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Abstract 

In this paper we proposed a dynamic programming procedure to develop an optimal sequential sampling 

plan. A suitable cost model is employed for depicting the cost of sampling, accepting or rejecting the lot. 

This model is based on sequential approach. A sequential iterative approach is used for modeling the cost 

of different decisions in each stage. In addition a backward recursive algorithm is developed to solve the 

dynamic programming. On the other hand, the purpose of this paper is to introduce a new sequential 

acceptance sampling plan based on dynamic programming. At the end of this paper a numerical example is 

solved to show how this model works and then sensitivity analyses of main parameters of acceptance 

sampling model are carried out.  

Keywords:   Sampling Plan; Dynamic Programming; Optimization; Recursive Approach. 

1. Introduction 

Acceptance sampling is a useful tool which is used in quality control in order to design 

decision principles for lot acceptance problem. Depending on number of defective items 

in sample, the decision may be,  

1. Accepting the batch 

2. Rejecting the batch   

3. Continuing the sampling and repeating decision process.  

 

Therefore we expect to have less defective items in accepted batches using this approach. 

This method encourages mangers to use it for two reasons: 

1. Improving the quality level of the batch with respect to inspection characteristics  
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2. Having reverse relevance between quality level and inspections required 

(Montgomery 2005). 

 

We use sampling plans usually when we have destructive inspection experiments or cost 

of 100% inspecting is high or it takes long time. In this work a new decision making 

approach for accepting or rejecting a sample based on recursive inference is improved. 

Recursive inference is used for determining the optimal decision. Also when none of the 

decisions of accepting or rejecting is optimal, it is assumed that we can have more 

observations and continue to the next stage. Thus a mathematical model is developed 

which is optimal solution because of using stochastic dynamic programming approach. 

The main objective of model is to optimize cost of sampling system based on fraction of 

defective items. On the other hand Sequential sampling reduces the number of samples 

required to evaluate a population level by 40-80% in comparison with classical sampling 

techniques (Boivin and Vincent 1983). 

 

Sequential sampling plans are designed to enhance the performance of sampling methods. 

First step of this method is to inspect an initial sample from the lot then we decide to 

accept, reject the lot or take another sample by analyzing the results of inspected sample. 

Sequential sampling plans are often applied where minimizing sample size is very 

important (Montgomery 2005). In such plans, item are inspected successively in different 

stages, until a decision is made on the lot or process thus the sample size of this method is 

not determined until the lot is accepted or rejected. Sequential sampling plans select the 

suitable decision quickly, especially when quality is particularly good or particularly. 

2. Literature Review 

The purpose of sampling plans is to provide users with evidence that the items reach the 

quality levels required and agreed upon. Sampling plans has been commonly conducted 

by quality inspection for acceptance purposes, which is based on the statistical theory. 

Acceptance sampling inspection is a statistical tool concerned with sampled items to 

make a decision about inspected products; especially to check whether items have met 

pre agreed quality specifications. Sampling inspection process concern with the definition 

of quality characteristics, sample size, acceptance criteria, and a combination of quality 

levels required by the producer and the consumer (Tong et al 2011). 

 

Golub (1953) presented a method for determining optimal Sampling inspection plans 

based on the criterion of minimizing sums of both producer’s and consumer’s risks when 

sample size is fixed. Duarte and Saraiva (2008) proposed an optimization approach for 

designing acceptance sampling plans by combining quality levels required by the 

producer and the consumer when the fraction of nonconformities being modeled by a 

Poisson probability distribution function. Sadeghpour-Gildeh et al. (2008) proposed an 

acceptance double sampling plan when the fraction of defective items is assumed to be a 

fuzzy number. Jamkhaneh et al. (2009) further developed an acceptance single sampling 

plan when the proportion of nonconforming items follows a fuzzy Poisson distribution. 

