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Abstract

In this article, we have developed a rank (intra-subject) based analysis of clinical trials with unbalanced
repeated measures data. We assume that the errors within each patient are exchangeable and continuous
random variables. This rank-based inference is valid when the unbalanced data are missing either
completely at random or by design. A drop in dispersion test is developed for general linear hypotheses. A
numerical example is given to illustrate the procedure.
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1. Introduction

In a typical clinical trial with repeated measures, a set of patients is chosen according to
selection criteria defining a patient population. These patients are randomized into two or
more treatment groups and are then observed at successive time points until the end of
the trial. Even though trials might be designed with the intent to collect the same set of
measurements from each patient, there are many practical situations where the
investigators have to deal with observation (per patient) vectors of unequal length. Some
patients might not have all measurements collected at all planned visits or time points.
Patients could also be discontinued from the trial for one or more reasons. Over the
course of the study, patients may miss visits, stop taking their assigned treatment, or be
removed from treatment. Whatever the reasons for dropouts, drug related or not,
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withdrawals of patients from the trial result in unbalanced data. In this article, we have
assumed that these unbalanced data are missing either completely at random or by design.
In multivariate settings where missing values occur on more than one variable, the
noncompleters are often a substantial portion of the entire data set. If so, ignoring them
may be inefficient, causing a large amount of information to be discarded. Moreover,
discarding them from the analysis will tend to introduce bias, to the extent that the
incompletely observed cases differ systematically from the completely observed cases.
The completely observed cases will be unrepresentative of the population for which the
inference is usually intended: the population of all cases, rather than the population of
cases with no missing data. Therefore, the results of this article have potential application
in pharmaceutical, medical, and clinical research.

In this article, using a sum of Jaeckel (1972) type dispersion functions we develop a rank
(intra-patient) based analysis of the time effects of the repeated measure design. Our
analysis includes estimation of the time effects and their standard error of the estimates.
Further, we develop a test based on the drop in dispersion for general linear hypotheses
concerning the time effects, including an asymptotically distribution-free test of the
interaction between the time effects and treatment groups. As discussed in Sections 4 and
5 our proposed analysis is robust. Furthermore, our analysis is completely invariant to the
random effects due to the patients. and it allows each patient to have an observation
vector of unequal length.

Kloke, McKean, and Rashid (2009) developed a rank-based analysis of a general mixed
model which can be used for this repeated measures design. In contrast to the analysis
discussed in this paper, it is not invariant to the random effect due to the patients;
although, its inference is adjusted for the random effect. Similar to the theory for the
method discussed in this paper, the theory assumes that the number of patients become
large. We compare this analysis to our proposed analysis in Section 3.

Also, Rashid, McKean, and Kloke (2012) proposed an analysis for a multicenter clinical
design, which is also based on a sum of Jaeckel dispersion functions. Their design was a
mixed model with centers treated as random. Hence, for the situation of this paper,
centers correspond to a patient. The asymptotic theory for this analysis assumes that the
sample size of a center becomes large while the number of centers remains fixed. In
contrast, the methodology developed in this paper assumes that the number of patients
become large while the number of repeated measures remains finite. Hence, the theories
for the two analyses are quite different. The analysis of Rashid et al. (2012) is briefly
discussed in Section 3, also.

In Section 2 we present the repeated measures model discussed in this paper. In Section
3, we discuss the details of our proposed method and in Sections 4 and 5 present its
asymptotic theory. In Section 6 we propose a consistent estimate of a necessary scale
parameter for our procedure. An example which illustrates our methodology is presented
in Section 7.
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2. Repeated Measures Model

Consider an experiment with ¢ treatment groups, n, subjects belong to the jth

(j=1,2,...,q) treatment group and the kth subject in the jth group is supposed to be
observed at p time points. A model for this kind of experiment is:
Yy =p+o,+6,+y,+ 0, +e;, (2.1)

ijk
where Y, is the observation corresponding to the ith(i=1,2,..., p) time treatment, the

Jth(j=1,2,...,q) group treatment and the kth(k=1,2,...,n;) patient, u= overall
mean (or median), ¢; = main effect (Z;ai =0) of the ith time treatment, §, = main
effect (2;5 . =0) of the jth group treatment, Vi =

