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Abstract
Random intercept model and random intercept & random slope model carrying two-levels of hierarchy in
the population are presented and compared with the traditional regression approach. The impact of
students’ satisfaction on their grade point average (GPA) was explored with and without controlling
teachers influence. The variation at level-1 can be controlled by introducing the higher levels of hierarchy
in the model. The fanny movement of the fitted lines proves variation of student grades around teachers.

Keywords: Random Intercept, Random Slope, Multilevel Models, Iterative Generalized
Least Square.

1. Introduction
The contextual or group effects are common in social, educational and health sciences,
for example, drug users use drugs mostly due to social imbalance in their lives, means
factors at community or society level are influencing them to take drugs. The depression
is greatly developed by social and environmental stressors. Early childhood development
is strongly affected by many environmental conditions (nature of diet, impurity in the
environment, care given by mother, amount of stimulation in the environment etc). The
likelihood of teenagers in risky behavior is associated with frequently accompanying the
adults company. On many occasions, people avoid divorce in our society due to social or
religious constraints.

The common phenomena in all the examples stated above is the influence of group or
upper level characteristics on the individual or lower level traits. So there exist a natural
hierarchy in all the said problems (multilevel problems) and for the proper exploration,
specialized analytical tools are required. Multilevel analytical tools provide the proper
estimation of such type of problems.

Multilevel Regression Models are also known as “Variance components Models” (Aitkin
and Longford, 1986), “Hierarchical linear Models” (Raudenbaush and Bryk 1986, 1992,
2002), and “Random Coefficient Models” (de Leeuw and Kreft 1986, Longford 1993).
Over the last few decades, the development of multilevel regression models (Goldstein
1995, 2003, Bryk&Raudenbush 1992, Longford 1993, Snijders&Bosker 1999) and their
applications on quantitative and qualitative research remain in interest for the researchers
(Smith 2011, Gelman and Jennifer 2007, Skrondal and Hesketh 2004, Reise and Duan,
2003). Multilevel regression models are used due to the natural hierarchy of the
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problematic data set. As we study and collect the data at different natural stages of the
population, we should use techniques, methods, tools that indulge the variation at each
stage of the hierarchy i.e., use multilevel techniques.

A substantial advancement has been made both in methodological and applied divisions
of the multilevel models due to its wide range of applicability in every field of science.
Earlier development of methodology of multilevel model is based on Junior School
Project (JSP) data (Goldstein, 1986, 1989, 1995, 1997, Longford, 1987, 1993 Mortimore
et al., 1988, Woodhouse, 1995). Webster et al. (1996) identify school and teacher effects
on student’s performance by using hierarchical linear models. Residential neighborhood
has an effect on education (Benabou, 1993, Durlauf, 1996, Fernandez and Rogerson,
1997, Akerlof, 1997, Anselin, 2002). High school tracking characteristics such as
selectivity, electivity, inclusiveness and scope on students have an effect on student
performance (Gamoran, 1992). Extensive literature is available to study the application of
multilevel models in education. Interested reader may see, Aitkin and Longford (1986),
Nuttall et al. (1989), Willms (1992), Entwisle and Marton 1994), Gray et al. (1995),
Goldstein and Spiegelhalter (1996), Roscigno (1998), Fielding (1999, 2004), Fraine et al.
(2007, 2005). In this study, random intercept and random intercept & random slope two-
level models are presented and compared with the traditional regression approach. The
impact of students’ satisfaction on their grade point average (GPA) was explored with
and without controlling teachers influence.

The basic simple linear regression model describing the relation of response variable y
and the explanatory variable x (both measured on level 1 of hierarchy) is defined as

0 1 (1.1)y x    

where, 0 represents intercept and 1 is the slope of the line. Also the random term  is
assumed to follow a normal distribution with mean 0 and constant variance 2 . If the
same variables y and x are measured for k groups and for each group regression line is
fitted then we have k regression lines. Figure 1 is a display of such regression lines.

