A Bayesian Look at the Rao-Kupper Model for Paired Comparisons

Farzana Noor

Department of Statistics, Quaid-i-Azam University
Islamabad 45320, Pakistan
farzananoor@hotmail.com

Muhammad Aslam

Department of Statistics, Quaid-i-Azam University
Islamabad 45320, Pakistan
aslamsdqu@yahoo.com

Abstract

The method of paired comparisons may be regarded as a special rank order technique. It is a method long
used in psychological experimentation and is well adapted to sensory difference testing. This study deals
with estimation and testing of the parameters of the Rao-Kupper (1967) model for paired comparisons
which allows for tied observations in paired comparison experiments using informative prior. An elicitation
of the hyper parameters is carried out. Predictive probabilities that one treatment would be preferred to
other treatment in a future single comparison are determined. Graphs for the marginal posterior densities
are presented. All calculations are based on numerical integration technique and Gibbs sampling procedure.
Appropriateness of the model is checked which declares it a good fit.

Keywords: Elicitation, Hyperparameters, Informative Prior, The Paired Comparison
Method, The Rao-Kupper model.

1. Introduction

In the method of paired comparisons (PCs), judges are presented with pairs of items and,
for each pair, they are asked to choose the preferred item according to some criterion.
Though these methods had their origin in psychophysics but were gradually incorporated
into broader applications in experimental psychology. The value of paired comparison
lies in the fact that it produces result that are statistically robust and conceptually
meaningful. The modern Bayesian approach appeared as an alternative to the frequntist’s
approach in 1960s and1970s, and has grown into an increasingly substantial and effective
methodology. The Bayesian paradigm allows us to incorporate prior information into
statistical models for decision making. One feature of the certain type of paired
comparison experiment is that prior knowledge may be available about the merits of the
objects. Prior distribution which gives us specific and definite information about the
variable is known as an informative prior. Paired comparison models due to availability
of prior information have been studied by many authors through Bayesian approach.

A vast amount of literature exists on the subject. Aslam (2002) conducts the Bayesian
analysis of the Bradley-Terry model and the Rao-Kupper model for paired comparisons.
Aslam (2003) presents a method based on the prior predictive distribution to elicit the
hyper parameters for the parameters of the Rao-Kupper model for paired comparisons.
Altaf et.al. (2013) consider Bayesian analysis of the Van Baaren model using the
informative and conjugate priors. Glickman and Jenson (2005) describe a method for
designing paired comparison experiments, particular to tournament scheduling that
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incorporate prior information in a principled manner. Altaf et.al. (2013) address the
Davidson model for paired comparisons introducing an amendment to the model and
perform Bayesian analysis on the said model using informative and non-informative
priors. Haung et.al. (2006) propose a new exponential model which helps to compare and
estimate the individual’s abilities while playing in different competitions. Francis et.al.
(2006) extended the log linear form of the Bradely-Terry model to incorporate subject
specific co-variates. Tsai and Bockenholt (2006) introduce new framework which
simultaneously relaxes both the independence and invariance assumptions assumed in
paired comparisons models.

This study deals with Bayesian analysis of the Rao-Kupper model for paired
comparisons. Section 2 of the article presents the Rao-Kupper model and likelihood
function along with necessary notations used in analysis of the model. In Section 3, Prior
distributions for the parameters of the models are suggested and prior predictive
distribution which is used to elicit the hyper parameters is presented. Section 4 and its
subsequent parts, fully covers the Bayesian analysis of the said model considering a 5
treatment case using informative prior. Section 5, appropriateness of the model is
checked. Finally Section 6 presents conclusion of the study.

2. The Rao-Kupper Model

Consider a paired comparison experiment with m treatments or objects in which each of
the m(m—1)/2 distinct treatment pairs are ranked r times. The rankings in the 7’
repetitions of each pair can be assumed to be independent.

The Bradley-Terry (1952) introduced a basic paired comparison model for such an
experiment. The m treatments have “true” treatment ratings 6,,6,,...,6, on a subjective

continuum such that >0, i=1,2,...,m. This model implies that the difference between

two latent variables (X, — X ) has a logistic density with parameter (In6,—In6,). If y,

denotes the probability P(X,>X j|6’i,91) that when treatments 7, and 7,
i# j,1<i, j<m are compared, the probability that 7; is preferred to 7 is:

o0

1
vi=y [ sech’(y/2)dy

—(In,~1n0;)

0
__% 1
) ()

The model defined in (1) is very well known Bradley-Terry model.

