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Abstract

A two parameter family of C " rational cubic spline functions is presented for the graphical representation
of shape preserving curve interpolation for shaped data. These parameters have a direct impact on the shape
of the curve. Constraints are developed on one family of the parameters to visualize positive, monotone and
convex data while other family of parameters can assume any positive values. The problem of visualization
of constrained data is also addressed when the data is lying above a straight line and curve is required to lie
on the same side of the line. The approximation order of the proposed rational cubic function is also

investigated and is found to be O (h?) :
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1. Introduction

Shape control (see Gregory and Sarfraz (1990), Habib and Sakai (2008)), shape design
(see Dejdumrong and Tongtar (2007)) and shape preservation (see Sarfraz (2003),
Schmidt and Hess (1988), Schultz (1973)) are important areas for graphical presentation
of data. In data visualization environment, a user is always interested in graphical
representation of the data. Positive, monotone and convex are the basic shapes of data.
Rate of dissemination of drugs in blood, population growth (see Butt and Brodlie (1993))
and half-life of a radioactive substance are always positive. Monotonicity is applied in the
specification of Digital to Analog Converters (DACs), Analog to Digital Converters
(ADCs) and sensors. These devices are used in control system applications where non-
monotonicity is unacceptable. Other applications of monotone data are erythrocyte
sedimentation rate (E.S.R.) in cancer patients and uric acid level in patients suffering
from gout (see Hussain and Hussain (2007)). Convexity has its applications in non-linear
programming, designing of telecommunication system, engineering drawing,
approximation theory etc. The data arising in an optimization problem may be convex
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(Brodlie and Butt (1991)). Due to these applications, development of data visualization
schemes which preserve the shape of data, is a germane area of research.

The problem of data visualization of planar data has been discussed by a number of
authors. Brodlie and Butt (1991) developed C' schemes to preserve the shape of convex
data. The same authors in (Brodlie and Butt (1993)) developed a C' positivity preserving
scheme for 2D data. The authors in (Brodlie and Butt, (1991), (1993)), each interval
where the shape of data was lost, divided it into two subintervals by inserting an extra
knot in such a way that the shape of data was preserved. The piecewise cubic interpolant
was used to interpolate the data over each subinterval. Fahr and Kallay (1992) used a C'
monotone rational B-spline of degree one to preserve the shape of monotone data.
Goodman, Ong and Unsworth (1991) presented two interpolating schemes to visualize
the shape of data lying on one side of the straight line using rational cubic function. The
first scheme scaled weights by some scale factors and the second scheme adopted the
method of insertion of a new interpolation point. Unlike, Butt and Brodlie (1991), (1993),
Goodman, Ong and Unsworth (1991), the data visualization schemes for shape
preserving curve data developed in this paper neither require the specification of interval
in which the shape of data is lost nor scaling of weights. The schemes developed in this
paper, assure an automated selection of parameters in each subinterval. Goodman (2002)
provided a comprehensive survey of shape preserving interpolating algorithms for planar
data. The rational functions used in Hussain and Hussain (2007), Sarfraz, Butt and
Hussain (2001), Sarfraz (2003), have two free parameters which are constrained to
visualize the shape of data. The data visualization schemes developed in this paper also
has two parameters but only one is constrained to visualize the shape preserving curve
data. Hussain and Sarfraz used rational cubic function in its most generalized form (four
parameters) to preserve the shape of positive and monotone planar data in Hussain and
Sarfraz (2008) and Hussain and Sarfraz (2009) respectively. On the other hand the
schemes developed in this paper are visualizing the shape preserving curve data by
developing constraints on a single parameter. Hence the scheme developed in this paper
is computationally economical than Hussain and Hussain (2007), Hussain and Sarfraz
(2008), (2009), Sarfraz, Butt and Hussain (2001), Sarfraz (2003). Lamberti and Manni
(2001) used cubic Hermite in parametric form to preserve the shape of data. The step
length was used as tension parameters to preserve the shape of planar functional data.
The first order derivatives at the knots were estimated by a tri-diagonal system of
equations which assured C* continuity at the knots. The data visualization schemes
developed in this paper does not alter the step length to visualize the shape of data.
Schmidt and Hess (1988) developed sufficient conditions on derivatives at the knots to
assure positivity of interpolating cubic polynomial over the interval thus it is restricted to
just data without derivatives, whereas, the schemes developed in this paper are applicable
to both data and data with derivatives.