(Z;;/ij = O,ijlyij =0 and z;zzzlyij =0) interaction between the ith time treatment
and the jth group treatment, ¢, is the error term corresponding to the (ijk)th
observation, and £, is the random subject effect for the kth subject in the jth group.
We assume that e, are iid random variables with mean (or median) zero and scale
parameter o, and S . are iid random variables with mean (or median) 0 and scale
parameter 0'12,. Let g(¢) denote the common probability density function (pdf) of ¢, . We
discuss tests of general linear hypotheses, but our main hypothesis of interest is that of
interaction between the the group and times effects, i.e.,

H,:y;=0versusH ,:y, =0, for somei, j. (2.2)

Model (2.1) can be rewritten as a repeated measures model as follows:

Y

W S HTo 0ty e (2.3)

ijk >
where ¢, =B, +e,. Let Y, =(¥,;,Y,;,....Y,;) be the vector of observations for the
k th patient who receives the jth group treatment (j=1,2,...,q;k = 1,2,...,nj) and Eq
be the error vector corresponding to Y ,. In normal theory inference, one may assume
that ¢ ,(j=1,2,...,q;k=1,2,...,n,) are independent random vectors with equicorrelated
. . 2 _ 2 _ 2 2 2
covariance matrix o [(1-p)/,, ,+pl, I ], where var(¢,)=0" =0, +0, (0<o” <x)
and p= 0'[2, / o is the correlation coefficient between any two components of & o Loy
is an identity matrix of order p and 1, isa px1 vector of unity.

If the normality assumption is not reasonable, the experimenter would prefer to use a
distribution-free procedure or an asymptotically distribution free procedure. For the
theory of such procedures in this paper, we make the following assumptions,
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B1: The error vectors Eq (j=1,2,...,q;k=1,2,...,nj) for individual subjects are
independent and continuous random vectors with the c.d.f. F(x,x,,...,x ) and the

elements of each ¢, are exchangeable random variables.

B2: The scale parameter z‘=(1/[«/§f f(x,x)dx]) <o where f(.,.) is the bivariate
density corresponding to the joint c.d.f. F(.,...,.).

Note that under the assumption of exchangeable errors the scale parameter 7 can be
expressed as

r=1/ [\/ﬁ Iigz(t)dt}, (2.4)

where g(#) is the pdf of the iid errors ¢, .

Assumption [B.1] is standard for repeated measures data. It reflects the dependency of
the data within each subject. Exchangeability of the components in ¢, also implies there

is no bias among the components. As discussed below, the scale parameter 7 is the
constant of proportionality in the standard errors of the rank-based estimates and it is the
standardizing factor in the associated test statistics of general linear hypotheses. From the

expression (2.4), it follows that 7 plays a role similar to Var(e,)= ol =0"(1-p) in
normal theory inference.

Let [, =1 if the kth patient in the jth group is measured at the ith time point and

I, = 0 otherwise. Then z;lijk =m,; (< p) is the number of levels of the time treatment

applied on the £ th patient in the jth group treatment. Our description of the model (1.3)
is analogous to that of Anderson & Bancroft (1952) (e.g., see page 250, section 19.2).
Wei and Lachin (1984) used a similar indicator function (/) for incorporating missing

values in the context of incomplete repeated measures data

3. Rank-Based Invariant Estimation

0,=(0,.6,....0,), ¥=(0,.0,..0,) and

1j°

Let O,=u+a,+0,+y,;,
Wy =W, (¥)=Y, —6,. Note that W, is the (ijk) th residual corresponding to the (i/) th
treatment combination on the kth patient. To incorporate possible missing data, let
W (W) =1, W,.(¥).

ik " ijk

Kloke, McKean, and Rashid (2009) extended the usual rank-based estimates of Jaeckel
(1972) to general mixed models with covariates, including Model (2.1), for general
scores functions. In this paper, we consider Wilcoxon scores only. For the Wilcoxon
scores, using the missing data indicator / , , Jaeckel's objective function is given by

D, (¥)=33 312 {W”*(\P)—l}w;m, 3.5
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where the subscript JR denotes the joint ranking of all of the residuals and n denotes the

. . q n. . . . . .
total sample size; i.e., n = ijlzki m . The dispersion function D, (*Y) is a continuous

convex function of W and the rank-based estimator of ¥ is the minimizing value which
we denote by Wy & Kloke et al. (2009) developed the asymptotic theory of these

estimates and their corresponding tests of general linear hypotheses for the general mixed
model. Note that unlike a rank transform, the involved rankings are ranks of residuals not
ranks of responses; see McKean and Vidmar (1992) for discussion. The estimates of the
scale parameters involved in the associated JR inference are adjusted for the random
effects, so the JR inference is asymptotically distribution-free. The JR estimator, though,
is not invariant to the random effects.

