
Pak.j.stat.oper.res.  Vol.X  No.4 2014  pp361-368 

Generalized Poisson-Lindely Distribution in  

Promotion Time Cure Model 

Ahmad Reza Baghestani 
Affiliation Department of Biostatistics 

Shahid Beheshti University of Medical Sciences, Tehran, Iran 

Country Iran, Islamic Republic of 

baghestani.ar@gmail.com 
 

Mitra Rahimzadeh 
Affiliation Alborz University of Medical Sciences, Alborz, Iran 

Country Iran, Islamic Republic of 

rahimi_1351@yahoo.com 
 

Mohamad Amin Pourhoseingholi 
Affiliation Department of Biostatistics 

Shahid Beheshti University of Medical Sciences, Tehran, Iran 

Country Iran, Islamic Republic of 

amin_phg@yahoo.com 

Abstract 

Long-term survival analysis has been improved in the last decade and most of the models concentrate on 

the promotion time cure model that proposed by Chen (1999). These models are based on the distribution 

of latent variable N, number of initiated node cells. In this paper we proposed a Generalized Poisson-

Lindely distribution that is another option instead of Negative Binomial distribution when there is 

overdispersion. The results indicated a better fitness compared to others, because of its more flexibility. 

Parameter estimation has been done by Bayesian approach, in a real data set and a simulation study has 

shown the advantages of proposed model. 

Keywords:   Survival analysis, Long-term survival models, Promotion time cure model, 

Generalized Poisson-Lindely, Bayesian approach. 

1. Introduction 

For analyzing count data with over dispersion, it’s common to use Negative Binomial  

(NB) distribution instead of Poisson (P) distribution. It is straightforward that, when the 

parameter of the Poisson distribution has Gamma distribution, Negative Binomial 

distribution is obtained. Another choice for Gamma distribution is Lindely or Generalized 

Lindely Distribution. So the result is called Poisson Lindely (PL) or Generalized Poisson 

Lindely (GPL) Distribution. 

 

In this paper we used the GPL in the long-term survival analysis. In the Long-term 

survival analysis two broad classes of Models are used. The first one which has been 

introduced by Boag (1949) and Brekson and Gage (1952), is called mixture model and 

the second one has been introduced by Yakovlev and Tsodikov (1996) and Chen et al. 

(1999) is called non-mixture cure model or promotion time cure model in cancer relapse 

setting, assume that lymph node cells act as competing causes to produce the detectable 

tumor cells. Cooner et al., (2007) generalized this approach to a flexible class of cure 
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models under different latent activation schemes. Several authors considered different 

distribution for the number of competing cause such as Poisson, Geometric, Negative 

Binomial, Conway-Maxwell Poisson or generalized power series distribution (see e.g. 

Chen et al., 1999; Cooner et al., 2007; Cancho et al. 2011; Rodrigues et al. 2009; Borgers 

et al. 2012). 

 

In this paper, Generalized Poisson-Lindely Distribution was proposed for the number of 

lymph node cells in the promotion time cure model for obtain a more flexible model to fit 

a published data set. 

 

A Bayesian framework was assumed for parameter estimation since the posterior 

distributions do not have a close form and because of complex structure of the model, the 

Markov chain Monte Carlo (MCMC) methods were employed for the purpose. In other to 

compare the models, the deviance information criteria (DIC) were applied, as a result of 

which the smallest value has shown the better fitness. 

 

The rest of this paper is organized as follows. In the next section we introduced 

Generalized Pisson-Lindely distribution. In third section GPL distribution was proposed 

in promotion time cure model. Statistical modeling and parameter estimation were 

discussed in Section 4. Section 5 was devoted to the application of the model in 

cutaneous melanoma data set and simulation study. Results were discussed and 

concluded in final Section. 

2. Generalized Poisson Lindely Distribution: 

The Generalized Lindely distribution has been introduced by Zakerzadeh and Dolati 

(2010) with the probability density function; 
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They mentioned that this distribution can be replaced instead of the Gamma and Weibull 

distribution for analyzing lifetime or skewed data. 