This paper has been devoted to a rational cubic spline scheme for visualization of shaped

data. A two parameter family of C' rational cubic spline functions has been presented for
shape preserving curve interpolation. The two parameter family has a direct impact on the
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shape of the curve. The data dependent constraints have been developed on one family of
the parameters to introduce independent curve schemes to visualize positive, monotone
and convex data. However, the other family of parameters has been left as free, it can
assume any positive values to further refine the curve schemes if needed. The problem of
visualization of constrained data is also addressed when the data is lying above a straight
line and curve is required to lie on the same side of the line. Ann error analysis has also
been the part of this study. The approximation order of rational cubic spline function has

been has been investigated and is found to be O(hf) .

The remainder of the paper is organized as follows. In Section 2, the C' rational cubic
spline function with two parameters has been introduced. Sections 3 and 4 discuss the
problem of shape preservation of positive data and data lying above the straight line
respectively. The problems of monotony and convexity preservation of data are discussed
in Sections 5 and 6 respectively. Section 7 discusses the error of approximation. Finally,
Section 8 concludes the paper.

2. Rational Cubic Spline
Let {(xl., £,),i=0, 1,2,...,n} be the given set of data points defined over the interval
[a,b] , wherea = x, <x, <x, <L <x, =b. A piecewise rational cubic function with two

l.i=0,1,2,...,n—1 as:

i+l

parameters is defined over each subinterval /; = [xi,x.

¢ A4, (1-0) + 4 (1-0) 0+ 4,(1-0)6" + 4,6°
(%)= 1+(a, - B)(1-0)0

: (1)

where 0 =2 The piecewise rational cubic function (1) will be C' if it satisfies the

i

following interpolatory conditions
Si (xi) = fz > Si ('xi+1 ) = ﬁ+1 > Sim (xi) = di > Si(l) (xi+1 ) = di+] . (2)

S (x) denotes the derivative with respect to x and d, denotes the derivative values

estimated or given. The C' continuity conditions defined in (2) asserts the following
values of unknowns 4,, i =0,1,2,3:

a,.—ﬂ,.)+3)ﬁ+hidi,
a; _:Bi)+3)fi+1 _hz’di+l >

These values of 4., i =0,1,2,3 reformulate the rational cubic function (1) to the following

C' piecewise cubic spline
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_n(9)
Sl,(x)— qi(é’) , 3)
where
pi(0)=£,(1-60) +{((2,= B)+3) i+ hd } (1-6) 0+{((«; = B)+3) /., —hd,,, } (1-6) 6

+f;+103’
q,(0)=1+(a,-B)(1-6)6.

It is noted when ¢; = 3, the rational cubic spline (3) reduces to cubic Hermite spline.

The parameters ¢, and S can assume any real value but in this paper, for the ease of
manipulation these are assumed positive real number.

2.1 Some Observations

The parameters ¢, and S involved in the definition rational cubic function have a direct

impact on the shape of curve. The mathematical and graphical illustration of this impact
is described as:

The increase of either of the parameter ¢, and S reduces the rational cubic spline to a
linear interpolant, which is mathematically expressed as:

lim S, (x) = lim 5, (x) = (1-0) £, + 01,

a;—>0

Same observation is made if we increase both the parameters «; and S simultaneously.
To illustrate this impact the rational cubic spline (3) is reformulated as:

R

4 (6) ’
where

R=(1-0)(20-1)hA, —(1-6) 0hd, +(1-0)0*hd,

i+t

S (x)=£,(1-0)+ f,,0+ (4)
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Figure 1. Cubic Hermite spline. Figure 2. Rational cubic spline

(a,=10, B =0.1).
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Figure 3. Rational cubic spline Figure 4. Rational cubic spline
(a,=0.1, B =100). (a;, =100, B =90).

