Unlike the procedure used by Hussin and Abuzaid (2012) for contaminating the real and
imaginary parts in (CL) model separately, we contaminate the generated data before the
transformation into the complex form. Thus, the results we have obtained are more
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reasonable and consistent where the power starts at almost zero when ¢ =0 and
approaches to 100% when ¢ goesto 1.

Contrasting with the case when the circular variables are linearly correlated, Figure 3
shows that the COVRATIO statistic for the (SC) model performs less efficient than the
(CL) model when the association is nonlinear.

Power

100 —

80 —

60 —
““““““““

10— peeem

20 —

«oomo Linear CL
Linear SC
«++ Nonlinear CL
—e&— NonLinear SC

| " i ‘ i ! i ‘ |
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3: Power of [COVRATIO ;, —1 statistic, with | Fig. 4: Spoke plot of wind direction

n=50, for SC and CL models, x=10 and 2=0.1, data measred by both techniques.
respectively.

4. Numerical Example

A real data set consisting of 129 pairs of observations of wind direction are recorded by
two different instruments: an HF radar system and an anchored wave buoy. Figure 4
shows the spoke plot of wind direction data (Zubairi, et al., 2008). The inner ring
represents the HF radar while the outer ring represents the anchored wave buoy. Since
almost all the lines do not cross the inner circle, it means that the data are highly

A

correlated with estimated correlation parameter f, =0.952. Furthermore, there are only

two lines crossing the inner ring, which are associated with observations number 38 and
111. This indicates that the pairs corresponding to the two observations may be
influential. The data are fitted by the (SC) model giving Y =0.125+0.989 X ( mod2r),

with k=11.48, and the (CL) model IS given by
(cosY +isinY)=7.527x10"* +0.977 (cos X +isin X ) with 6% = 0.148.

The values of ‘COVRATIO(_i)—q for the (SC) and the (CL) models are obtained and

given in Figure 5 and Figure 6, respectively. The statistics are able to define two
observations as influential points which are 38 and 111. To investigate the effect of these
two points they are deleted and the data are refitted using the (SC) and the (CL) models.
The values of parameter estimates and their standard errors are given in Table 2. It is
noticeable that for both models the estimates of intercept and slope become closer to zero
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and one, respectively. The standard error of the slope parameter in the (SC) model for the
reduced data is less than the full data. On the other hand, for the (CL) model the standard
error is almost the same. This indicates the efficiency of the COVRATIO statistic for the
(SC) model more than the (CL) model in the considered data.

04—

o
w
|
0.6

0.4
I

ICOVRATIO 1|
o
Y
]
|COVRATIO; 1|

|

0

0.2

=}
o
)

0.0
I

Fig. 5: The‘COVRATIO(_i) —]J statistic of | Fig. 6: The ‘COVRATIO(_i) —]J statistic of
wind data fitted by (SC) model. wind data fitted by (CL) model.

Table 2: Parameters estimates of the (SC) and the (CL) models associated with the
standard error

Model SC CL
Parameter Full data Reduced data Full data Reduced data
a 0.125(0.072) | 0.104(0.059) | 750%107°(2.5%x107°%)| -0.90x107°(2.0x10°)
,@ 0.989 (0.017) | 0.999 (0.014) 0.977(1.88x107?) 1.00 (1.88x107%)
P 11.468 (0.004) | 16.739 (0.001) - -
&2 - - 0.148 (8.38x107%) | 0.118(8.17x107%)
Conclusion

COVRATIO statistic as an identifier of the influential points in functional relationship
models of circular variables is derived and tested for two types of models. If two circular
variables are correlated linearly, then the COVRATIO statistic of the (SC) model performs
better than the (CL) model, vice versa for other types of association.

The contamination procedure of the (CL) model has shown a reasonable performance
compare to the procedure used previously by Hussin and Abuzaid (2012). The
application of the proposed statistics for both models on wind data has shown a consistent
conclusion of detecting two points as influential points.

Other functional relationship models for circular data based on nonlinear association
between variables need to be studied.
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