For multicenter clinical trials, Rashid, McKean, and Kloke (2012) proposed an R
estimator which is invariant to the random center effect. This procedure forms a Jaeckel-
dispersion function for each center by ranking the residuals within that center. Then the
overall dispersion function is the sum of these center-specific dispersion functions. The
resulting minimizer is called the MR estimator, where M denotes multiple. The
asymptotic theory for the MR estimator is based on a fixed number of centers with the
center sample sizes converging to infinity at relatively the same rate. In the situation of
this paper, however, the number of repeated measures is fixed at p and for many

practical cases p is small. Hence, asymptotic theory should cover the case where the

number of subjects within each group gets large. For example, these are the assumptions
underlying the theory for the JR estimator. Hence, the MR estimator is not appropriate in
this case. As we show next, though, a similar type estimator is invariant to the random
subject effects.

3.1 Rank-Based Invariant Estimates
Instead of doing a joint ranking of residuals, as in the JR estimator, we consider ranking

the residuals within each subject. For the jk th subject, rank the residuals W, ..., W jk
"k

from 1 to m, and denote these ranks by R ,,...,R T Then form the dispersion
" jk
functions

= R, 1| .
Djk(Qj): lzzlijk|: - __IIszk-
i=1

m,+1 2

Note that the rank of the residual W, is invariant to the random effect S, . Furthermore,

because

Lol Ry
Zﬁy{ : _5}:0’

= my +1

for all combinations j,k , we can write

\/Eiliik {M_:{Bjk]_%:l[w; _:Bj 1= Djk(Qj);
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that is, the dispersion functions D, are invariant to the random effects for all
combinations j,k . Further, for each patient this dispersion function is a nonnegative,
continuous, and convex function of residuals Wyk . An overall dispersion function based
on all the patients in the ¢ groups 1is defined as the sum of all
D,@,)(j=12,....¢:k=1,2,...,n)):

q m Jk

D(W)=>>D,(8). (3.6)

j=1k=1

Note that D(W) is also a non-negative, location-invariant, continuous, piece-wise linear
and convex function of the W, , because the sum of several convex functions is again a
convex function. Furthermore, D(Y¥) is invariant to all the random effects 2,

j=1,...,q and k=1,....n,.

Although, we have written D(WV) as a function of W, note that just as the dispersion
function is invariant to the random effect it is also invariant to the group effects &, . But it

is not invariant to the time effects ¢, or the interaction effects y,. Let ® be the

subvector of ¥ which includes these time and interaction effects. Then our rank-based-
(random effect)-invariant (RBRI) estimator of ©® is

0= ArgminD(0). 3.7

Asymptotic theory for @ is given in Section 4. This includes standard errors which can
be used to determine asymptotically distribution free confidence intervals for the time
and interaction effects.

Consider, next, the hypotheses of interaction (2.2). Denote the minimizing value of the
full model, (2.1) by

D(FULL) = D(©), (3.8)
where FULL denotes the full model. Let D(RED) denote the minimizing value for the fit
of the reduced model; i.e., Model (2.1) constrained by y, =0. Large values of the

reduction (drop) in dispersion RD = D(RED)— D(FULL) indicate H ,. Consider as a test
statistic,
H=2L
/2
where 7 is the scale parameter (2.4). As shown in Section 5, this test statistic has an

(3.9)

asymptotically y”-distribution under H, with (¢—1)(p—1) degrees of freedom. Hence,

an asymptotic level a decision rule is to reject H if

H2 g [(g-1)(p-D] (3.10)
where  y2[(q—1)(p—1)] is the upper « critical point of a y’-distribution with
(g—1)(p—1) degrees of freedom. This test is robust; see the discussion of Section 5.
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For computation, the R algorithm discussed in Rashid et al. (2012) for the MR estimates
can be used to obtain the RBIR estimates and the minimizing values of the dispersion
function.

3.2 Special Case

In this subsection, we will examine how the R -estimator is related to the actual
observations for a special case when g =1 (only one grouping factor) and p=2 (two
levels of the repeated measures factor). Let 6, = 1, and 6,, = u,. Further let ¢, = and
M, =a+0.

Then the dispersion function for the & th subject is given by
2
D, (th, 1) = Dy (@, +8) = D, (0,6) =12 Y RV,

i=1

where R, = {w
2+1

RW,)
2+1
W, =Y,-0, R(W,) is the intra-patient rank of W, =Y,, and R(W,,) is the intra-

patient rank of W,, =Y, —o.