From (4), the following observation is made:

lim S,(x)= lim 1/ (1-0)+/.0+ = £,(1-60)+ 1.0

a;, >

R
qi(e)

Hence, the individual or simultaneous increase of the value of these parameters reduces
the rational cubic function (3) in the interval [/, = [x,.,xm] to a straight line
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fi(1-0)+ f,,0. These observations are implemented on the data set

{(xi,fl.):(—1,0.5),(0,1.0),(1,0.5),(2,0.2)} taken from Hussain and Sarfraz (2009) and
demonstrated graphically in Figure 1-4.

3. Positive Curve Data Visualization
Let {(xl.,f,.), i:0,1,2,...,n} be the positive data defined over the interval[a,b]. The
necessary condition for the positivity of data is

£>0,i=0,1,2,..,n. (5)

The piecewise rational cubic spline (3) preserves positivity if
S, (x)>0,i=0,1,2,...,n-1.
S, (x) >0 if
p.(0)>0 and ¢,(6)>0.
q,(0)>0 if
a,>pf.
Using the result developed by Schmidt and Hess (1988), cubic polynomial p, (9) >0 if

(pi,(o)api,(l)) ER UR,,
where

R, :{(a,b):a >if",b<i},
h h

(a,b):36f ., (a2 +b* +ab-3A, (a+b)+3Af)+3(fi+1a—fib)(2hiab—3fi+la +3/b)
B van(f,d — b))~ W’ >0

For the rational cubic spline (3), we have

=B ) f.+hd, —(a.—p.) f..,+hd.
p;(O):(al ﬂz]lfz‘—l_ ) 1’ pl/(l): (az ﬂz)f;+l+ 7 i+1

1 1

(P/(0),p/(1)) R if
pl(0)> =0, g2,

l 1

This leads to the following conditions:

Q, >Max{ﬂi—h;ili il +hidi+'}.

i i+1

(6)
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Further (pi’(O),p['(l)) eR, if

¢(ai’ i) = 36fifi+1[¢12 (ai’ﬁi)+¢22 (ai’ﬁi)+¢l (ai’ i)¢2 (ai’ i)_3Ai (¢1 (ai’ i)+¢2 (ai’ﬂi))+3Ai2]

+3[fi+l¢1 (ai’ i)_fi¢2 (ai’ i)][zhi¢1 (ai’ i)¢2 (ai’ i)_3fi+l¢1 (aiaﬂi)+3fi¢2 (ai’ 1)]
HARLfud (. 8)— 1 (a0, BN -1 (. )¢ (e, ) 2 0,

(7)
with qﬁl(ai, ,-)Zp,-'(o)and ¢, (ai’ﬂi):pi’(l)'

Positivity of pi(ﬁ) can be assured from either (6) or (7), but the simplicity of

computation in (6) justify it as a rational choice. The whole discussion can be
summarized as follows:

Theorem 3.1. The piecewise rational cubic interpolant § (x) , defined over the interval

[a,b], in (3), is positive if in each sub interval I, z[xi,xm] the following sufficient
conditions are satisfied

B >0,
a; >Max{ﬂi,ﬂi _hidi B+ hidiH}.
f; ﬁ‘+1

The above constraints can be rearranged as:

B >0,

a =1 +Max{,b’i,ﬁ[ —%, [+%}, [.>0.
f; f;+l

3.1 Demonstration

In this Section we shall illustrate the positivity preserving scheme developed in Section 3
through numerical examples.

Example 3.1. Consider the positive data set of Hussain and Sarfraz (2008) shown in
Table 1. Figure 5 is produced from the positive data in Table 1 using cubic Hermite
spline which looses the shape of data. Positive curve in Figure 6 is produced from the
positive data set in Table 1 using the positive data visualization scheme developed in
Section 3. The values of derivatives and parameters are provided in Table 2.

Table 1. Positive data set.

X 1 2 3 & | 10 | 11 12 | 14
S| 14| 8 2 [08]050.25]040]0.37
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Figure 5. Cubic Hermite spline. Figure 6. Positive rational cubic spline.
Table 2. Numerical results for Figure 6.
i 1 2 3 4 5 6 7 8
d, -6.0 -6.0 -3.12 -0.195 -0.2 -0.05 0.0675 | 0.1250
a, 3.5 3.02 | 15.3125 | 4.1333 2.5 1.95 | 9.8333 -
B 0.5 0.5 0.5 0.5 0.5 0.5 0.5 -

Example 3.2. Another positive data set is considered in Table 3. The negative curve in
Figure 7 through positive data taken in Table 3 is produced using cubic Hermite spline
which looses the shape of data. The curve in Figure 8 is produced through positive data in
Table 3 using the scheme developed in Section 3. It is seen that the positive shape of the
data is preserved. Figure 9 and Figure 10 provides the clooser view of Figure 8.