 

Suppose X|  P( ) &     (   )  Then      (   ) with the density function is given 

by; 
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While   is the scale and   the shape parameter. It is obvious that if    , this 

distribution reduce to the Lindely Poisson distribution that have been shown by Ghitany 

et al., (2008) which in many ways, is a better distribution to model count data. Ghitany 

and Al-Mutari have done a complete comparison between Negative Binomial and 

Poisson Lindely distribution. For more detail see (12).  

 

To comparison with the NB distribution proposed by Cancho et al., (2011) and well 

known P distribution, please refer to table 1 for their properties. 
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Table 1:   Mean, Variance and Over-dispersion of P, NB and GPL distribution 

Distribution Mean Variance overdispersion 

Poisson     1 

Negative-Binomial              

Generalized  

Poisson-Lindely 

 (   )   

 (   )
 
 (   )         

  (   ) 
   

 (   )      

  (   )   (   )
 

 

So the GPL (   ) is over-dispersed for all values of   and   and equal-dispersed  

(    ) if 
 (   )      

  (   )   (   )
=0 and the limitation of it when the     is 

 

   
 so this 

distribution is equal-dispersed for large enough amount of   . Negative Binomial is over-

dispersed for all value of   and   and equal-dispersed if      

3. Promotion time cure Model with Generalized Poisson-Lindely Distribution: 

In the promotion time cure rate model has been introduced by Cooner (2007), in the first 

activation scheme, If N is the number of competing causes (lymph nodes that remain 

actives after treatment),         .,   are  time for the jth competing causes to produce the 

detectable tumor cells and the observable time to event is defined as  

     *          +   with  (   |   )    also N is independent of 

        .,  ,  the survival function for population can be obtained by; 
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While (.)NG  is the Probability Generating Function of the N, so the survival function for 

population is given by; 
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And the density function is given by; 
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Where S(t) is the survival function of promotion time of N lymph nodes that can be any 

of the common survival function like Weibull, Piece Wise ,…. In this model the cure 

fraction should be  (   )  (
 

   
)
   

(
   

   
), where       (   ) so the relation 

between the covariates and the cure rate like the Poisson model is direct. For example 

with increased in the coefficient covariate the cure rate is increasing. 
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4. Statistical method 

4.1  Likelihood function 

Suppose that there are n subjects and let Ni be the number of lymph nodes representing 

the number of competing causes that can produce a detectable tumor cells for the ith 

subject. Let Tj and Cj denote, respectively, the observable lifetime and the censored time 

for the ith subject, such that       *     + and    is an indicator function that      if 

      and      if      . So for the ith individual, our observed data Dobs = {Ti, δi ,Xi } 

where Xi is a matrix containing covariates. 

 

We assumed that the Ni , i= 1,2,…,n, are independent generalized Poisson Lindely 

variables with probability function given by (2), with          and given Ni=ni the 

promotion times          .,   are independent with Weibull distribution described by (7). 

The corresponding Likelihood function under right censor is given by; 
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Where the survival function of the Weibull distribution is as the following; 

  ( )     (     )                   (7) 

4.2  Parameter Estimation: 

For parameter estimation we employed the Bayesian approach using the MCMC 

methods. We take non-informative prior in order to the likelihood function dominate the 

posterior distribution. Without lost generality, we supposed that the prior distributions are 

independent. 

