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Abstract 

In this article, we looked at power of various versions of Box and Pierce statistic and Cramer von Mises 

test. An extensive simulation study has been conducted to compare the power of these tests. Algorithms 

have been provided for the power calculations and comparison has also been made between the semi 

parametric bootstrap methods used for time series. Results show that Box-Pierce statistic and its various 

versions have good power against linear time series models but poor power against non linear models while 

situation reverses for Cramer von Mises test. 
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1.   Introduction 

Time series model building is a science and art as well. It is generally considered a three 

stage iterative procedure consisting of identification, estimation and diagnostic checking 

(Box and Jenkins, 2008). Diagnostic checking is an important stage and residuals 

obtained by fitting the identified model play an important role in model criticism. Box 

and Pierce (1970) test and its several other versions are perhaps the most commonly used 

types of portmanteau test (Mainassara et al., 2009). These tests are capable to perform an 

overall test for an entire set of, say, the first m autocorrelations assuming that the null 

model, i.e. the model defined under null hypothesis, is correct. Moreover, the choice of m 

is very important in the appropriateness of asymptotic distribution and power of these 

tests. 

 

In this paper, we numerically study the power of some of the popular time series 

goodness of fit tests. Escanciano (2006) has studied power of various goodness of fit tests 

under the fixed design wild bootstrap. Horowitz et al. (2006) has compared performance 

of Box and Pierce (1970) test with some other tests under double block bootstrapping. 

 

The novelty of our study is that we study the size of the tests under various semi-

parametric bootstrap designs described in Section 3.1. We compare the power of these 

tests with the Cramer von Mises (CvM) (Escanciano, 2007) statistic against various linear 

and non-linear alternative models. To the best of our knowledge, these tests are not 

studied under these setting in the literature. 



Sohail Chand, Shahid Kamal 

Pak.j.stat.oper.res.  Vol.IX  No.2 2013  pp155-170 156 

Our results show that Box-Pierce type tests do well against the linear alternatives but fail 

to perform against the non-linear alternatives, while the situation reverses for the CvM 

statistic due to Escanciano (2007), i.e, the CvM statistic does well against various non 

linear alternatives but much less well against various linear alternatives. Moreover, 

dynamic bootstrap methods show better performance than the fixed design bootstrap in 

our example. We have not found any clear advantage of using wild residuals 

bootstrapping in this scenario. 

 

The remainder of the paper is organized as follows: In the next section a review of the 

literature on available diagnostic tests is given. Section 3 describes the different bootstrap 

methods in time series context. Section 4 gives the estimation procedure and algorithms 

for Monte Carlo simulations for computing power of the tests. Finally, Section 5 presents 

the results of simulations and discussion of the results. 

 

In practice, there are many possible linear and non-linear models for a problem under 

study e.g. autoregressive, moving average, mixed ARMA models, threshold 

autoregressive etc. Box and Jenkins (2008) have described time series model building as 

a three-stage iterative procedure that consists of identification, estimation and validation. 

 

Identification of the model is partly science and partly arts. There are no exact ways of 

identifying the underlying model though there are some tools, for example, the 

autocorrelation and partial autocorrelation plots to identify the general class of underlying 

model, see Box and Jenkins (2008, p.196). Importantly, it should be noted that at the 

identification stage, especially dealing with complex situations, we identify a class of 

models that will later be efficiently fitted and then go through the diagnostic checking 

phase (Box and Jenkins, 2008). 

 

There are rigorous ways to estimate the parameters of autoregressive models such as the 

method of least squares and Yule-Walker estimates. Moving average models can be 

estimated through the innovations method, see e.g. Brockwell and Davis (1991). The 

estimates of moving average models and the mixed models can also be obtained 

graphically or through iterative estimation procedures such as non-linear minimization 

(see e.g. Box and Jenkins, 2008). 