188

Table 3. Positive data set.

2

1

0 1 2 3

0.0488

0.2353

2.0000

4.0000 | 2.0000 | 0.2353 | 0.0488
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Table 4. Numerical results for Figure 8.

2

3

4

5

d; |-0.6026

0.9756

1.8824

-1.8824

-0.9756

0.6026

o, | 5.2331

1.6255

0.9432

0.9432

1.6215

5.2331

B | 0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

i Bes

Figure 7. Cubic Hermite spline.
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Figure 9. Closer view of Figure 8.
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Figure 10. Closer view of Figure 8.
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4. Constrained Curve Data Visualization

Let {(xl., f,), i=0, 1,2,...,n} be the given set of data points lying above the straight line

y=mx+c i.e.
fi>mx,+c, ¥V i=0,1,2,...n. (8)

The curve will lie above the straight line if the rational cubic function (3) satisfies the
following condition

S(x)>mx+c, V xe[x,x,].

For each subinterval /;, = [x[,xi+1 ], the above relation can be expressed as

5(x) =29, o (1-0) 400, )

q; ('9)
where ai(1—9)+bﬂ is the parametric equation of straight line with a, =mx, +¢ and

b, =mx,,, +c. Multiplying both sides of (9) with g, (0) assuming that ¢; > f, and after

some rearrangement, (9) reduces to

U.(6)=Y(1-0)"0'B,.

1

BO :f; —-4a,
B :((ai_'gi)+3)ﬁ+hidi _bi_zai_(ai _ﬂi)aia
B, :((ai_ﬂi)+3)fi+l —hd,,, _2bi_ai_(ai _:Bi)bi,

U, (6)>0if B >0,i=0,1,2,3.
We know that B, >0 and B, >0 are true from the necessary condition (8).
Now, B, >0 if

(—f,—hd, +b,)
fi_ai .

a, > B+

Similarly, B, >0 if

(_fm +hd,,, + ai)
fi+l - bi .

a, > f+

The above discussion can be summarized as follows:

Theorem 4.1. The piecewise rational cubic interpolant S (x) , defined over the interval
[a,b], in (3), preserves the shape of data that lies above the straight line if in each

subinterval /, = [xl.,xm] the following sufficient conditions are satisfied
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B >0,
—f,—hd +b, —fi,thd.  +a
a[>Max{ﬂ“ﬂi+( fz‘ (A l),,8[+( ﬁﬂ i+ az)}.
fi—a Jin—b,
The above constraints can be rearranged as:
B >0,
—f.—hd. +b —f,+hd.  +a
o g L) i
fi—a Jia—b

4.1 Demonstration

In this Section we shall illustrate the constrained data preserving scheme developed in
Section 4 through numerical examples.

Example 4.1. Consider the positive data set of Hussain and Sarfraz (2008) shown in
Table 5. This data set is lying above the straight line y =§+1. Figure 11 is produced

from the data set in Table 5 using cubic Hermite spline which looses the shape of data.
Figure 12 is produced from the data set in Table 5 using data visualization scheme
developed in Section 4. It is observable from the Figure 12 that the curve is lying above

the straight line y = §+ I.

Table 5. Positive data set above the line y = §+ 1.

X 2 3 7 8 10 | 13 | 14
12 |45 65| 10 [ 63| 12 | I8

R ) P
Figure 11. Cubic Hermite spline. Figure 12. Constrained rational cubic spline.
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Table 6. Numerical results for Figure 12.

i 1 2 3 4 5 6 7

d -9.1000 | -3.5000 | 2.0000 | 0.8250 | 0.0250 | 3.9500 | 7.0250

a 1.0000 | 1.0000 | 1.0000 | 1.0000 | 4.7500 | 1.0000 -

B 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010 -

Example 4.2. Consider another positive data set of Kvasov (2000) shown in Table 7.
This data set is lying above the straight line y = §+1. Figure 13 is produced from the
data set in Table 7 using cubic Hermite spline which looses the shape of data. Curve

lying above the straight line y=§+l, in Figure 14, is produced from the data

visualization scheme developed in Section 4.