Figure 1. Regression Lines for k groups.
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The fanny movement of the fitted lines suggests a variation of level-1 units across level-2
units. This means the characteristics measured at level-1 of hierarchy differ from level-2
unit to unit and if our attention is to consider the variation of all the variables measured at
level 2 in a broader spectrum (population) then we need to build a single model
accounting both level variables.

2. Random Intercept and Random Slope Model.

Let ijy be the thij observation of a response variable y measured at level 1 and the

corresponding explanatory variable x observation ijx ( j refers to level 2 unit and i
represents level 1 unit), then the basic simple linear regression model describing a simple
linear relation between the response variable y and the explanatory variable x is,

0 1 1, 2,..., 1, 2,..., (2.1)ij j j ij ijy x i n j k      

by fitting such k regression models we estimate 2 1k  parameters, namely
2

0 1( , ) 1,2,..., &j j ej k   . Let 0 j and 1 j are the random variables as their magnitude
varies in k linear regression lines and assume that

0 0 0

1 1 1

(2.2)

(2.3)
j j

j j

u
u

 

 

 

 

where, 0 ju and 1 ju are the unexplained parts of 0 1( , )j j  with parameters
2 2 2

0 1 0 0 1 1 0 1 01( ) ( ) 0,var( ) ,var( ) , cov( , )j j j u j u j j uE u E u u u and u u       .

The terms 0 1and  are the average intercept and average slope of the k regression lines
respectively and the random variables 0 1&j ju u referred to as residuals are the random

departure of level-2 units from 0 1and  respectively. In addition, 2
0 0(0, )j uu N  and

2
1 1(0, )j uu N  . Also the residual term ij introduced at level-1 represents a random

variation within level-1 units.

By considering (2.2) and (2.3), model (2.1) can be written as

0 0 1 1

0 1 0 1 (2.4)

ij j ij j ij ij

ij ij j j ij ij

Fixed Part RandomPart

y u x u x
or
y x u u x

  

  

    

    
 

The presence of two residuals in the model separates it from the simple linear regression
model (1) and for the estimation of the model we need to estimate two fixed parameters

0 1and  , and four random parameters 2 2 2
0 1 01 0, , ,u u u eand    where 2

0 var( )e ij  . The
model (2.4) can also be described in matrices forms as:

(2.5) Y Xτ R
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where

1 111 1 12 2

2 221 1 22 2

1 1 2 2

1 1 2 2

(2.7)

j j k k

j j k k

ij ji i ik k

nj jn n nk k

e u e ue u e u
e u e ue u e u

e ue u e u e u

e ue u e u e u

  
    
 
     
 
 

    

R

 
 

   
 

   
 

1 111 12 1 2

2 221 22 1 2

1 2 1 2

1 2 1 2

(2.8)

j jk k

j jk k

ij ji i ik k

nj jn n nk k

e ue ue e u u
e ue ue e u u

e ue e e uu u

e ue e e uu u

   
   
   
   
    
   
   
   
      

R

   
   

       
   

       
   

1 (2.9)  2R R R

Where,
(1) (2)

1 & (2.10)ij ij j je e e u   2R R

also, the matrices of residuals have the following assumptions:

    (2.11)

( ) , ( ) (2.12)

( ) 0, (2.13)

T T

T

E E

E E

E

 

 

  

1 2

1 1 2(1) 2 2 2(2)

1 2 2 2(1) 2(2)

R R 0

R R V R R V

R R V V V

It is also assumed that the residuals at level-1 are independent to each other, so 2(1)V is a

diagonal with thij element. Thus,
2 2

1 1 0var( ) , (2.14)
ij

T
ij e ee       2(1) j jV X X

Similarly by assuming independence of residuals at level- 2, we gain 2(2)V block diagonal

with thj elements
2
0 01

2
01 1

var( ) , (2.15)T u u
j

u u

u
 
 
 