 

For   we consider  ( )    a uniform improper prior, for   has considered Normal 

distribution which    (    ) and for   and   have considered Gamma distribution 

which    (     ) and    (     ). Combining these prior distribution with the 

likelihood function of the posterior distribution of (       ) obtains to be; 

 (       )   (         |    )   ( ) ( ) ( ) ( )     (8) 

 

Because of analytically intractable of the joint posterior density in equation (8), we 

applied the Markov Chain Monte Carlo (MCMC) simulations, carried out with 

Metropolis Hastings algorithm. [6] 

 

For comparison, we considered the numbers of lymph nodes have Negative Binomial and 

Poisson distribution that are discussed by Cancho et al., (2011) and Chen et al. (1999). 
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Bayesian estimates were calculated for each parameter using the samples drawn from 

conditional posterior distributions, which usually derived from the marginal distributions 

obtained from the joint distribution of parameters given the observations. In this model, 

posterior joint distribution of the parameters takes a complicated form and it is too 

difficult to derive the posterior marginal distribution of each parameter. Hence, a Markov 

chains are good tools to approximate the distribution of interest. Sampling from such a 

Markov chain after an adequate burn-in period yields good approximations of model 

parameters. In this study, the Metropolis algorithm and Gibbs sampling method are 

implemented by a specific Winbugs (1.4) program [14]. 

4.3  Model Comparison Criteria: 

In order to compare these models, the DIC was computed for each model. DIC, which 

was proposed by Spiegelhalter et al. [15], is one of the best criterions for the comparison 

of Bayesian models [25]. Let θ be the vector of model parameters DIC defined by the 

expression DIC =D(θ)+pD =2D(θ)+pD, where D(θ) is the deviance of the model which 

evaluated at the posterior mean estimate .θ and D(θ) is the posterior mean of the deviance 

which is derived from the average of the logarithm of likelihood after the burn-in period 

and denote the goodness of fitness. Where )()(  DDPD   difference between the 

posterior mean of the deviance and the deviance of the posterior mean of the vector of 

parameters of interest, which represents the number of parameters effectiveness in the 

model, so it is an indicator of model complexity. Based on this measure, the model with a 

smallest DIC value is known to be the best one.  

5. Application 

5.1  Cutaneous Melanoma 

We used the cutaneous melanoma data set that is available in the homepage of Ibrahim 

book (2001)[10]. This data set contains 427 patients for the evaluation of postoperative 

treatment with a high dose of interferon alfa-2beta in order to prevent recurrence in the 

period 1991 until 1998. 10 subjects were excluded because tumor thickness data were 

missing. The observed time (T) ranges from 0.15 to 7.01 years (3.18     ). In this data 

set 55.6 percent of observation was censored. The most important covariate that is 

important and significant in several models was nodule category (1: n=82; 2: n=87; 3: 

n=137; 4: n=111). We considered this covariate as a categorical variable and defined 3 

dummy variables to handle this covariate.  
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Table 2:   Posteriors Summaries of the P,NB and GPL models  

Model parameter Mean SD 2.5 Percentile 97.5 Percentile 

 

 

Poisson 

  -1.62 0.132 -1.892 -1.369 

  1.71 0.112 1.502 1.93 

   0.26 0.140 -0.021 0.532 

   -1.11 0.213 -1.525 -0.715  

   -0.83 0.188 -1.202 -0.452 

   -0.55 0.205 -0.962 -0.141  

 

 

Negative 

Binomial 

  -2.45 0.427 -3.392 -1.73 

  2.03 0.202 1.668 2.452 

   1.52 0.600 0.463 2.807 

   -1.85 0.434 -2.764 -1.087 

   -1.30 0.358 -2.036 -0.628  

   -0.79 0.358 -1.495 -0.089 

  2.02 0.910 0.445 3.942 

Generalized 

Poisson-

Lindely 

  -2.14 0.274 -2.668 -1.657 

  1.89 0.144 1.620 2.181 

   -0.77 0.656 -1.764 0.711 

   1.23 0.230 0.777 1.688  

   0.90 0.209 0.491 1.318 

   0.59 0.228 0.144 1.034 

  0. 7 0.762 0.015 2.843 

 

For parameter estimation we proposed for scale and shape parameters of promotion time 

a normal prior with               and gamma prior with          . For shape 

parameter of the Generalized Poisson-Lindely, gamma prior with        . 