Table 7. Positive data set above the line y = §+ 1.

X 0 2 3 5 6 & [ 11 | 14 | 15
f 165165656565 16| 50 | 60 | 85

v 5ir f 88 f
; f 8 |
gk o =gk |
II |I
|

gt o
i — Il Il L |
g 4 6 % 1w M % 5 4 6§ 1 7 M
18015 -
Figure 13. Cubic Hermite spline. Figure 14. Constrained rational cubic
spline.
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Table 8. Numerical results for Figure 14.

i 1 2 3 4 5 6 7 8 9 10

d 0 0 0 0 0 1.5833 | 18.5833 | 19.5000 | 15.0 | 31.6667

o | 1.0]10] 1.0 | 1.0 | 1.4444 | 5.7105 | 1.0000 | 1.0000 | 1.0 -

B 1050510505 ]0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5 -

5. Monotone Curve Data Visualization
Let {(xi, fl.), i= 0,1,2,...,11} be the monotone data defined over the interval [a,b] such
that

fi<fias A = f’“hf>0 d>0,i=0,1,2,...,n—1. (10)
The piecewise rational cubic function (3) preserves monotony if

SP(x)>0,i=0,1,2,...,n-1,

where
SO (x) Z(l_ (11)
W (x)=+2 —, 11

(%(0))

G =d,,

C =(2(a,-B)+6)A, -2d,,,,

C, =3A, (( -B)+3){((@=B)+3)A—d,, —d |,

C3=( B)+6)A, -2d,,

C,=d.

From (11), S (x)>0if C, >0, i=0,1,2,3,4. Obviously, C, >0 and C, >0 are always
true from the necessary condition of monotonicity (10). Now, C, >0 if
d,.,
a > [+,
>
Similarly, C, >0 if
a, >,

ai>ﬁl_+m

i
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and C; >0 if

d.
a, > p+—.
Ai
The above can be summarized as:

Theorem 5.1. The piecewise rational cubic interpolant S (x), defined over the interval

[a,b], in (3), is monotone if in each subinterval /, = [x le] the following sufficient

conditions are satisfied

B >0,
ai>Max{ﬂ+— ﬂ+ i ﬁ dzd }
The above constraints can be rearranged as: |
B >0,
=1, +Max{ﬁ+ ,B+ ’“ d;d },ni>0.

5.1 Demonstration

In this Section we shall illustrate the monotone data preserving scheme developed in
Section 5 through numerical examples.

Example 5.1. Consider a monotone data set taken in Table 9. Non-monotone curve in
Figure 15 from the monotone of Table 9 is produced using cubic Hermite. The monotone
curve (from the same data set) is produced in Figure 16 using data visualization scheme
developed in Section 4. The values of derivatives at the knots and parameters are
provided in Table 10.

Table 9. A monotone data set.

X 8.7 9.2 10 12 15
0.1691 | 0.4694 | 0.9437 | 0.9986 | 0.9999
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Figure 15. Cubic Hermite spline.
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Figure 16. Monotone rational cubic spline.

Table 10. Numerical results for Figure 16.

i 1 2 3 4 5
d; 10.6036 | 0.5967 | 0.3102 | 0.0139 | 0.0000
o, [2.0185|1.5497 | 11.8271 | 32.1931 -
B | 0.0100 | 0.0100 | 0.0100 | 0.0100 -

Example 5.2. Consider another monotone data set shown in Table 11. This data has been
taken from Kvasov (2000) with slight modification. Figure 17 is produced from the data
set in Table 11 using cubic Hermite spline which looses the monotone shape of data. The
monotone curve in Figure 18 is produced using the monotone data visualization scheme
developed in Section 5. Its numerical results are shown in Table 12.

Table 11. Monotone data set.