    
 

2(2) j 2 j 2V X Ω X Ω

11 11

21 21 0

1

1
1

, , (2.6)

1
k kn k n k

y x
y x

y x




   
   

                
      

Y X τ
  
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The thj block of 2V is therefore given by,

2 2
0 0 2

2(2)2 2
0 0

0
(2.16)

0 ij

u e
i e j

u e

V
 


 

 
       

(n) (n)
2j

(n-1) (n-1)

J I
V V

J I

where, (n)I is an ( )n n identity matrix and (n)J is a ( )n n matrix of ones. Furthermore,
 is a direct sum operator.

The Generalized Least Square (GLS) estimates of τ can be obtained by using the
relation:

  1-1 -1ˆ (2.17)T T
τ X V X X V Y

with variance-covariance matrix  -1-1TX V X . For known τ one can estimate the

residuals as   1 2Y Y - Xτ E + E with covariance matrix * TY = YY  and *( )E Y V .

This is an iterative procedure by starting some reasonable estimates of fixed parameters
and setting 2

0 0u  . The estimates obtained from (2.17) are known as iterative

generalized least square estimates as the procedure continues until the estimates converge
(Goldstein, 1995).

Model (1.1) and (2.1) are estimated by using a real educational data collected by the
researcher for PhD work. The data was collected from 40000 university students nested
within 1000 university teachers. Students were considered as level-1 units and teachers as
level-2. The response variable y was recorded as students grade point average score
(GPA) and the explanatory variable x was student satisfaction with the university.
Suppose we want to investigate whether the student grades vary from teacher to teacher
and the impact of student satisfaction on their grades. We treat student satisfaction
variable as a random variable across the teachers i.e., the coefficient of student
satisfaction will vary across the teachers.  We now assume a model which includes the
possibility that the teachers have different slopes. This implies that the coefficient of
explanatory variable will vary from teacher to teacher. Model (2.1) may be re-write by
relating grade point average and student satisfaction (Stu_Sat) as,

0 1

0 0

1 1 1

_ (2.18)

(2.19)

(2.20)

ij j j ij ij

j oj

j j

GPA Stu Sat e
u
u

 

 

 

  

 

 

 
2

0 0
2

1 01 1

2

0, : (2.21)

(0, ) (2.22)

j u
u

j u u

ij e

u
N

u

e N


 



  
    

   
uΩ


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Now both the intercept and the slope vary randomly across teachers. Hence both the
parameters 0 j and 1 j have a subscript j . Equation (2.19) describe that the intercept for
the jth teacher ( 0 j ) is given by 0 , the average intercept across all the teachers, plus a

random departure 0 ju . In the same way, equation (2.20) states that the slope for the jth
teacher ( 1 j ) is given by 1 , the average intercept across all the teachers, plus a random

departure 1 ju . The parameters 0 and 1 are the fixed intercept and slope of (2.18) and
jointly give the average line across all students nested in all teachers. The term 0 ju and

1 ju represent the random departures from 0 and 1 , or residuals at the teachers level i.e.,

they allow the jth teacher summary line to differ from the average line in both its slope
and its intercept. The term 0 ju and 1 ju follows a bivariate Normal distribution with mean
vector 0 and covariance matrix uΩ . Here the covariance matrix uΩ is a 2 2 matrix
having 2 2

0 1,u u  and 01u its elements. The term 2
0u represents the variation in the

intercepts across the teachers summary line, 2
1u represent the variation in the slopes

across the teachers summary line and the term 01u shows the covariance between the

teachers intercepts and slopes. Finally, student’s grades depart from their teachers
summary line by an amount ije , which is assumed to be normally distributed with mean 0

and variance 2
e . Least square estimates of parameters under model 1.1 are available in

table 1 and the iterative generalized least square estimates under model (2.18) are
available in table 2.

