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Abstract 

The concept of random intercept models has been generalized for k-levels in multilevel models. The 

random variation in intercepts at individual level is marginally split into components by incorporating 

higher levels of hierarchy in the single level model. This showed a control in the random variation in 

intercepts by incorporating the higher levels of hierarchy in the model. 

Keywords:   Random Intercept Models, Multilevel Models, Iterative Generalized Least 

Square. 

1. Introduction 

A random intercept model is one in which only the intercept of the model vary across the 

different levels of the model and extracts the information that how the values of response 

variable vary across the diverse nature of higher levels units in a hierarchical population. 

In such models, the random variation due to all the hierarchies is taking into account as 

we split overall random variation into variations due to all the levels. So, sometimes these 

models are also named as “Variance components Models” (Longford, 1986), 

“Hierarchical linear Models” (Raudenbaush and Bryk, 1986, 2002), and “Random 

Coefficient Models” (de Leeuw and Kreft, 1986, Moulton, 1986, Longford, 1992, 

Goldstein, 1995, Snijders and Bosker, 1999). 

2. Random Intercept Model for K-Levels  

The concept of random intercept models in a multilevel model developed by Goldstein 

(1986), Khan and Kamal (2012a,b, 2013) has been extended for k-levels. Suppose 
1i

y  is a 

response variable measured at individuals’ level, where the subscript  refers to  

 units. A simple model relating the response variable with the intercept term may be 

defined as,  

1 10 (2.1)i iy   
         (2.1) 

where, 0  is an intercept term representing the average value of the response variable 
1i

y  

and is fixed. The term 
1i

  is a residual term representing the random departure of values 

from the fixed intercept 0 . Also 
1

2

1(0, )i NII : .  

1i Level-1

1m
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Again, suppose 
1 2,i iy  is a response variable measured at Level-1 and the subscript  

refers to   units. Again, a two-levels random intercept model may be defined 

as,  

1 2 2 1 2

2 2

1 2 2 1 2

, 0 ,

0 0

, 0 ,

(2.2)
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i i i i i
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  

 


  


   

        (2.2) 

where, 0  is an intercept term representing the average value of all the intercepts. The 

term 
2i

  is a Level-2  residual term representing the variation of intercept terms across 

the second level units with 
2

2

2(0, )i NII :  and 
1 2,i i  represents the random variation in 

intercepts due to Level-1 units. Also 
1 2

2

, 1(0, )i i NII : . Model (2.2)  is a random 

intercept multilevel model as it includes the variation of both the levels. Since partitions 

the individual variation into two components (one is for Level-1 units and the other is 

due to Level-2  units) so, it is also called random coefficient two-level model.  

 

Similarly, 
1 2 3, ,i i iy  is  1 2 3

th
i i i  value of a response variable y  measured at Level-1 where 

the subscript 3i  refers to Level-3  3m   units. Again, a three-level random intercept model 

may be defined as,  

1 2 3 2 3 1 2 3

2 3 2 3 3

1 2 3 3 2 3 1 2 3

, , 0 , , ,

0 , 0 ,

, , 0 , , ,

(2.3)
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      (2.3) 

where, 0  is an intercept term representing the average value of all the intercepts across 

Level-2  and Level-3  units. The term 
3i

  is a Level-3  residual term representing the 

variation of intercept terms across the third level units with 
3

2

3(0, )i NII : , 
1 2,i i  

represents the random variation in intercepts due to Level-2  units and 
1 2 3, ,i i i  represents 

the random variation in intercepts due to primary units. Also 
1 2

2

, 2(0, )i i NII : and 

1 2 3

2

, , 1(0, )i i i NII : . Model (2.3)  is a random intercept three-level multilevel model as it 

includes the variation due to all three levels of hierarchy in the population. 