X 0 2 3

5

6

8

11

12

14

15

10.01 | 10.02 | 10.03

10.04

10.05

10.06

10.5

15

50

60

85

Pak.j.stat.oper.res. Vol.IX No.2 2013 pp181-203
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g B ! i g ! d / E 8 :/
G N TP HMPIOR COPON o) | g E
P [ o li
A |
; l ; i i
14 " f L} i T 4—’) ..... i
% 5 8 E TR N i S R —
3-Biis ¥l
Figure 17. Cubic Hermite spline. Figure 18. Monotone rational cubic spline.
Table 12. Numerical results for Figure 18.
i 1 2 3 4 5 6 7 8 9 10 11
d 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 1.34 | 18.62 | 20.00 | 15.00 | 31.66
! 17 75 75 75 75 25 50 50 00 00 67
o 1.83 | 1.50 | 3.00 | 1.50 | 46.00 | 3.56 | 8.87 | 1.10 7.00 1.86 i
! 53 20 20 20 20 45 76 56 20 87
B 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 0.00 i
' 10 10 10 10 10 10 10 10 10 10

6. Convex Curve Data Visualization

Let {(xi, f ),i =0,1,2,..., n} be the convex data defined over the interval [a,b] such that

Ai <Ai+1’ di < di+1’ di <Ai <di+1’

The piecewise rational cubic function (3) preserves convexity if
52 (x)>0,i=0,1,2,...n-1,

where
5

> (1-6)" 6D,

T e

I 2

where
Dy =(2(a,—B)+4)(A, —d,)+2(A, —d,,,),
D =4(a,-B)(A, —d)+14(A, —d,)+4(A,—d.,,),

i=0,1,2,...,n

-1.

(12)
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D, =2(e, - )(A, —d,)+12(A,—d,)+4(d,,, —d,),
D, =2(a,- B )(d,,, —A,)+12(d,, —A,)+4(d,, —d,),

A
D, =4(a, - f)(d,, —A,)+14(d,, —A,)+4(d,-4,),
D, =(2(a, - B)+4)(d.., —A)+2(d, - A,).
S (x)>0if

(4,(6)) >0, D,>0,i=0,1,2,3,4,5.

(4,(0)) >0 if

a,>p.
D, >0,i=0,1,2,3,4,5 if
B >0,
(dl+1 Ay ) (Ai _di)
a, > Maxs B+ , B+ .
Ai_di di+1_Ai

The above can be summarized as:

Theorem 6.1. The piecewise rational cubic interpolant § (x) , defined over the interval

[a,b] , in (3), is convex if the following sufficient conditions are satisfied

B >0,
(dm _Ai) (Ai _di)
a, > Maxs B+ , B+ :
Ai - dz‘ di+1 - Ai
The above constraints can be rearranged as:
B >0,
(di+1 _Ai) (Ai _di)
a, > Max< B, + , B+ .
Ai - di di+l - Ai

6.1 Demonstration

In this Section we shall illustrate the convex data preserving scheme developed in Section
6 through numerical examples.

Example 6.1. Consider a convex data set taken in Table 13. Figure 19 is produced from
the convex data set in Table 13 using cubic Hermite spline which looses the shape of
data. Figure 20 is produced from the same data set using the convex data visualization
scheme developed in Section 6. It is seen in Figure 20 that the convex shape of data is
preserved. The values of derivatives at knots and parameters in the interval are provided
in Table 14.
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Table 13. A convex data set.

X 2
2.5

2.5
-4.5

3.5
-5.0

5.5 6
-45 | -1.5

Table 14. Numerical results for Figure 20.

i 1 2 3 4 5
d, | -5.1667 | -2.2500 | -0.1250 | 3.1250 | 7.1500
a, 1.7000 | 4.8667 | 7.8667 | 2.7000 -
B 0.1000 | 0.1000 | 0.1000 | 0.1000 -

2 f
2
25
25k
ak
# f g 3
2 351\ - : [\
™ \ I|I :-u_.ag.ll..
|- y \
|
Gl | _J_....II.
i 450
55 i
'E‘ | 4 I 1 | A J 5 | 4 1 A L | J
25 3 35 4 a5 65 &5 &

1 15 3 35 | a5 B 55 B 85 1
s

Figure 19. Cubic Hermite spline. Figure 20. Convex rational cubic spline.