 

Bayesian statistics is based on using prior information in inductive inference and sample 

data which formally seeks to utilize prior information. Bayesian Acceptance Sampling 

approach is associated with utilization of prior process history for the selection of 
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appropriate distribution to describe the random fluctuation involved in an Acceptance 

sampling (Latha and Jeyabharathi 2012).  Niaki and Fallahnezhad (2009) used both the 

stochastic dynamic programming and Bayesian inferences concept to design sampling 

plan. Fallahnezhad and Hosseininasab (2011) proposed an acceptance sampling plan 

bases on cost objective function. Fallahnezhad and Niaki (2012) proposed an acceptance 

sampling plan based on number of successive conforming items. Fallahnezhad et al 

(2011) proposed an acceptance sampling plans based on the cumulative sum of the 

number of successive conforming items. Also Fallahnezhad et al (2012) proposed 

Bayesian acceptance sampling plan based on the cost function. Aslam et al. (2012) 

presented a decision rule for repetitive acceptance sampling plan. Fallahnezhad (2012) 

analyzed the acceptance sampling design with minimum angle method. Fallahnezhad and 

yousefi (2014) developed a decision tree for designing an optimal acceptance sampling 

plan based on cost objective function in the presence of inspection errors. They used 

Bayesian inference to obtain required probabilities. Then the optimal decisions are 

determined using a backward recursive approach. They have shown that acceptance 

sampling model based on Bayesian inference is efficient and less expensive than the 

single sampling plan. Fallahnezhad and Aslam (2013) proposed a decision tree for 

optimizing the cost acceptance sampling problem based on recursive modeling. 

 

Tagaras (1998) studied the joint process control and machine maintenance problem of a 

Markovian deteriorating machine. He assumed that sampling and preventive maintenance 

were performed at fixed intervals. Kuo (2006) developed an optimal adaptive control 

policy for joint machine maintenance and product quality control. He included the 

interactions between the machine maintenance and the product sampling in the search for 

the best machine maintenance and quality control strategy for a Markovian deteriorating 

batch production system. Wortham and Wilson (1971) proposed a backward recursive 

technique for optimal sequential sampling plans. 

 

Most attempts to minimize sampling cost were concentrated on reducing expected sample 

size and reducing inspection cost. But the costs associated with the accept-reject 

decisions should be considered in designing the sampling plans. The cost of each 

defective item in an accepted lot can be evaluated very accurately in some quality control 

environments. On the other hand, cost of accepting defective item can be estimated by 

considering its results in practical situations. Cost estimates for rejected lots are readily 

obtained by considering the rectification method (Wortham and Wilson 1971). 

 

In this research, a new model for acceptance sampling problem is introduced. The 

objective of the model is to determine the optimal decision that minimizes the total cost 

including the cost of rejecting the batch, the cost of inspection and the cost of defective 

items.  

 

The assumptions and notations of the proposed method are presented in section 3, the 

model is presented in section 4 and the solution algorithm along with numerical 

demonstration on the application comes in section 5, sensitivity analyses are performed in 

Section 6 and we discussed and conclude the results in Section 6. 

 

The method to be reported here is based on dynamic programming and the recursive 

property of sequential sampling plans. This method is coded by excel 2013. 
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3. Dynamic Modeling 

Following notations are used in the rest of paper, 

N: Lot size 

n: accumulated number of items sampled 

m: maximum number of items allowed to sample 

x: accumulated number of defective items observed in the n items sampled 

X: number of defective items in the lot 

y = X - x: number of defective items remaining in the N- n items of lot that has not been 

sampled 

E(y|x): expected number of defective items in the part of the lot that has not been sampled 

p:  proportion of defective items in the lot 

cs: cost of sampling and inspecting one item 

cr: cost of replacing, reworking or repairing a defective item 

ca: cost of one defective item in an accepted lot. 

 

Assume there is a batch with N items. A sample of n items is selected. Each defective 

item is replaced with a good one in sample after inspection. We although call “m” equal 

to the maximum number of items that can be inspected and it is determined by economic 

considerations. Based on inspection's output we want to make an optimal decision. The 

possible decisions are as follows, 

 Rejecting the lot  

 accepting the lot  

 Taking another sample 

4. Sampling Plan Using Dynamic Programming 

Dynamic programming is one of the most powerful methods to model the stochastic state 

of decision-making processes (Ross 1983). In mathematics, computer science and 

economics, dynamic programming is a method for solving complex problems by 

breaking them down into simpler sub-problems. In general, to solve a given problem, we 

need to solve different parts of the problem, and then combine the solutions of the sub-

problems to reach an overall solution. The dynamic programming approach seeks to 

solve each sub-problem only once. In sampling plans, in cases where we are to select 

between accepting and rejecting a lot, since the proportion of defective item is not 

known, we are in stochastic space. Since the stochastic state of the process may be 

dynamic and changes by collecting more data, it will be possible to use the concept of the 

stochastic dynamic programming to model an acceptance-sampling plan. However, 

before doing so, first we need to have some definitions. Consider a problem where 

defective items in sample are replaced by good items and all items in the rejected lots are 

inspected and all defective times are replaced by good items before delivery. This leads 

to a dynamic programming model. 
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Let aK (n,x) be the expected cost of accepting the lot after observing x defective items in 

n sampled items thus we have 

 a s r aK (n,x) = c  n + c  x + c  E(y|x)
  