Table 1: Estimates of Parameters of Simple Linear Regression Model

Parameters Estimates S.E Statistic P-Value

0 : Intercept 2.054 0.003 684.667 0.000***

1 : Student Satisfaction 0.024 0.00013 184.615 0.000***

2
e : Variation at Student Level 0.017 0.00023 73.913 0.000***

-2*loglikelihood = -48566.671
* p<0.05 ** p<0.01 *** p<0.001
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Table 2: Estimates of Parameters of Random Intercept and Random Slope Model

Parameters Estimates S.E Statistic P-Value

0 : Average Intercept 2.091 0.007 298.714 0.000***

1 : Student Satisfaction 0.023 0.00031 74.194 0.000***

2
0u : Intercept Variation at Teachers Level 0.030 0.002 15.000 0.000***

2
1u : Slope Variation at Teachers Level 0.00014 0.000025 5.600 0.000***

01u : Variation b/w Intercept and Slope -.001 0.00038 -2.632 0.00432**

2
e : Variation at Student Level 0.015 0.00029 51.724 0.000***

-2*loglikelihood = -52291.468
* p<0.05 ** p<0.01 *** p<0.001

The estimated coefficient of 1 is close to the estimate obtained from the model with a
simple slope. However, the individual teacher slopes vary about this mean with a
estimated variance 0.00014( . 0.000025)se . The intercepts of the individual teacher
lines also differ. Their mean is 2.091( . 0.007)s e and their variance is
0.030( . 0.002)se . In addition, there is a negative covariance between intercepts and
slopes estimated as .001( . 0.00038)s e  suggesting that teachers with lower intercepts
tend to have steeper slopes. This can also be confirmed with the correlation between
intercepts and slopes across teachers estimated as 0.488 . This negative correlation will
lead to a fanning pattern of teachers lines. The variance for level-1 residuals ( ije ) is
0.015 with standard error 0.00029 . The goodness of fit of a model may be explored
through graphs of residuals and predicted values. The residuals estimated at any level can
be used to test the assumption of normality i.e., at each level of hierarchy, it is assumed
that the residuals should follow a normal distribution and this assumption may be
checked by using a Normal probability plot, in which the ranked residuals are plotted
against corresponding points on a Normal distribution curve and a straight line of points
on a Normal plot indicate normality in residuals.

Graph 2(a) is a normal probability plot of residuals at level-1 and graph 2(c) is a normal
probability plot of residuals at level-2. Linear pattern of points in these graphs proves the
normality assumption. Graph 2(b) is a caterpillar plot showing the residuals of 1000
level-2 units (teachers) with the 95% confidence intervals around them. Clearly, there is
no considerable overlap of intervals indicating teachers have significant different means
of student’s grades. In last, graph 2(d) is a normal probability plot of standardized
residuals under model 1.1 depicting normality.
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Graph 2(a). Normal Probability Plot
of Residuals at Level-1

Graph 2(b). Caterpillar  Plot of Residuals at
Level-2

Graph 2(c). Normal Probability Plots of
Residuals at Level-2

Graph 2(d). Normal Probability Plot
of Residuals Under Model 1.1

3. Random Intercept Model

Suppose we wish to examine the relationship between grade point average (response
variable) and the teachers. The population is considered to have a two-level hierarchical
structure with student’s grade point average (GPA) " "ijy at level-1 and teachers at level-

2. The random effect model with no explanatory variable can be described as,
2

0 ~ (0, ) (3.1)ij j ij ij ey e e N  

2
0 0 0 0~ (0, ) (3.2)j oj j uu u N   

from (3.2), (3.1) becomes,

0 (3.3)ij ij ojy e u  

Where ije and 0 ju are level-1 and level-2 residuals respectively. In this model 0 ju , the

teacher’s effect is assumed to be random variable having a normal distribution with
variance 2

0u .