In a paired-comparison experiment, situation often arises in which a judge may not be
able to express any real preference in a number of pairs he judges. It is, therefore,
important in such cases when judge is unable to make a difference between two
treatments, he should declare a tie between treatments rather to make a definite
preference. It is clear that any model which does not allow for the possibility of tie is not
making full use of the information contained in the no-preference class.
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Rao and Kupper (1967) have generalized the Bradley—Terry (1952) model to account for
the occurrence of ties by postulating the existence of a threshold parameter 6 =InA,
which reflects a judge’s inability to discriminate between two items or treatments when
in fact a difference exists.

Now the preference probability P{(X,-X)> 5|<9i,t9j}that the treatment 7, is preferred

to treatment 7, i # j in the modified model can be written as:

1 e}
V== | sech’(y/2)dy
4 ~(In6,~In6,)+5
0+ 10,

The probability that treatment 7, is preferred to treatment 7; is denoted by, and may
be obtained by swapping i with j in (2). The probability of a tie v, ; when treatments

T, and T, are compared is given by:
—(Ing,-In0;)+o

Vig=7 | seeh(y/2)dy

~(In6;~1n6,)~5
R
(6,+6,)(26,+0))

)

The equations (2) and (3) are known as the Rao-Kupper model. If 4=1 then the Rao-
Kupper model yields the Bradley-Terry model.

The following notations are used for the analysis of the model.

n =lor0 as according to treatment 7, is preferred to treatment 7, or not, in the k™

i.ijk

repetition of comparison.

n ~=lor0 asaccording to treatment 7; is tied with treatment 7, or not.

0.5

Alson +n
0.ijk ji

i.ijk

+n =landn =n
J-

ijk i.ijk Jak

n,; = z . ;. = the number of times treatment 7; is preferred to treatment 7, .

ny, = Zk n,;; = the number of times treatment 7; and treatment 7, are tied.

1, 1s the number of times treatment 7, is compared with treatment 7, and

i

Vi =hoy v+, =1,

The following notations are useful for further simplification of likelihood function.

n.

ik = Moge T Migus My = Moy T 1 =1, =N

ijk ij i.ijk
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n; = zknl.jk = the number of times treatment 7, is preferred to treatment 7, and the

number of times treatments 7, and T, are tied.

n, = zl; n; = the total number of times 7; is preferred to any other treatment. And the

number of times treatment 7; and T, are tied.

ny = ZZ, n,; = the total number of times treatment 7; and 7 are tied.

The probability of the observed result in the k™" repetition of the pair (7,,7)) is:

. Riji 0 M jik
Pi'k — (2“2 _ 1)”0.gk 91 J
/ 0,+20,| | 26,+0,

Hence, the likelihood function of the observed outcome x {where x represents the data

(22 _l)no f.n N Kl“ Wi Hin,
L(X|017627-..,Hm7/1) = }_‘[’(<])—1 «7H1—1 (4)
1. 6 +26)"
i)
Where K :#, 0<0<1,i=12,.,mand A>1.
i (nOJj!’ ni'l.j!, nj'l.j!)

Here A is the threshold parameter and 6,,0,,...,6, are the treatment parameters.

3. The Choice of an Informative Prior

Developing prior distribution is undoubtedly the most controversial aspect of any
Bayesian analysis (Lindley, 1983; Walters and Ludwig, 1994). Considerable care should
be taken when selecting priors and the process by which priors are selected must be
documented carefully. This is because inappropriate choices for priors can lead to
incorrect inferences. It is often easier to develop a prior for each parameter in turn
(marginal priors) than to develop a joint prior for all the parameters simultaneously. In
fact, most of the Bayesians today have made the assumption that the priors for the various
parameters are independent (e.g. Punt and Walker, 1998; Punt and Butterworth, 2000).

Assuming the treatment parameters 6,,6,,...,0, and threshold parameter A to be

m

independent, prior distribution for the treatment parameters is considered to be Dirichlet
distribution and threshold parameter is assumed to have Gamma prior distribution.