 

We generalize the random intercept multilevel model for k-levels by method of 

induction. Suppose   be the  observation of a response variable  measured 

at  where the subscript  refers to   units,  refers to   

units,  refers to  units and so on the subscript  represents  units 

measured across . If we assume the variation of response variable across 

 only in the intercept term then a k-levels model may be define as, 

       (2.4)  

2i

Level-2 2m

1 ,..., ki iy 1...
th

ki i y

Level-1
1i Level-1 1m

2i Level-2 2m

3i Level-3 3m
ki km

Level-k

Level-1,...,Level-k

1 ,..., 11
,..., ,..., (5.11.1)

k i i kk
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where, 

      (2.5)  

 

If we substitute (2.5)  in (2.4) , we have  

     (2.6)  

where,  is the average intercept and the terms  are the 

residuals due to random variations of units in the 

model (2.4) . Also , ,…, . Since 

we measure no predictor at any level of the model and for estimation purpose we assume 

a dummy explanatory variable  at   with all the value zero, so the model

(2.6)  now takes the form, 

    (2.7)  

 

The model (2.7)  can be written in matrices form as, 

       (2.8)  

where, 

    (2.9)  

   (2.10)  

   (2.11)  

Now,  

where,   is a vector of  units of response variable,  is a vector of ones,  is a 

vector of  units, The terms  are the variances across 

 units respectively. We assume that the covariances between the 

residuals are zero. Also the matrices of residuals have the following assumptions:  

   (2.12)  

,..., 2 31
0 ,..., ,..., ... (5.11.2)

i i k k kk
i i i i i        

1 1 2 3,..., 0 ,..., ,..., ,..., ... (5.11.3)
k k k k ki i i i i i i i iy          

0 1 2 3,..., ,..., ,...,, , ,...,
k k k ki i i i i i i   

Level-1,Level-2,Level-3,...,Level-k

1

2

,..., 1(0, )
ki i NII :

2

2

,..., 2(0, )
ki i NII : 2(0, )

ki kNII :

1 ,..., ki ix Level-1

1 1 1 2 3,..., 0 1 ,..., ,..., ,..., ,..., ... (5.11.4)
k k k k k ki i i i i i i i i i iy x           

(5.11.5)Y τX+R

1
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, , (5.11.6)
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If  is known then the Generalized Least Square (GLS) estimates of  can be obtained 

by using the relation, 

   (2.13)  

 

If  is known and  is unknown then the estimates of can be obtained again by using 

GLS estimator, 

       (2.14)  

 

Where  is the vector of upper triangle elements of ,  is the 

covariance matrix of and is the design matrix linking to in the regression 

of on . If both  and  are unknown then the estimates of  can be obtained 

using iterative generalized least square procedure.  The procedure starts by initially 

assuming an estimate of and by using this estimate of one can obtain the values of 

 and then get the better estimate of  by using . This process continues 

simultaneously and iteratively until both the estimates converge. A useful initial start of 

the process is by assuming  , where  is an identity matrix. The initial 

estimates of  estimated by assuming  are asymptotically consistent. If we 

assume the initial estimate of  , then the initial consistent estimator of 

 is . A more useful estimate  of can be obtained by 

incorporating the variation due to all levels as, 

   (2.15)  

     (2.16)  

     (2.17)  

and so on, 

      (2.18)  

 

The inverse of (2.15), (2.16), (2.17)  and (2.18)  are obtained by using the relation (2.19) : 

   (2.19)  

     (2.20)  
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   (2.22)  

and so on,  

   (2.23)  

where  is an identity matrix and  is a matrix of ones. Furthermore,  is a direct 

sum operator. Thus consistent estimates of  can be obtained by using  in 

. 

 

We estimate the random intercept model for single level, 2-levels, 3-levels, 4-levels and 

5-levels by using a higher education data collected from five universities in Pakistan. The 

educational structure in universities in Pakistan is hierarchical where students are nested 

within teachers, teachers nested within directors/chairpersons, directors/chairpersons 

nested within deans, deans nested within universities and the universities. The response 

variable is student grade point average (GPA) score collected from 40000  students 

registered in five universities from Pakistan. Random intercept models defined across 

Level-1,Level-2,Level-3,Level-4&Level-5  are as follows: 

0 (2.24)i iGPA            (2.24) 

0

0 0 0

(2.25)
ij j ij

j j

GPA

u

 

 

  


  

        (2.25) 