—1/2} is the intra-patient standardized ranks corresponding to

W,=Y,, R, =1 —1/2} 1is the intra-patient standardized ranks corresponding to

An overall dispersion function for all the subjects is given by

D(&) = D,(0,5) =TI Y SR,

k=1 i=1

We obtain the R estimate of 6 by minimizing the above dispersion function with respect
to o.

Note the partial derivative of D(0) is given by

V2SR,
k=1

Thus, the R -estimate of & can be obtained by solving the following equation

~12YR;, = —\/EZ{M—IM} 0.
=1 o L 2+1

The above equation is equivalent to

D> R(W,,)=3n/2

k=1

RW,)=)[1+1 =3n/2.
; #2e) ;[ (ka_5)>y1k] "
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where [ is an indicator function which takes a value 1 if (y,, —0)>y, and O if

(Vas =) < yy-
The above equation reduces to

n

Ji =
Z (ka_y1k>5)]

k=1

n/?2.

Therefore & is median of n differences Yoy = Vs k=1,2,...,n. In general (when

p>2),no closed form R -estimate of the contrasts 0, —9_,]. (i#i=1,2,...,p) exists for

fixed ;.

A competing R estimate, in this simple case, is the Hodges-Lehmann estimator of o,
which is the median of the Walsh averages of the differences y,, —y,,. Asymptotic

theory for the Hodges-Lehmann estimate requires symmetry of the distribution of these
differences, which follows from exchangeability of the errors ¢, . We illustrate this

discussion with an example.

Table 3.1: Before and After EKG Readings of Patients

Subject Predrug Postdrug Difference=Predrug - Postdrug
1 6 5 1
2 9 2 7
3 17 0 17
4 22 0 22
5 7 2 5
6 5 1 4
7 5 0 5
8 14 0 14
9 9 0 9
10 7 0 7
11 9 13 -4
12 51 0 51

Example 3.1.1 Berry (1990) discusses a study involving twelve patients. These patients
experienced frequent premature ventricular contractions (PVCs) and were administered
a drug with antiarrhythmic properties. One minute EKG readings were taken before and
after drug administration. The PVCs were counted on both recordings. The results are
shown in Table 3.1.

Let x4, be the median corresponding to the baseline and x, be the median corresponding
to the post-drug. Let & = g, —,. Our estimate of ¢ is the median of the differences

which is 7. The LS estimate is the mean of the differences which is 11.5. This disparity in
the estimates is due to the large outlier, the postdrug PVC response for the 12 ¢4 patient.
If this patient's values are omitted, the median of the differences remains the same, but
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the mean of the differences is 7.91. The LS estimator is highly influenced by outliers,
while the rank-based estimate is robust.

4. Asymptotic Distribution Theory of the RBRI Estimators

As we outline in this section, with more details in the appendix, the asymptotic theory for
the RBRI estimator follows from the asymptotic theory of the gradient of the dispersion
function, much like the theory for rank-based estimators in general which is detailed, for
example, in Chapters 3 and 5 of Hettmansperger and McKean (2011). So our discussion
is brief.

As discussed at the end of Section 3, for the asymptotic theory, we assume that n, — o,
where 7, is the number of patients in the jth group, j=1,...,q. We assume that these

n,s grow at similar rates; that is, for some postive constants 4,
I’If .
W‘—)/lj>0, j=1,....q,

where N = ijln , and ijl/lj =1.

Let S(®)=[S,(8,),5,(8,).....5,(8,)] be the negative of the gradient of D(®). Note
that for fixed ¥,

of D, (-) exist almost everywhere and are given by the coefficients of W, . Therefore,
8,(0,)=15,(0,),5,,(0,),....5,(0,)] where

D, 1s piece-wise linear function of W, ; hence, the partial derivatives

"
;@) =21, R, i=1,2,..,p;j=12,.. 4.
k=1
Let ©° be the true value of ® . Without loss of generality, we assume that @° =0 .