Model (3.1) is also known as variance components model because it partitions the
residual variance into two components, level-2 variance (Between groups variance 2

0u )
and level-1 variance (Within a group variance 2

e ). The iterative generalized least square

estimates of the parameters of model are given in table 3.
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Table 3: Estimated values of parameters of Random Intercept Model

Parameters Estimates S.E Statistic P-Value
0 j 3.049 0.006 508.167 0.000***
2
0u 0.030 0.001 30.0 0.000***
2
e 0.043 0.00023 186.96 0.000***

-2*loglikelihood = -9282.89
* p<0.05 ** p<0.01 *** p<0.001

The overall mean of GPA is estimated as 0̂ 3.049j  . The means for the different
teachers are distributed about their overall mean with an estimated variance of 0.030. The
variance among students within teachers is estimated as 2 0.043e  and among teachers

variance is estimated as 2
0 0.030u  . In order to test 2

0 0: 0uH   (analogues to testing

0 1 2 3 1000: ... 0H        in the fixed effect model), this variance appears significantly
different from zero ( 30.0, 0.001)z p  .

Graph 3(a) & 3(c) are normal probability plots of residuals at level-1 and level-2
respectively. Both graphs showed a fairly linear pattern of points indicating no worry
about violation of normality assumption. In addition, points on graph 3(a) are linear as
our response variable is normally distributed. Graph 3(c) is a caterpillar plot showing the
residuals of 1000 level-2 units (teachers) with the 95% confidence intervals around them.
Clearly, there is no considerable overlap of intervals indicating teachers have significant
different means of student’s grades. These residuals also represent the departure of level-
2 units (teachers) from the overall average predicted by the fixed parameter, this means
that these are the teachers that differ significantly from the average at 5% level.

Graph 3(a). Normal Probability Plot of
Residuals at Level-1

Graph 3(b). Caterpillar Plot of Residuals
at Level-2

Graph 3(c). Normal Probability Plots
of Residuals at Level-2

Discussion
The value of average intercept has increased from the fixed intercept while the value of
random slope slightly decline with the value of fixed slope. The variation at level-1 also
reduced due to introducing the level-2 variation suggesting that the individual level
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variation may be controlled by introducing higher levels of hierarchy in the model. The
reduction in the students’ grades variation under two-level model from the one-level
model confirms the teachers influence over students grades.

The goodness of fit of model (3.1) may be tested through a compact test named
likelihood ratio test. In a likelihood ratio test of 2

0 0: 0uH   , we compare the model (3.1)

with a model where 2
0u is constrained to equal to zero, i.e., the single level model with

only an intercept term 0( )y e  . The value of the likelihood ratio statistic is the
difference between the likelihood ratio of model (3.1) and the likelihood of the single
level model 0( )y e  which is compared to a chi-squared distribution with 1 degree of
freedom i.e.,

2

8705.819 ( 9282.89)
17988.709

–     2likelihood ratio of single level model likelihood ratio of level model 
  




We conclude that there is a significant variation among teachers
2( 17988.709, 0.001)p   . The variance partition coefficient

2
0

2 2
0

0.030 0.411
0.030 0.043

u

u e

VPC 
 
  

 
is showing 41% of the total variance in students grade point average is due to the
differences among the teachers.

Similarly, model (1.1) is compared with a random slope model (2.1) and noticed that the
value of 2* log likelihood has decreased from 48566.671 52291.468to  , a
difference of 3724.797 . Since the model (2.1) involves two additional parameters, the
variance of slope residuals 2

1u , and the covariance between intercepts and slopes 01u , so
this difference follows a 2 distribution  with 2 .d f . Under the null hypothesis that
the extra parameters have population values of zero the change is highly significant,
confirming the better fit of the model. In addition, about 65%( 0.653)VPC  variation in
students’ grades is due to the variation among teachers. Finally, it is concluded that a
model may be predicted more efficiently by considering higher levels of hierarchy in a
hierarchical population.
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