Example 6.2. Consider another convex data set shown in Table 15. This data has been
taken from Yahaya, Hussain and Ali (2006). Figure 21 is produced from the convex data
set in Table 15 using cubic Hermite spline which looses the shape of data. The convex
curve in Figure 22 is produced using convex data visualization scheme developed in
Section 6.

Table 15. Convex data set.

X 1 2 4 5
10.0000 | 2.5000 | 0.6250

10
0.1000

0.4000
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Table 16. Numerical results of Figure 22.

i 1 2 3 4 5
d, -9.6875 | -4.2188 | -0.5813 | -0.1425 | 0.0775
a, 1.5002 | 9.2107 | 4.3184 | 1.6669 -
B 0.0001 | 0.0001 | 0.0001 | 0.0001 -

w-axks
o

W-anks
w»

% R 3 4 6§ & 1 8 § W #
a0s
Figure 21. Cubic Hermite spline. Figure 22. Convex rational cubic spline.

7. Error Estimation of Interpolation

In this Section, the error of interpolation is estimated when the function being
interpolated is f (x) eC’ [xo,xn], using the rational cubic function (3). Keeping in view
the locality of interpolation scheme developed in Section 2, the error is investigated in an
arbitrary subinterval I, =[x,.,xi+1]. The Peano Kernel Theorem (see Schultz (1973)) is
used to estimate the error adopting the approach of Duan et al. (2007).

The error in each subinterval /, = [x,.,xm] 1s defined as:
1 Xit
R[/1=/ (x)=5,(x) =5 [ 10 (0) R | (x=)] Jaz. (13)

The absolute value of the error in each subinterval is:

()=, () <SR[ (-0 ]

dr, (14)

where
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Rx[(x_f)j:{r(r,x), X, <T<X, (15)

s(7,x), x<t<x,.

The R, [(x—r)j is the Peano-Kernel. Using (15), Ix'+' ‘Rx[(x—r)jdr can be

expressed as:
rm R, [(x — z‘)j dr = r

For the rational cubic function (3), r( T,x) and S(T,X) have the value

I"(T,x)=(x—2')2 —qi(l‘g)[(xi+1 —7)2 {(1—0)92 (o, -8 +3)+03}—2h1. (% —T)(l—@)&z} (17)

s(z.x)= -ﬁg)[(xm o) {(1-0)6 (o~ . 43)+ 6} -2 (3, - ) (1-0)8* | (18)

r (r,x)‘ dr + I:'

S(Z',x)‘d‘l'. (16)

a,—p +1

The roots of r(x,x) in [0,1] are =0, f=1and 9" = .
a —pf+2

The roots of r(r,x) =0 are

T.=X— , =12,

G=0(a, - +2),

H=\(a,~B+1)+0(a,~B,)(c,~ B, +2) .

The root of s(7,x)=0 are 7, =x,,, — 2h,(1-0) T, =X

(o, =B +2)(1-0)+1"

i+l

Now, we have the following cases:
Case 1: For 0<6 <@ and 1-H >0, (14) takes the form

£ (x) =S, (x) S%H 79(2)

o, (ai’ﬂiag) = Jj l"(z"x)‘ dr +J':i+1

i

= J.: r(r,x)dr—Ixr(r,x)dr—J‘T}s(r,x)dr+_|.rxi+ls(r,x)dr

7 x

Ko (a.p.6),

S(r,x)‘dr
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__ 20'(G+H) 20> | 3(1-0)(1+6(a - +1)+0n)
3(1+l9(05l.—ﬂl.+2))3 3¢,(0) (1+9(05,~—,B[+2))2

+{(0!,»—,5,~ +3)+0('Bfai2)}{1+9(0‘iﬂ,+1)+9[[}3] o

(-5 +2)) 3
0 {(B, -, +1)0+(a, - B,)} 8(1-6) 62
39,(0) 3q,(0){(e - B +2)(1-0)+1)

—_
—
+
)