The Dirichlet distribution, used as a prior distribution for the treatment parameters
0,,0,,...,0, has the form:

p(6.6,....6,) = B(a,...a,) " [[,6*" . 0<6,<1, X" 6=1
a,>0,i=12,.,m

where B(a,,...,a, ) stands for a generalization of the beta function.
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The prior distribution of A is assumed to have a Gamma distribution with hyper
parameters b,,b, >0, so A has density:

P )‘Tb) PN, A5, bb, >0

Both the priors are considered to be independent so the joint prior Dirichlet-Gamma
distribution has the following form.

e—bz(l—l) (/1 _ l)b]—l b;l
B(a,,....,a,)I'(b)
D" O=1,i=12..,m,A>1,

where a,,i=1,...,m, b,,b, are the hyperparameters and a,,b,b, >0.

p(4,6,,6,,...,0 ) = 1.6, 0<6 <1 (5)

3.1 Assessment of the Prior Distribution

Practical implementation of Bayesian methods requires the assessment of prior
distribution i.e. the elicitation of hyperparameters. The elicitation of prior belief has
received a little attention despite the excellent review of Kadane and Wolfson (1998)
which contains dozens of references. There exist many new and workable methods for
assessment of prior distribution in statistical literature. We base our elicitation method on
the fact given by Geisser (1980) and Kadane (1980) that the natural elements for
statistical inference are characteristics of the predictive distribution of an analyst.

3.2 The Prior Predictive Distribution of the Model

Consider the case of m treatments. The prior predictive distribution of the sufficient
statistic: n,;,n,; using the likelihood function (4) and joint prior distribution (5) applying

constraint 8, =(1-6,) is:

n!bb‘
p(no"j’ni‘ij) 'n”j n, F(b )B(a,,a )
T e (A=) (AP 1) g (1= 0) T d Ad, ©
Q:,,j[l {6, +2(1- 9)}"‘”* {(1 0)+29}’ "
where a;,a,,i=1,....m, b,b, are the hyperparameters.
ny ., =0,1,..., Ty s i.i/.:O,l,...,rﬁ—nO.i].

In practice the integral is more efficiently computed as function of € and ¢ where
$=1/1 s0o dAi=-¢"d¢ and:
n!bb‘

o tn \0(6)B(a,,a,)

1 sz(l ¢)/¢(1 ¢)b1 (1 ¢ )n0/¢r +n0/9a 1 ,_](1 9),1 — _]d¢dgl
00 420 ¢b1+2ﬂo_,+] {¢0[ +(1_9i)}n0y+ i {¢(1_01)+0[}1 iy

The evaluation of (7) is intractable so the integral is evaluated numerically.

p(no,ij 51 4 )=
(7
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4. Bayesian Analysis of the Model using Informative Prior for m=5

To conduct the Bayesian analysis for five treatments the data given by Glenn and David
(1960) is used. These data are taken for a paired comparison experiment, and is described
for five treatments and 30 replications of each of 10 distinct treatment pairs. The data are
presented in Table 1.

Table 1: Data for Comparison of S Treatments Allowing Ties

Pairs n, n; Mo 4 n; n;
(1,2) 17 8 5 22 13
(1,3) 3 21 6 9 27
(1,4) 24 4 2 26 6
(1,5) 13 13 4 17 17
2,3) 8 18 4 12 22
2,4) 17 7 6 23 13
2,5 8 16 6 14 22
(3.4 26 1 3 29 4
3.5 16 10 4 20 14
4,5 4 23 3 7 26

The joint posterior distribution of the parameters 6, 6,,6,,6,,6; and A is:
e—bz (A-1) (2, _ l)bl -1 (12 _ l)nn 0 n]+a1—19i12+a2—19n3+a3—10 n4+a4—195ns +as—1
KH,(< . 0.+ 40, ) (/16’ +6,)"
0,+60,+0,+0,<1, 1>1 ®)

where 6, =1-6, -6, -0, -0, and K is normalizing constant:

7(6,,6,,6,,0,,1]x) =

The marginal posterior density of the parameter 6, is :

I‘I] +al

—by(A-1) b1y 92 o 5 pn+a-1
J‘l ‘91J‘1 6 ‘92J‘1 6,-6, ‘93-.‘/1] e (i_l) (ﬂ’ _1) Hizei did@l
[1.,.[6+20)" (26,+6,"]
0<6,<1,i=1,.,m (9)

(9|X)—

Expressions for the marginal posterior densities of 6,,6,,0,,0,and A can be derived
likewise.

4.1 Elicitation of Hyperparameters for m=5

In the method of elicitation suggested by Aslam (2003) being used, the predictive
distribution is compared with the expert’s assessment of this distribution and
hyperparameters are chosen in such a way that make the assessment agree closely with a
member of the family. He provides two methods to elicit the hyperparameters of the Rao-
Kupper model

Method (a) Via Eliciting the Prior Predictive Probabilities
Method (b) Via Eliciting the Confidence Levels
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In method (a), elicitation of prior predictive probabilities is difficult for large number of
comparisons, so the method (b) is adopted in which the prior predictive confidence levels

(confidence level is a probability for a given interval) are elicited. The following function
is used to elicit 7 =(a,,a,,a,,a,,a,,b,,b,) , the set of hyperparameters

¢ =miny, (FCL), - (ECL),] (10)

where ‘K’ denotes the number of confidence levels, FCL is for fitted confidence levels
and ECL stands for the elicited confidence level.