 

Time series models should be able to describe the dependence among the observations, 

see e.g. Li (2004). It is a well-discussed issue that in time series model criticism, the 

residuals obtained from fitting a potential model to the observed time series play a vital 

role and can be used to detect departures from the underlying assumptions, (Box and 

Jenkins, 2008; Li, 2004). 

 

In particular, if the model is a good fit to the observed series then the residuals should 

behave somewhat like a white noise process. So, taking into account the effect of 

estimation, the residuals obtained from a good fit should be approximately uncorrelated. 

While looking at the significance of residual autocorrelations, one approach is to test the 

significance of each individual residual autocorrelation which seems to be quite 

cumbersome. Another approach is to have some portmanteau test capable of testing the 

significance of the first, say m, residual autocorrelations (Box and Jenkins, 2008; Li, 

2004), an approach we now describe. 
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2.   Diagnostic Tests  

The third stage of diagnostic checking process (Box and Jenkins, 2008) provides a 

practitioner an opportunity to test the model before using it for forecasting. This stage not 

only checks the fitted model for inadequacies but can also suggest improvements in the 

fitted model in the next iteration of this model building procedure. In this section we will 

do a literature review of the available diagnostic tests for fitted time series models. 

 

In a time series context, if the fitted model is good then it should be able to explain the 

dependence pattern among successive observations. In other words, all the dependence in 

terms of autocorrelations and partial autocorrelations of the data generating process 

(DGP) should be explained by the fitted model so there should be no significant 

autocorrelation and partial autocorrelation in successive terms of the residuals. 

 

In practice the most popular way for diagnostic checking a time series model is the 

portmanteau test, which tests whether any of a group of the first m autocorrelations 

)ˆ....,,ˆ( 1 mrr  of a time series are significantly different from zero. This type of test was first 

suggested by Box and Pierce (1970), in which they studied the distribution of residual 

autocorrelations in ARIMA processes. Based on the autocorrelations of the residuals 

obtained by fitting an ARMA(p, q) model to yt, they suggested the following portmanteau 

test 

,ˆ
1

2



m

k
km rnQ        (1) 

where kr̂  is the residual autocorrelation at lag k. They suggested that ,~ 2
qpmmQ   for 

moderate values of m and the fitted model is adequate, under the following conditions: 

1.   )( 2/1 nOj  for ,pmj    and  

2.   ),( 2/1 nO
n

m
 

where j  are the weights in the MA( ) representation. 

 

Since Box and Pierce (1970) paper, the portmanteau test has become the vital part of time 

series diagnostic checking. Several modifications and versions of Box and Pierce (1970) 

has been suggested in the literature, see e.g. Ljung and Box (1978), McLeod and Li 

(1983), Monti (1994), Katayama (2008), Katayama (2009). These tests are capable of 

testing the significance of autocorrelation (partial autocorrelation) up to a finite number 

of lags. Chand et al. (2012) has used the portmanteau tests to criticize the fitted models. 

 

In the discussion of Prothero and Wallis (1976), Chatfield has mentioned the poor power 

properties of Qm and has recommended focusing on residual autocorrelations at the first 

few lags and seasonal lags. Similar suggestions are also made by Davies et al. (1977). In 

the same discussion on the Prothero and Wallis paper, Chatfield and Newbold also 

pointed out the poor approximation of the finite-sample distribution of Qm. Prothero and 

Wallis (1976), in their reply to this discussion, suggested the use of the correction factor 

(n + 2) / (n–k) to Qm. However, this correction factor may inflate the variance of the 
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resulting statistic relative to that of the asymptotic 2
qpm   distribution (see e.g. Davies et 

al., 1977, Ansley and Newbold, 1979). 

 

An important point to note is that the statistic Qm has been developed assuming the 

normality of the white noise process. As the results of Anderson and Walker (1964) 

suggest the asymptotic normality of the autocorrelation of a stochastic process is 

independent of the normality of the stochastic process and only depends on the 

assumption of finite variance, so the portmanteau test is expected to be insensitive to the 

normality assumption. 