Case 2: For 0<@ <@ and 1-H <0, (14) takes the form

£ ()-8, x>\s§\f<3><r> : (a-»ﬁ-ﬁ)a
o, (. f.0)= |r(z. r.x)dz
=—J‘;r(z‘,x)a’r—j}r s(r,x)dr+L?”s(r,x)dr
_ & 492{(,6’[—ai+1)49+(ai—ﬂ[)}+ 8(1-6) ¢?
3 34,(0) 3¢,(6){(a - B +2)(1-0)+1)"

Case 3: For 8" <@ <1land 1- H >0, (14) takes the form

\f<x>—s,.<x>\s§\f“><r> (.0,
o, (e, f.,0) =ﬂr 7,x) (r.x)|dz
=] —j (7, dr+j r,x)de+ [ s(r.x)dr
,93 02{(—a +,H +1)9+( -B)} 20 (G+H)
(9) 3(1+6(a,— 5, +2))
292 -B+3)+0(B —a, - 2)}{1+9(6¥i—ﬂi+1)+9H}3
) 1+9( A—,Bi+2))3
3(1-0){140(a, - f,+1)+0H)’ } 20°(G-HY
+0 ﬁ+2) 3(1+«9(0:i—ﬂ1.+2))3

(1
) 202 [{( ~ B, +3)+0(B —a, ~2){1+0(a,~ p,+1)-0H)’
1+6?( i_ﬁi+2))3
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3(1-0){1+0(a, - B, +1)-0H)’
(1“9(06- -p +2))2

Case 4: For 8" <@ <1land 1- H <0, (14) takes the form
1
17 (x)=5, (x) s—Hf“)

0)4(0(1,@,9) (rx d2'+j

7)h o, (e, p.0),

)‘dr

=_L dr+j T,x dr+.|. 7,x)dt

9_3+6’2{(—al.+ﬂi—1)9+(a[—ﬂ[)}+ 20°(G-H)

3 34,(0) 3(1+6(a, - B +2))

20° | {(@-B+3)+0(f - ~2)}{1+0(a,—f,+1)-0H]
3¢,(9) (1+9(6¥i—ﬁi+2))3

3(1-0){1+6(, - +1)—9H}2}
(1+6(a,- B +2))2 '

The above can be summarized as:

Theorem 7.1. The error of rational cubic function (3), for f (x) eC’ [xo,xn], in each

subinterval [xi 2 X ] is

£ (x)=5, (3] <5 (e

l 1’

¢ =maxe(a.5.9),

0<0<1

maxa)l(al,ﬂl,ﬁ), 0<0<6, 1-H >0,

o(a,..0) - max o, (a,,3,0), 0<0<6, 1-H <0,
v max o, (,,3.0), 0 <0<l, 1-H>0,
maxa)4(al,,6’l,t9), 0" <6<1, 1-H<O.

Remark 7.2. For equal values of parameters (@, =/f3,) the rational cubic function (3)
reduces to standard cubic Hermite. Thus the optimal error coefficient ¢, for cubic
Hermite can be obtained by substituting ¢, = 8, in Theorem 5.1.

(6= 86° (1-9)’

-, 0<0<
3(3-20)

3

NF
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80’ (1-0)
3(1+26)"

IN
S
IN
—

,(0)

D=

For standard cubic Hermite ¢, = 4- .

8. Conclusion

In this study a two parameter family of C' rational cubic spline function is developed.
The parameters have a direct geometric interpretation. The effect of parameters on the
graphical display of data is demonstrated in Figures 1-4. Constraints are developed on
one of the parameters to preserve the positive, monotone, convex and constrained data.
The other parameter can assume any positive real value to visualize the shape preserving

curve data. The order of approximation is investigated and is O(hf) .

The data visualization schemes developed in this paper have constraints on one of the
parameters to visualize for shape preserving curve data resulting less computational cost
than the already developed schemes (see Hussain and Hussain (2007), Hussain and
Sarfraz (2008), (2009), Sarfraz, Butt and Hussain (2001), Sarfraz (2003)), where more
than one parameters were constrained to preserve the shape of data resulting increase in
computational cost.

Unlike (Schmidt and Hess (1988)), the schemes developed in this paper are applicable to
both data and data with derivatives. In (Lamberti and Manni (2001)), the step length was
used as parameter for data visualization while the schemes developed in this paper do not
constraint step length.
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