Where; 

csn: is accumulated number of items sampled (n) multiplied by cost of sampling and 

inspecting one item (cs), so this item is total cost of inspecting the items in sample. 

crx: is accumulated number of defective items sampled (x) multiplied by cost of 

replacing, reworking or repairing a defective item (cr), so this item is total cost of 

replacing, reworking or repairing defective items. 

caE(y|x): is expected number of defective items in the part of the lot that has not been 

sampled (E(y|x)) multiplied by cost of one defective item in an accepted lot (ca), thus this 

item is total cost of defective items in an accepted lot. 

 

And now let rK (n,x)  be the expected cost of rejecting the lot after observing x defective 

items in n sampled items thus we obtain 

r s r rK (n,x) = c  N + c  x + c  E(y|x)  
 

Where; 

csN: is Lot size (N) multiplied by cost of sampling and inspecting one item (cs), so this 

item is total cost of inspecting the lot after rejecting the batch. 

crx: is accumulated number of defective items sampled (x) multiplied by cost of 

replacing, reworking or repairing a defective item (cr), so this item is total cost of 

replacing, reworking or repairing defective items. 

crE(y|x): is expected number of defective items in the part of the lot that has not been 

sampled (E(y|x)) multiplied by cost of replacing, reworking or repairing a defective item 

(cr), so this item is total cost of replacing, reworking or repairing defective items in the 

part of the lot that has not been sampled. 

 

Let sK (n,x) denotes the cost of taking one more sample after observing x defective items 

in n sampled items. If *K (n,x)  denotes the optimal cost of decision making system, thus 

following is concluded, 

 
*

a r sK (n,x) = Min { K (n,x) , K (n,x) , K (n,x)}
  

where, 

 
*

a rK (m,x) = Min { K (m,x) , K (m,x)}
 

 

It is obvious that in decision of taking one more sample, if the item was not defective 

then we move to state (n+1,x)  which its optimal cost is equal to *K (n+1,x)  and if the 

sampled item was defective then we move to state  (n+1,x+1)  which its optimal cost is 
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equal to *K (n+1,x+1) . Since the expected value of the proportion of defective items is 

E(p)  thus using the conditional mean formula, following result is concluded, 

 * * * *

sK (n,x) =E K (n+1,x) (1-p) + K (n+1,x+1) p =K (n+1,x) (1-E(p)) + K (n+1,x+1) E(p)  

 

Also it is obvious that E(p) obtained as follows, 

 

x
E(p)=

n
  

 

And E(y|x) obtained as follows  

 

Nx
E(p)=N× E(p) - x=

n

N n
x x

n

 
   

 
 

5. Numerical Example 

Assume a lot of 250N   items is received, the maximum sample size is 25m  , the cost 

of each inspection is sc 0.2 , the cost of accepting a nonconforming item is ac 2.5 , 

and the cost of replacing, reworking or repairing a defective item rc 1.5 . Moreover, 

assume x=3 out of n=20 inspected items are nonconforming. Thus following results are 

concluded, 

 

E(p)=0.15

E(y|x) N× E(p) - x = 250×0.15 - 3 = 34.5  

 

Thus following results are obtained, 

 

a

r

* *

s

*

a r s

K (20,3) = 0.2×20 + 1.5×3 + 2.5×34.5= 90.75

K (20,3) = 0.2×250 + 1.5×3 + 1.5×34.5= 102.25

K (20,3) = K (21,3) (0.85) + K (21,4) (0.15)

K (20,3) = Min { K (20,3) , K (20,3) , K (20,3)}

 

 