 

Ljung and Box (1978) suggested the use of the modified statistic 


 


p

k

k
m

kn
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nnQ
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2
* .

ˆ
)2(        (2) 

 

They have shown that the modified portmanteau statistic *
mQ  has a finite sample 

distribution which is much closer to 2
qpm  . Their results also show that *

mQ  is insensitive 

to the normality assumption of the error term, t . As pointed out by many researchers 

e.g. Davies et al. (1977), Ansley and Newbold (1979), the true significance levels of Qm 

tends to be much lower than predicted by the asymptotic theory and though the mean of 
*
mQ is much closer to the asymptotic distribution, this corrected version of the 

portmanteau test has an inflated variance. But Ljung and Box (1978) pointed out that 

approximate expression of variance given by Davies et al. (1977) overestimates the 

variance of *
mQ . 

 

Several modifications have been suggested in Box and Pierce (1970) test and many 

useful versions of portmanteau statistic have been reported in literature, for example, 

Ljung and Box (1978), McLeod and Li (1983), Monti (1994), Pe˜na and Rodr´iguez 

(2002), Chand and Kamal (2006), Katayama (2008), and Katayama (2009).  

 

Frequently in the literature larger values of m have been used in Qm and *
mQ , and the most 

commonly suggested value is m = 20 (see e.g. Davies et al., 1977, Ljung and Box, 1978). 

Ljung (1986) suggests the use of smaller values of m and has shown that for small values 

of m, *
mQ  has an approximate 2

ba distribution, where a and b are constants to be 

determined. 

 

Ljung and Box (1978) also studied the empirical significance levels and empirical powers 

of *
mQ  for various choices of m and showed that the empirical significance levels for an 

AR(1) process are close to the nominal level for small choices of m, for example when  

m = 10 or 20, in all the cases except when the AR parameter is close to the stationarity 

region. This is a very challenging scenario for the 2  approximation. We will look at this 

issue in our future work. Ljung and Box (1978) also showed that approximating 

asymptotic distribution of 2~ vmQ  , where )( mQEv   results in performance of Qm similar 

to that of 2* ~ qpmmQ  . 
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As the partial autocorrelation function is an important tool in determining the order of an 

autoregressive process. Monti (1994) suggested a portmanteau test, following the idea of 

Ljung and Box (1978), given as: 


 
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where k̂  is the residual partial autocorrelation at lag k. She showed that )ˆ(* mQ , 

analogously to *
mQ , has an asymptotic null distribution 2

qpm  and that )ˆ(* mQ  is more 

powerful than *
mQ  especially when the order of the moving average component is 

understated. 

 

As we have discussed earlier, the asymptotic distribution of mQ  and *
mQ is questioned by 

several authors in the literature. Though small values of m solve this problem in some 

situations, it does not work in all cases, for example when the process is nearly stationary, 

see Ljung (1986). In a very recent paper, Katayama (2008) has suggested a bias corrected 

version 

  *
,

***
nmmm BQQ   

where 

  VXXXXDrrVDV ,)(,)ˆ...,,ˆ(ˆ,ˆˆ 1
1

*
,

TTT
mnm rrB Tr diag  )/()2(...,,)1/()2( mnnnnnn   

and X is an (m x (p + q)) matrix partitioned into p and q columns, see McLeod (1978) for 

details. Katayama (2008) showed the importance of this correction term especially for 

small values of m and when the roots of the ARMA(p,q) process lie near the stationarity 

region. 

 

In practice, the optimal choice of m is difficult as the use of the 2
qpm   approximation and 

diagnostic checking require large values of m which results in less power and unstable 

size of test, as noticed by Ljung (1986), Katayama (2008). Katayama (2009) suggested a 

multiple portmanteau test to overcome this problem. His suggested test is based on 

several portmanteau tests for a range of small to medium values of m. He showed using 

some numerical examples that his suggestion leads to a superior test. He also discussed 

the linkage between his suggested multiple test and the test due to Pena and Rodriguez 

(2002). He suggested a method based on some iterative procedure to approximate joint 

distribution of the multiple test as the computation of the distribution is very hard due to 

correlated elements. 