Elicitation of hyperparameters for 5 treatments is based on the estimated values of
confidence levels for the prior predictive distribution defined in (7). Using expression (7)
hyperparameters are elicited via prior predictive confidence level. Minimum value of
function (10) is sorted. Prior predictive probabilities are calculated for vector
r=(a,,a,,a,,a,,as,b,,b,) to find out (FCL),, k =1,...,10, for the given intervals. Those
values for hyperparameters are selected against which {(7) is minimum. A program
designed in SAS package is used to get these hyperparameters. It is found that £(7)
=0.075 is minimum against the vector 7= (4.98, 4.98, 4.98, 4.98, 1.49, 1.55, 5.48). So
these set of values are the elicited hyper parameters.

4.2 Marginal Posterior Densities for the parameters of the Rao-Kupper Model

When m=5
p(6)) JICARS!
0.30 0.4 2
0.25
020 0.3
0.15
0.2
0.10
0.05
0.1
0.00
02 04 06 08 /
0.0
H 0.2 0.4 0.6 0.8
|
£,
JICA) p(0,)x)
020 0.000014
0000012
015 0.000010
0.000008
0.000006
0.10
0.000004
0.05
0.000000
005 010 0.15
0.00
0.2 04 0.6 08 E}
|
&,

Pak.j.stat.oper.res. Vol.IX No.3 2013 pp241-252 247



Farzana Noor, Muhammad Aslam
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t.

The posterior means are determined for the parameters of the Rao-Kupper model using
Drichlet-Gamma informative prior by numerical integration as well as by Gibbs sampling
for the data given in Table 1. A program is designed in SAS package to find the posterior
means. The obtained posterior means are presented in a Table 2. Posterior means are also
determined by using uniform prior for comparison purpose.

Table 2: Posterior Means for the parameters of Rao-Kupper Model

Posterior Quadrature Method Gibbs Sampling
means Informative Prior | Uniform Prior | Informative Prior | Uniform Prior
o, 0.206 0.197 0.125 0.188
6, 0.137 0.125 0.148 0.113
b, 0.385 0.406 0.411 0.417
o, 0.058 0.048 0.064 0.051
0, 0.214 0.224 0.252 0.231
A 1.428 1.467 1.449 1.499

The posterior estimates obtained for both priors are in coincidence up to 1 decimal place
and show same preference order of treatments as 6, - 6, = 6, - 6, — 6,. The results

obtained by Gibbs sampling are also close enough.
Let the parameters 6, and 0, i<j,i,j=1,2,3,4,5 are compared using hypotheses:

H,;:0 >0 and H, :0, >0

The posterior probability for H,; = p, = P(6, > 0,) is determined as:

p, = P(¢>00X)= j;

(144)/2 po

ey [p@.&2xdAdEdy (1)
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Where ¢=6,-6,, & =0, and the posterior probability for H =4, =1-p;-
Using the data given in Table 1, the posterior probabilities obtained for p, and g, by
running a SAS program are given in Table:3

Table 3: Posterior Probabilities using Informative Prior

Hypotheses Py q; Hypotheses Py q;

H,:6 >0, 0.940 0.06 H, :0,>0, 0.999 0.0001
H,:6 >0, 0.001 0999 | H,:6,>86, 0.002 0.998
H, :0>0, 0.002 0998 | H,:6,>0, 0.002 0.998
H, :6, >0, 0.177 0.823 | H, :6,>6, 0.974 0.0026
H,:0,>6, |0.70x10° | 0999 | H,:6,>6, | 02x10° 0.999

In Bayesian Statistics, to make a decision about any hypothesis is quite straightforward.
Probabilities obtained under p, and g, are compared. If p, found to be small, I—_IU. is

accepted, otherwise vice versa. It is evident from obtained posterior probabilities that
hypotheses H,,, H,,, H,, H,,, H,,, H,,, H,,, H,and H, are accepted. It can be
conformed that ranking of the treatment obtained through hypotheses procedure is same

as obtained by posterior means.