Now to evaluate the value of *K (20,3) , first we need to determine the values of 
* *K (21,3) , K (21,4) . The value of *K (21,3)  is determined as following, 

a

r

*

s

*

a r s

E(y|x) =N× E(p) - x = 250×  - 3 =

K (21,3) =

K (21,3) =

K (21,3) = K (22,3)(0.857143)+ K*(22,4)( )

K (21,3) = M

0.142857 32.71429

86.28571

99.3

in { K (21,3) , K (21,3) ,

7143

 K

0

(

.142857

21,3)}
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Now to evaluate the value of *K (21,3) , first we need to determine the values of 
* *K (22,3), K (22,4) . The value of *K (22,3)  is determined as follows, 

 

a

r

* *

s

*

a r s

E(y|x) = 

K (22,3) = 

K (22,3) = 

K (22,3) = K (23,3)(0.863636) + K (23,4)( ) 

K (22,3) = Min { K

31.

(22

09091

82.22727

96.73636

0.136

,3) , K (22,3

36

) , K (

4

22,3)}

 

 

Now to evaluate the value of *K (22,3) , first we need to determine the values of
* *K (23,3), K (23,4) . And then we need * * * *K (24,3), K (24,4) , K (25,3) , K (25,4) . 

 

Since in states (25,3), (25,4) , we reach the end of decision making horizon, therefore the 

values of * *K (25,3),K (25,4) are obtained as follows, 

 

*

a r

a

r

*

a r

E(y|x) =27

Ka(25,3) = 72

Kr(25,3) = 90

K (25,3) = Min { K (25,3) , K (25,3)}= 72

E(y|x) = 36

K (25,4) = 96

K (25,4) = 105

K (25,4) = Min { K (25,4) , K (25,4)}= 96

 

 

Thus *K (24,3)  can be obtained, 

 

a r*

s

75.125 92.0 K (24,3)=  , K (24,3)=  , 
K (24,3) = Min =75

K (24,3)=72 (0.875) + 96(0.125)

75 
 
 

 

 

Results of analyzing the numerical example by proposed sampling model for all stages 

and all states are denoted in the Table (1). 
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Table 1: Results of the dynamic programming process in the proposed sampling 

model 

 x=3  x=4  x=5  x=6  x=7  x=8 

 n=20  n=21  n=22  n=23  n=24  n=25 

 E p  0.15  0.190476  0.2272727  0.26087  0.291667  0.32 

 |E y x  34.5  43.61905  51.818182  59.21739  65.91667  72 

aK  90.75  115.0476  137.04545  157.0435  175.2917  192 

rK  102.25  117.2286  130.82727  143.2261  154.575  165 

sK  89.5547  112.325  130.22727  142.8261  154.375   

*K  89.5547  112.325  130.22727  142.8261  154.375  165 

 x=3  x=4  x=5  x=6  x=7  
 

 n=21  n=22  n=23  n=24  n=25  
 

 E p  0.142857  0.181818  0.2173913  0.25  0.28  
 

 |E y x  32.71429  41.45455  49.347826  56.5  63  
 

aK  86.28571  109.6364  130.86957  150.25  168  
 

rK  99.37143  113.7818  126.92174  138.95  150  
 

sK  85.53642  108.1126  126.52174  138.75    
 

*K  85.53642  108.1126  126.52174  138.75  150  
 

 x=3  x=4  x=5  x=6  
 

 
 

 n=22  n=23  n=24  n=25  
 

 
 

 E p  0.136364  0.173913  0.2083333  0.24  
 

 
 

 |E y x  31.09091  39.47826  47.083333  54  
 

 
 

aK  82.22727  104.6957  125.20833  144  
 

 
 

rK  96.73636  110.6174  123.325  135  
 

 
 

sK  81.77372  104.0217  123.125    
 

 
 

*K  81.77372  104.0217  123.125  135  
 

 
 

 x=3  x=4  x=5  
 

 
 

 
 

 n=23  n=24  n=25  
 

 
 

 
 

 E p  0.130435  0.166667  0.2  
 

 
 

 
 

 |E y x  29.6087  37.66667  45  
 

 
 

 
 

aK  78.52174  100.1667  120  
 

 
 

 
 

rK  94.31304  107.7  120  
 

 
 

 
 

sK  78.26087  100    
 

 
 

 
 

*K  78.26087  100  120  
 

 
 

 
 

 x=3  x=4  
 

 
 

 
 