 

For the past few decades with the advent of high-speed computers, the interest of 

researchers have been focused on nonlinear models. It has been pointed out by several 

researchers that the Box-Pierce type tests fail to show good power against nonlinear 

models (see e.g. Escanciano, 2006; Pena and Rodriguez, 2002). McLeod and Li (1983) 

used the sample autocorrelation of the squared residuals to test for linearity against the 

nonlinearity and showed its good power against departures from linearity. 
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Escanciano (2007) proposed diagnostic tests based on the CvM test using the weights 

suggested by Bierens (1982), given by 
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where  


n

t t n
1

22 1/ˆˆ   is the variance of residuals and  

  )...,,,( 21,1 PtttPt yyy  I       (5) 

is the information set at time t – 1 and dimension P. It can be noticed that the distance 
2

,1,1 PsPt   II  increases very fast with P which results in weights being near 0 when P is 

relatively large. We have considered the CvM statistic with this weight scheme in our 

study as it has shown good power properties reported in Escanciano (2006). 

3.   Methodology 

We now consider various versions of the statistics defined in (1), (2), (3) and (4). We 

compare empirical size and power of these tests against various linear and non-linear 

classes of models. Mainly we compare the dynamic and fixed design bootstrap methods 

but we also look at the usefulness of transformed residuals in bootstrap methods. 

3.1 Bootstrap Methods 

For time series data, the dependence structure of the data generating process (DGP) 

makes it difficult to apply the bootstrap methods. In general, there are two main bootstrap 

methods that are used in time series i.e. model-based bootstrap methods and block-

resampling bootstrap methods. Generally, the model-based bootstrap methods are called 

resampling-residuals bootstrap methods. 

 

In block bootstrapping, we divide the sample into overlapping or non-overlapping blocks 

of a certain length. The performance of block bootstrap methods much depends on block 

length. Under the stationarity condition each block should have the same joint probability 

distribution. In our study we consider only the model-based bootstrapping, as model 

based bootstrap methods tend to be more accurate than block bootstrap methods (Lahiri, 

2003) and also as our objective is to compare two model-based bootstrap methods, 

namely dynamic bootstrap and fixed design bootstrap. 

 

Suppose we have a sample time series n
tty 1}{   generated by a DGP defined by 

tPtt fy    ),( ,1I ,       (6) 

where Pt ,1I  is the information set defined earlier in (5) and   is the vector of model 

parameters. Suppose the fitted model is 

  ...,1,),ˆ,(ˆ
,1   PPtfy Ptt I  

where ̂  is the estimate of  . Thus the residuals are 

ttt yy ˆˆ  ,        (7) 

We assume that initial data 0...,, yy Pt  are available. 
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Semi-parametric time series bootstrap methods 

Under the assumption that the DGP given in (6) is the true model for the given sample 

time series, the residuals given in (7) will serve the purpose of an IID sample. The 

following approaches are used in semi-parametric time series bootstrap methods. 
 

Dynamic bootstrap. If the error terms, ,'st  in our DGP are IID, with common variance 

,2  then we can generally make very accurate inferences by using the dynamic bootstrap 

(DB) (MacKinnon, 2006). This method requires the IID assumption of the error term and 

only mild conditions on its distribution. The DB is defined as: 

  *
,1

* ˆ, tPtt fy   
*I  for ,.....,,2,1 nt       (8) 

where )...,,( **
1,1 PttPt yy  *I is the dynamic bootstrap of the information set defined in (5) 

and *
t  is selected at random with replacement from the vector of the residuals 

).ˆ...,,ˆ,ˆ( 21 n  

 

Dynamic wild bootstrap The dynamic wild bootstrap (DWB) is a simple 

modification of the dynamic bootstrap. The only difference is to resample the rescaled 

residuals instead of fitted residuals. These rescaled residuals are usually named as wild 

bootstrap. Various rescaling schemes have been suggested in the literature, see e.g. Liu 

(1988) or Stute et al. (1998). The DWB is defined as: 

  o
tPt

o
t fy   

ˆ,,1
oI  for ,.....,,2,1 nt       (9) 

where )...,,( 1,1
o

Pt
o
tPt yy  oI  is the DWB of the information set defined in (5) and ,.ˆ tt

o
t v 

such that the sequence vt is IID with zero mean, unit variance and finite fourth moment. 