The predictive probability P, ,, that treatment 7, would be preferred to treatment 7, in a

(12)
future single comparison may be obtained by using posterior distribution (8) and the
model probability (2) as:

. Q- @ -y T o dade

i(<j)=2 i

1-6, ¢1-6,-6, (1-6,-0,-6;
Ry = J-gl I J- .[ L:] (91+/192)Hf(<j):l(9i+/19j)n4/ (/1@+9j)”/z

(12)
Where K is a normalizing constant and 6, = 1-6, -6, -6, -0, .

Similarly the predictive probability F, , that there would be a tie between two
treatments 7, and 7, in a future single comparison can be derived by using (8) and (3) as
under:

5 n;+a;—1
w4246,

(6,+16,)" (26, +0,)"
(13)

For the data given in Table 1, the predictive probabilities are obtained using the
quadrature method with the help of a program written in SAS and are given in Table 3.

1 o 18 (bt pLBtyty . e_bz(l_l)(/’i—l)bl_l(/lz _1)nl,+16n1+a|92nz+02H
P(0A12) ZEJ.HI:OJ‘@:OJ‘%:O J.HA:O J'A:I (9 + 10 )(/19 +6 )H

i(<j)=1
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Table 3: The Predictive Probabilities using Informative Prior

Pairs (i, j) P; Pos; Pairs (i, j) P; Pos;
1,2 0.513 0.167 2,4 0.626 0.145
1,3 0.274 0.158 2,5 0.312 0.166
1,4 0.714 0.120 3,4 0.823 0.081
1,5 0.404 0.134 3,5 0.507 0.160
23 0.220 0.136 4,5 0.160 0.118

Again the results show that predictive probabilities are completely in agreement with the
previous ordering of treatments. Predictive probabilities obtained for no preference
category turn out to be very small.

5. Appropriateness of the Model

The observed number of preferences with that of expected number of preferences are
compared to check the goodness of fit of the model. A y*Statistic is used for testing
purpose, as it is widely used by renowned statisticians such as Glenn and David (1960)

and Rao-Kupper (1967).
Let us consider two hypotheses.

H ,: The model is true for some values 6 =0,

H,: The model is not true for any value of &

Let us consider 7, = the expected number of times treatment 7; is preferred to treatment

T, and n,,= the expected number of times treatments 7; and 7, are tied. Thus x
Statistic is:

A~ 2 A~ 2 A~ 2

n. . —~nii n..—niji n,. —No.i
ey (G mn) | G 2nsg) | (g ) (14
’ niij n;j.ij no.jj

with m(m—-2) d.f

The null hypothesis is rejected when calculated an(mfz) is less than the p-value at

m(m—2) degrees of freedom (which is the level of significance at which the null

hypothesis is rejected). The expected number of the preferences are obtained from the
following expressions.

,=1.0/(0,+20), A, =r0/(10,+0,),

oy s = 1Y

ny; = ry.(/l2 -1)6,0/(0,+10,)(16,+6,) i<j=123,4,5

The observed and expected number of preferences is given in Table 4.
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Table 4: Observed and Expected number of preferences.

Pairs N . .

) Ly o ;i j Mo Mo
(1,2) 17 15.42 8 9.51 5 5.13
(1,3) 3 8.16 21 17.01 6 4.83
(1,4) 24 21.39 4 4.95 2 3.66
(1,5) 13 12.06 13 12.63 4 5.31
2.3) 8 5.97 18 | 19.89 4 4.14
2,4) 17 18.69 7 6.84 6 4.47
(2,5) 8 9.27 16 15.66 6 5.07
(3.4) 26 24.69 1 2.85 3 2.46
(3,5 16 16.71 10 8.4 4 4.89
4,5) 4 4.77 23 21.63 3 3.6

The value of 7 Statistic is obtained to be 10.65 and the p-value at 15 degree of freedom

for the obtained value of y” is found to be 0.78, which indicates that model is worthy of
fit.

6. Conclusion

The Bayesian analysis of the Rao-Kupper model for paired comparisons has been
conducted for five treatments. Posterior means, which are used to rank the treatments, are
obtained by two methods, quadrature method and the gibbs sampling technique. To
compare the results posterior means are obtained using informative prior and a uniform
prior, though only numerical expressions under informative prior are given. It is observed
that estimates for treatments are little smaller under uniform prior than informative prior

but they conclude to same ranking i.e. &, - 6, - 6, = 6, = 6,. Same treatment ranking

is obtained through graphical display of marginal posterior densities and hypothesis
testing procedure.
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