 
 

 n=24  n=25  
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 E p  0.125  0.16  
 

 
 

 
 

 
 

 |E y x  28.25  36  
 

 
 

 
 

 
 

aK  75.125  96  
 

 
 

 
 

 
 

rK  92.075  105  
 

 
 

 
 

 
 

sK  75    
 

 
 

 
 

 
 

*K  75  96  
 

 
 

 
 

 
 

 x=3  
 

 
 

 
 

 
 

 
 

 n=25  
 

 
 

 
 

 
 

 
 

 E p  0.12  
 

 
 

 
 

 
 

 
 

 |E y x  27  
 

 
 

 
 

 
 

 
 

aK  72  
 

 
 

 
 

 
 

 
 

rK  90  
 

 
 

 
 

 
 

 
 

sK    
 

 
 

 
 

 
 

 
 

*K  72  
 

 
 

 
 

 
 

 
 

            

The recursive approach of solving proposed dynamic programming model is summarized 

in the above Table. It is seen that the model can be easily solved using a computer 

program. In the next section, sensitivity analysis is performed on different parameters. 

6. Sensitivity Analysis 

A sensitivity analysis is performed on the parameters of the problem and the results are 

summarized in the Table (2).  

Table 2:   Optimal solution for different values of parameters 

Case number ( ,n,m,x, , , )a r sN c c c  *K   Optimal policy 

1. Case study (250,20,25,3,2.5,1.5,0.2)  89.55470073 
Continue to the next 

decision making stage 

2. Increases sc  (250,20,25,3,2.5,1.5,2)  85.43576743 Reject the lot 

3. Decreases sc  (250,20,25,3,2.5,1.5,0.1)  78.75 
Continue to the next 

decision making stage 

4. Decreases rc  (250,20,25,3,2.5,0.5,0.2)  63.75 
Continue to the next 

decision making stage 

5. Increases rc  (250,20,25,3,2.5,2.5,0.2)  93.75 Accept the lot 

6. Decreases ac  (250,20,25,3,1.4,1.5,0.2)  52.8 Accept the lot 

7. Increases ac  (250,20,25,3,3,1.5,0.2)  99.0956 
Continue to the next 

decision making stage 
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The results are summarized as follows, 

 By comparing case one and case two, it is seen that when the cost of sampling and 

inspecting one item  sc  increases, then the optimal decision in the proposed method is 

to reject the lot. By comparing case one and case three, it is seen that when the cost of 

sampling and inspecting one item  sc  decreases, then the optimal decision in the 

proposed method is to continue to the next decision making stage. So it is logical, 

because when the cost of inspecting the one item decreases then, optimal policy would be 

to inspect more items. 

 Also it is seen that when the cost of replacing, reworking or repairing a defective item 

 rc  increases, then the optimal decision in the proposed method is to accept the lot as 

expected. Also when the cost of replacing, reworking or repairing a defective item  rc  

decreases, then the optimal decision in the proposed method is to continue to the next 

decision making stage. 

 It is seen that when the cost of accepting a nonconforming item  ac  decreases, then the 

optimal decision in the proposed method is to accept the lot. Since decreasing cost of 

accepting a nonconforming item leads to decrease the cost of accepting the lot thus 

optimality of the acceptance decision is logical. Also it is seen that when the cost of 

accepting a nonconforming item  ac  increases, then the optimal decision in the 

proposed method is to continue to the next decision making stage. 

7. Conclusion 

This paper presents a dynamic programming procedure to design an optimal sequential 

sampling plan. That is very important for quality control managers to have a good lot 

with minimum cost. Since the cost of inspecting all items is very high, it is popular that 

managers use sampling for this purpose. In this work, a new decision making approach 

for accepting or rejecting a sample based on recursive inference is improved. The 

objective of the model is to determine the optimal decision that minimizes the total cost 

including the cost of rejecting the batch, the cost of inspection and the cost of defective 

items.  Also when none of the decisions of accepting or rejecting is optimal, it is assumed 

that we can have more observations and continue to the next stage. A mathematical 

model is developed which leads to optimal solution because of using dynamic 

programming approach. Also, sequential approach is used for obtaining the cost of 

different decisions in each stage. A numerical example is solved to elaborate the 

application of the proposed methodology. At the end sensitivity analyses of main 

parameters are performed and the results are discussed. 
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