Liu (1988) has suggested the following vt for transforming the IID residuals to wild 

residuals, 
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Stute et al. (1998) has suggested the following as vt sequence, 
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The fixed design wild bootstrap  In fixed design wild bootstrap (FWB), the bootstrap 

sample is generated from the fixed design Pt ,1I . Moreover, the fitted residuals are 

transformed to wild residuals using the suggested transformations (see Liu, 1988 and 

Stute et al., 1998). The FWB is defined as: 

  


  tPtt fy ̂,,1I  for ,.....,,2,1 nt       (10) 

where ttt v.̂   and vt is as defined above. 
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4.   Model Estimation 

In this section, we describe the estimation methods used in our study. In our numerical 

results showed in Section 5. Given an AR(p) model 

1 21 2 p tt t t t p
y y y y     

    L  

we estimate the AR(p) model under various bootstrap designs discussed earlier in Section 

3.1. The ordinary least squares (OLS) estimates (Gonçalves and Kilian, 2004) of 

)...,,( 1 p   are obtained as below: 
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where Pt ,1I  is the information set defined in (5) while *
,1 PtI  and o

Pt ,1I  are the information 

sets for DB and DWB respectively defined in Section 3.1. The o
t

*
t y,y  and 

ty  are defined 

in (8), (9) and (10). 

 

In this paper, we mainly look at the power of the diagnostic tests. We use the bootstrap 

distributions under the semi-parametric bootstrap designs discussed in Section 3.1. We 

also look at empirical power of test against various alternative models. 

4.1  Algorithms 

In this section, we give the algorithms for the Monte Carlo method used to compute the 

empirical size and power of the diagnostic tests defined in Section2. For each Monte 

Carlo run, a sample time series n
t 1} t{y  is simulated under the modelΜ . For the sake of 

convenience, we denote the statistic of interest as T. For the computation of power Μ  is 

the alternative model. We estimate the null model for the simulated sample time series 

and T is calculated from the residuals, .ˆt  

Algorithm 1:   Bootstrap sampling procedure 

Step 1 Generate bootstrap sample *
ty  from resamples of ,ˆt say .ˆ *

t  

Step 2 Fit the null model to the bootstrap sample *
ty and obtain residuals as

,ˆˆ ***
ttt yy   where *ˆ

ty  is the fitted series. 

Step 3 Using the residuals, *ˆt , calculate test-statistic T, say, T
*
. 

Step 4 Step 4 Repeat Step 1-3 for each of the B bootstrap samples. 

 

Algorithm 1 gives the bootstrap procedure used in our numerical study. From this 

algorithm, we obtain the bootstrap approximation of the distribution of the test. We will 

use this algorithm to compute power in the following algorithms of our simulation study 

consisting of N Monte Carlo runs. 
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The power of a test is the probability of rejecting a false null hypothesis. For empirical 

power, as mentioned earlier, the sample is generated under the alternative model. 

Algorithm 2 state the Monte Carlo procedure we use to determine the power of test. 

Algorithm 2:   Computation of empirical power 

Step 1 Calculate 100(1 – )th percentile, say ,*
1 T  of the bootstrap distribution of T

*
 

obtained using Algorithm 1. 

Step 2 Reject null model if *
1 TT  otherwise accept it. 

Step 3 Repeat Step 1-2 for each of the N Monte Carlo runs. 