 

The self write codes were written in WinBugs. The 50000 iterations were run and a 

sample was recorded every 10 iteration to reduction of autocorrelation within chain after 

10,000 burn-ins. The results of this analysis of 3 models (Poisson, Negative Binomial and 

Generalized Lindely-Poisson distribution) have been shown in table 2. 
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The credible intervals for the          does not include zero, so there is evidence that the 

cure rate is different in different categorical. To Compare these model we used the DIC 

criteria. According to this criterion, the best model should have fewer amounts. These 

criteria for the P, NB and GPL are 1036.9, 1029.9, and 1026.6; therefore the GPL is the 

best model. The percent of cure rate based on the categorical nodule parameter of these 

models have shown in table 3. 

Table 3:   Cure rate estimation based on the P,NB and GPL 

Cure rate P0 P1 P2 P3 

Poisson 27.3 47.3 56.8 65.2 

Negative Binomial 31.6 44.2 53.7 64.1 

Generalized Poisson-Lindely 23.8 40.5 50.3 60.4 

 

The figure 1 has showed the K-M estimates of the survival function and the Bayesian 

estimation of the survival function based on the different models. The best fitness of the 

GPL model has been emphasized. 

5.2  Simulation 

To assess the performance of our new model, we conducted a simulation study and 

generated a data set that was subsequently analyzed by fitting the model. We employed 

these steps for simulation as the following: 

 

Step1, Generate a dummy variable from the Bernoulli distribution with p=0.5.  

 

For                   we have       (   )  when x=0 and      (      )  

when x=1 so that the cure rate in each group are 23.1 and 63.4 if      . 

 

Step2, generate data from the GPL with parameters       obtain from step1. 

 

Step3, if N=0 so T=  otherwise for N=n generate Z1,Z2,…,Zn from the Weibull 

distribution with parameters (-2,2) and take T=min{ Z1,Z2,…,Zn }. 
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Figure 1 
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We generated 500 samples with 50 times repetitions and estimated the parameters. The 

simulation program has been written in R Package and then recorded them to Winbugs in 

order to obtain the parameters estimation. In Table 4, the posterior mean and standard 

deviation averaged was shown for each regression parameter. We can see that the 

posterior means of the parameters are quite close to the true values, indicating that the 

MCMC chains converged properly. 

Table 4: Mean and Square root of the mean square error of the parameters 

estimation in the GPL with n=500 

Parameter Mean SRMSE 

  -2.09 0.137 

  2.03 0.066 

   -0.57 0.101 

   0.97 0.071 

  2.02 0.380 
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6. Discussion: 

In this paper we introduced another option instead of Negative Binomial distribution to 

overcome over-dispersion problem in promotion time cure model. This distribution is 

called generalized Lindely-Poisson distribution that introduce by Mahmoudi and 

Zakerzadeh (2010). Not only the variance of this distribution related to the shape 

parameter, but also the mean of its. This cause more flexible model to analyze complex 

data set. 

 

This data set was analyzed by Cancho et al. (2011, 2012) which used the Negative 

Binomial and Conway-Maxwell poisson distribution. They mentioned that when using 

the nodule covariate like a categorical covariate, the DIC is increasing a little. Due to this 

fact that cure model is providing the cure rate, in this study we considered the covariates 

as the categorical variables to aim this purpose.  

We proposed a new way to simulate cure rate data, that was different from the way of 

Cancho et. al (2011). In this method we used the latent mechanism in which, the initial 

model has produced from it. 

As mentioned before, Generalized Lindely-Poisson reduces to the Lindely-Poisson when 

the    , since in table 1 the estimate of   isn’t different from one 1, but when we used 

the Poisson-Lindely distribution, the DIC increased to 1032.3, so that we take the GPL to 

interpret this data. 

Mahmoudi and Zakerzadeh (2010) have mentioned that the Generalized-Lindely 

distribution is a two component mixture gamma distribution is given by;  
 

   
  (   )  

 

   
  (     ) 

Therefore it’s not so amazing that the result of the NB and GPL is not so different.  
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