0

0 0 0
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0
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
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       (2.27) 

and, 

0

0 0 0

(2.28)
ijklm jklm ijklm

jklm jklm klm lm m

GPA

u v w g

 

 

  


     

      (2.28) 

where, where, 0  is the average intercept and the terms , , , &ijklm jklm klm lm mu v w g  are the 

residuals due to random variations of Level-1,...,Level-5 units respectively under model 

(2.24), (2.25), (2.26), (2.27)and (2.28)  and represent the random departure from the 

average intercept 0 . Also
2

0(0, )ijklm eNII : , 
2

0(0, )jklm uu NII : , 2

0(0, )klm vv NII : , 

2

0(0, )lm ww NII : , and 
2

0(0, )m gg NII : . The iterative generalized least square estimates 

of the parameters under (2.24), (2.25), (2.26), (2.27)and (2.28)  are presented in table 1.  
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Table 1:  Estimates of Parameters under model  (2.24), (2.25), (2.26), (2.27)and (2.28)  

Parameters 
1-Level 

Model 
2-Levels 

Model 

3-Levels  

Model 

4-Levels  

Model 

5-Levels  

Model 

0 : Average Intercept. 
3.049 * 

(0.001) 

3.049 * 

(0.006) 

3.049 * 

(0.012) 

3.049 * 

(0.027) 

3.049 * 

(0.072) 

2

0g : Intercept 

Variation at Level-5
 

- - - - 
0.025 * 

(0.012) 

2

0w : Intercept 

Variation at Level-4
 

- - - 
0.027 * 

(0.007) 

0.004 * 

(0.001) 

2

0v : Intercept 

Variation at Level-3
 

- - 
0.029 * 

(0.003) 

0.002 * 

(0.00052) 

0.00097 * 

(0.00013) 

2

0u : Intercept 

Variation at Level-2
 

- 
0.030 * 

(0.001) 

0.001 * 

(0.0005) 

0.001 * 

(0.00047) 

0.001 * 

(0.00054) 

2

0e :
 

Variation at 

Level-1. 

0.073 * 

(0.001) 

0.043 * 

(0.00028) 

0.043 * 

(0.00028) 

0.043 * 

(0.00029) 

0.043 * 

(0.00028) 

      

-2*loglikelihood  -8705.8 -9282.9 -11272.5 -11899.9 -11959.9 

* p<0.01 

 

The value of average intercept 0 3.049   remains unchanged under (2.21), (2.22), (2.23),

(2.24) and (2.25)  but its significance reduces by considering higher levels of hierarchy in 

the model (2.21) . The value of random variation 2

0e  at higher levels is marginally 

reduced to 0.043( 0.00028, 0.001)se p   from individual level variation

0.043( 0.00028,se  0.001)p  .  The random variation at individual level is split into 

two portions when considering second level of hierarchy in the model. One is at 

individual level 2

0 0.043e   and the other one is due to second level 2

0 0.030u  .This 

means 41.1%  of the random variation in students’ grades is due to the variation among 

teachers. Similarly, the variation at second level 2

0 0.030u   is further subdivided into 

two parts, one is due to second level 2

0 0.001u   and the other one is by taking third level
2

0 0.029v   of hierarchy in the model. Again, 96.7%   of the variation in Level-2  units 

is due to incorporating third level in the model. This suggests the contribution of 

department level units in the random variation of grades is more when compared to 

variation due to teachers. Again when we included the fourth level in the model (2.23)  , 

the variation at part of third level 2

0 0.029v   is subdivided into the variation due to 

third level 2

0 0.002v   and the variation due to fourth level 2

0 0.027w  . This 

information tells the fact that students grades vary faculty (Dean) wise and their impact is 

comparatively more highlighted as compare to variation due to department. Finally, a 
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major contribution in random variation at Level-4 is due to Level-5  units and students 

grades vary from university to university.  

Conclusions 

The random variation in intercepts at individual level is marginally divided into higher 

levels when consider higher levels of hierarchy in the single level model. So, one can 

control the random variation in intercepts by incorporating the higher levels in the model. 

The decreasing trend of -2*loglikelihood  confirms the better fit of the more nested 

model. 
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