Step 4 Empirical power, 1– ,̂  is determined as below, 

  
N

TT )(#ˆ1 1  
  

 

In the next section, we look at different examples and compute the power of the 

diagnostic tests. Now we give definitions of some nonlinear models which we will study 

as alternative models in empirical power study of portmanteau tests. 

Exponential Autoregressive model 

An exponential autoregressive model, EXPAR(p), is defined as 

  

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i
ttiit yy
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2
1)]exp([   

For detailed discussion see e.g. Tong (1990, p.108). 

Threshold Autoregressive model 

The threshold autoregressive, TAR(p), model is defined as 
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where r is called the threshold, below r the AR parameters are )1(
i  and above r these are 

)2(
i  (see e.g. Chatfield, 2004, p.200). Threshold models were developed and introduced 

by Tong and Lim (1980) which are basically piecewise linear AR models. For more 

discussion on bilinear models see also Tang and Mohler (1988) and references therein. 

5.   Results and Discussion 

In this section, we look at some numerical examples to compare the empirical power of 

the goodness of fit tests under various semi-parametric bootstrap designs discussed in 

Section 3.1. We present and compare the power against linear and non-linear alternative 

class of models under a linear null model. Empirical power results are obtained using 

Algorithm 2 consisting of 1000 Monte Carlo runs of 200 bootstrap samples. Each 

bootstrap sample is of size n = 100. 
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5.1  Linear Alternatives 

Mixed ARMA models are the most commonly used models in applications. In this 

section we compare the power of the tests against several versions of ARMA(2, 2). In 

this example, we simulate the series for the alternative model, ARMA(2, 2) process, 

given below: 

 ,21.033.077.041.105.1 2121 tttttt kkyyy     

where )1,0(~ Nt . We fit an AR(2) model to this sample and the power results in the 

following table of the percentage of time we rejected the null model. Importantly, note 

that we consider various values of k ranging from 0 to 2. It can be noticed that choice  

k = 0 corresponds to an AR(2) process, so we expect very low power in this case, actually 

as low as the level of significance. On the other hand, as the value of k increases, the MA 

component in an ARMA process increases in absolute value and this should result in a 

higher power, reaching a maximum of 100%, for some value of k. 

 

  k = 0   k = 0   k = 0  

 DB DWB FWB DB DWB FWB DB DWB FWB 

3ex p,MCv  6.1 6.2 5.4 10.7 10.1 10.6 20.0 20.5 20.6 

5ex p,MCv  4.8 4.4 4.7 7.5 7.7 8.5 15.1 15.0 16.7 

7ex p,MCv  4.9 4.9 5.3 10.0 9.9 10.6 11.7 13.0 14.9 

Q5 5.2 5.1 2.0 42.7 43.3 26.4 99.2 99.3 97.8 

Q10 5.6 5.8 2.3 33.1 34.1 21.2 96.1 96.7 93.1 

Q25 5.2 4.9 1.5 29.4 27.9 20.4 90.9 91.7 85.9 

*
5Q  5.3 5.3 2.0 42.0 42.2 25.9 99.1 99.1 97.8 

*
10Q  5.9 6.0 2.4 32.3 32.9 20.7 95.6 96.1 92.5 

*
25Q  5.7 5.0 2.3 28.0 26.9 18.9 88.9 88.1 82.4 

)ˆ(*
5 Q  4.8 5.0 1.2 47.7 47.1 30.2 99.5 99.6 98.4 

)ˆ(*
10 Q  4.6 6.0 2.2 33.6 33.7 21.3 97.9 98.3 95.6 

)ˆ(*
25 Q  4.4 4.7 2.7 26.3 26.2 19.1 91.7 91.1 87.1 

 

Table 1: Power (in %), based on 1000 Monte Carlo runs of 200 bootstrap samples of 

size 100 for AR(2), against ARMA(2,2),   21 77.041.105.1 ttt yyy

.21.033.0 21 ttt kk     
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Table 1 gives the results for empirical power of the goodness-of-fit tests. It can be very 

clearly noticed that CvM has less power while portmanteau tests have better power 

against this linear class of alternatives. Our results confirm the results reported in the 

literature, see e.g Hong and Lee (2003); Escanciano (2006). Though we have provided 

the power results for both of dynamic and fixed design bootstrap methods, we discuss the 

results for dynamic bootstrap method only, as dynamic bootstrapping provides the best 

approximation to the asymptotic distribution especially for the portmanteau tests, see e.g. 

Chand (2013). 

 

We can see from these results as we increase the value of k, in general, the power for 

each of the goodness-of-fit tests increases but the increase that for PvMC ex p,  is not 

exponential and it attains a maximum power around 20% even for k = 2. In contrast to 

this, the portmanteau tests show an exponential increase in power with an increase in k 

and reaches nearly to maximum power of 100%. 

 

Moreover, it can also be seen that as the value of m increases for the portmanteau tests, 

these tests become generally less powerful. This result is well known and reported in the 

literature, see e.g. Hong and Lee (2003), Katayama (2009). The same kind of behaviour 

can be seen for PvMC ex p,  test and it also shows a decrease in power for larger values of P, 

this is also reported in Escanciano (2006). 

5.2  Non Linear Alternatives 

In this section, we look at the empirical power of the goodness-of-fit tests against some 

popular non-linear alternatives. We consider several versions of non linear EXPAR(2) 

and TAR(2) models. It has been reported in the literature that the portmanteau tests, we 

are studying, have poor power against non-linear alternatives especially for TAR models 

(Escanciano, 2006). We will use the same choices of P and m as we have used in 

previous section of power against linear alternatives i.e. P = 3, 5, 7 for PCvM exp,  test and  

m = 5, 10, 25 for residual autocorrelations based portmanteau tests. 

 

First, we take an EXPAR(2) model, defined as 

437.0())982.0316.0316.0(138.0( 1
)89.3(

1

2
1  






t
y

tt yeyky t  

,2.0))260.1659.0( 2
)89.3(

1

2
1

tt
y

t yeyk t  



  

where )1,0(~ Nt . The empirical power of diagnostic tests is computed using Algorithm 2. 
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  k = 0.8   k = 1.0   k = 2.0  

 DB DWB FWB DB DWB FWB DB DWB FWB 

3ex p,MCv  29.6 30.0 21.2 69.5 70.2 61.0 100 100 100 

5ex p,MCv  26.8 27.9 21.8 67.1 67.2 61.2 100 100 100 

7ex p,MCv  21.8 22.3 18.3 62.2 63.1 56.0 100 100 100 

Q5 8.7 8.5 3.5 11.2 11.7 5.2 42.3 42.2 23.1 

Q10 5.7 6.2 2.3 8.6 7.5 4.4 29.5 29.0 18.0 

Q25 5.8 4.9 2.7 8.0 7.5 4.3 31.1 30.7 22.3 
*
5Q  8.8 8.7 3.5 11.1 11.9 5.3 43.0 43.2 24.0 

*
10Q  5.8 5.9 2.1 8.4 7.5 4.4 29.6 28.7 18.0 

*
25Q  6.1 5.2 3.0 8.0 7.7 4.1 29.7 30.0 21.4 

)ˆ(*
5 Q  8.6 8.3 2.8 11.9 11.9 5.6 40.6 39.4 22.6 

)ˆ(*
10 Q  5.6 6.1 2.6 8.6 7.8 3.3 28.7 27.9 16.9 

)ˆ(*
25 Q  4.9 5.0 3.0 7.7 7.3 4.5 28.5 28.9 22.6 

 

Table 2:  Power (in %), based on 1000 Monte Carlo runs of 200 bootstrap samples of 

size 100 for AR(2) against EXPAR(2). 

 

Table 2 reports the empirical power of the diagnostic tests. The situation looks quite 

opposite to the linear case in the previous section. As we can see, k = 0 will correspond to 

an AR(2) process and with an increase in value of k, the non-linear component in the 

model will become dominant. 

 

The results in Table 2 suggest that residual autocorrelations based portmanteau tests have 

low power against this class of non-linear alternatives while PvMC ex p,  is showing good 

power in this case. As it can be seen that PvMC ex p, power increases exponentially with an 

increase in k and attains the maximum power 100% at k = 2 while power for the 

portmanteau tests can reach around 43%. These results confirm our earlier findings that 

power decreases for larger values of P and m. 

 

Now, we move to threshold autoregressive model, another class of non-linear models. 

Theory suggests that TAR models are more challenging than EXPAR models for the 

diagnostic tests. We consider the following TAR(2) model 
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where )1,0(~ Nt . We can see by controlling the value of k, we can control the amount of 

nonlinearity in the model. The lower value of k corresponds to low levels of nonlinearity 

while larger values of k will result in a highly nonlinear model. We use a range of values 
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of k where the model does not blow up. We use the same Algorithm 2 to compute the 

empirical power. 

 

  k = 0.8   k = 1.0   k = 1.5  

 DB DWB FWB DB DWB FWB DB DWB FWB 

3ex p,MCv  43.8 42.7 40.2 49.1 49.0 45.6 48.0 49.1 43.5 

5ex p,MCv  24.7 23.9 22.2 29.9 29.5 26.0 32.4 32.0 29.0 

7ex p,MCv  14.0 13.7 12.1 14.9 14.1 12.5 18.5 18.9 16.7 

Q5 5.8 5.4 1.6 4.8 4.8 1.3 6.0 5.2 1.6 

Q10 5.3 6.6 2.5 5.4 5.6 1.5 4.5 4.4 1.5 

Q25 6.8 6.5 3.4 6.8 6.8 3.0 5.0 4.5 2.0 

*
5Q  5.7 5.4 1.6 4.9 4.7 1.3 6.0 5.1 1.5 

*
10Q  5.4 6.5 2.5 5.2 5.6 1.7 4.4 4.4 1.6 

*
25Q  6.7 6.8 3.4 6.3 7.0 7.2 4.8 4.8 1.9 

)ˆ(*
5 Q  6.1 5.9 2.3 6.0 6.3 1.1 5.8 5.3 1.9 

)ˆ(*
10 Q  5.7 5.9 1.7 5.9 5.3 2.2 5.2 5.9 1.0 

)ˆ(*
25 Q  7.2 6.5 3.6 6.8 7.2 4.1 5.7 5.5 3.2 

 

Table 3:  Power (in %), based on 1000 Monte Carlo runs of 200 bootstrap samples of 

size 100 for AR(2), against TAR(2). 

 

Table 3 reports the empirical power of the diagnostic tests for AR(2) against TAR(2) 

models. These results generally confirm the known fact that threshold models are 

challenging for the goodness of fit tests. The residual autocorrelations based portmanteau 

tests show very low power against the TAR model. Though PCvM exp,  is showing better 

power results especially for smaller choice of P, i.e. P = 3, it still cannot achieve the same 

high power as it did against EXPAR(2) models. 

 

Importantly, it should be noted that choice of P and m is very crucial and the power 

results may improve for some smaller values of P and m. Noting the result reported in 

Escanciano (2006), where PvMC ex p,  has achieved power of81% against TAR(1) model, we 

tried smaller values of P, i.e. P = 1, 2. For P = 1, power for PCvM exp,  even further 

decreases to around 20% while for P = 2, it shows an improvement and power rises to 

60%. 
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6.   Conclusion 

Portmanteau tests are powerful against the linear alternatives while the CvM statistic has 

shown more power against non-linear alternatives. The choice of m for portmanteau tests 

and P for 
PCvM exp,
 test is important. Our results suggest that approximation of the 

asymptotic distribution and power of these goodness-of-fit tests highly depends on the 

choice of these parameters, P and m. 
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