Theorem 4.1.2 Under exchangeablity of errors within each patient and assuming
n, >, n,/N—zxe0,1),

N"28(0) is MVN[0, £] 4.11)
as N — o, where MVN stands for a multi-variate normal distribution,

S =diag[n%|, m,%,,...,m,2,], (4.12)

=1 . <z <l,j=1,2....
72'1 njlgl)loo(n]/N)(O 72'_] 1,] 1,2 ,C]),
s (/)

%, = lim (07,

. n;
UZSJ) =_kZ:1:{[U.in,jk}/{nj(mjk+1)} if i,
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() _vy
G""’J - z{(mﬂ‘ =Dy 3/ iny (my + D} if i=i
k=1

Theorem 4.2 Under exchangeablity of errors within each patient and assuming
n, >0, n/N—ze&0,1),

B[Sup |[NN{©—(z/ N)Z"S(0)} |z £:© T —0. (4.13)

By expression (4.13) it follows that

N'"? (@) and (N""*7)(Z") S(0) are asymptotically equivalent,
where (X°) is a generalized inverse of X satisfying (£) 2 (Z")" =(Z")” and 7 is the
scale parameter defined by (B.2); see, also, (2.4).

It follows from (4.11) and (4.13) that
© has an asymptotic MVN[®°, 7° %Z |distribution. (4.14)

We assume that the rank of 2.(=L2....9 is p—1. In other words, the levels of the

timing treatment (repeated measures factor) within the jth grouping treatment are

connected. Without this assumption, we are unable to perform the test for either the
interaction between the grouping treatment and the timing treatment or the equality of the
levels of the timing treatment.

Note that Theorem 4.2 yields the asymptotic representation of the estimator 0; ie.,
INO=(z/N)Z"S(0)+0,(1).

Based on this, as discussed in Chapter 3 of Hettmansperger and McKean (2011), it
follows that the influence function of © is bounded in response space. Hence, since the

~

design matrix only contains dummy variables, the estimator ® is bounded in both
response and factor space. Therefore, the estimator is robust.

5. Drop in Dispersion Tests

Drop in dispersion or reduction in dispersion tests are the rank-based analogues of the
traditional log likelihood tests; see McKean and Hettmansperger (1976) or Chapter 3 of

Hettmansperger and McKean (2011) for a review. In this subsection, we outline these
tests based on the RBRI estimators for general linear hypotheses of the form

H,:CO=0versus H,:CO = 0, (5.15)
where C is a rx pg matrix of rank r such that C1, =0 where 1, isa pgx1 vector of

unity and 0 is an rx1 vector of zeroes.
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Let C:)H minimize D(®) under the restriction C® =0. Then C:)H is called the reduced
model RBRI of ®. By using arguments similar to those given in Rashid (1996), it can be
shown that for large N

JNO, ~IN[G-2C{CzC1 16, (5.16)
where ~ stands for asymptotically equivalent. It can be seen that the reduced model
RBRI estimate, ©) - 18 asymptotically equivalent to a linear function of the full model

RBRI estimator ©; which is generally true for rank-based estimators; see Rashid (1996)
or, for a review, Chapter 3 of Hettmansperger and McKean (2011).

Suppose CO=0. Let ®, be the true value of ® under the hypothesis. It follows from

(4.14) and (5.16) that for large N, that
JN[©,, —©°] follows a MVN[0,7*BS B'], (5.17)
B=1,. . -2CCZC]C

and X~ is a generalized inverse of ¥ satisfying
DIEDID) I

Theorem 5.1. 3Under exchangeablity of errors within each patient and assuming
n, >, n,/N—ze&0,1),

D' (£)=2[D(®,)—D(®)]/# follows z2, (5.18)

as N — oo and where y, stands for a chi-square distribution with » degrees of freedom.

The drop-in-dispersion test for general linear hypotheses depends on the R -estimates in
the same way that the classical normal theory F test depends on the generalized least
squares estimates. It is also analogous to —2/og A in maximum likelihood procedure and

has a similar interpretation. Note that the D" test is a mixed procedure involving both the
ranks and the residuals. As discussed on page 197 of Hettmansperger and McKean
(2011), however, the influence function of the drop in dispersion test statistic is bounded
in response space and for this repeated measures design also in factor space too. Hence,
the drop in dispersion test statistic is robust. On the other hand, the maximum likelihood
procedure is not robust. It is quite sensitive to outliers as the example in Section 7
illustrates.

6. Estimation of 7

In this section, we briefly sketch another consistent estimator of the scale parameter 7 .
For our discussion, we can assume without loss of generality that the true regression

coefficients 6, are 0.

Denote the residuals for the £ th subjects of the j th group by
r. =Y —0

=Y s l:1,...,7’l’ljk.

Note that we can write the differences as these residuals as
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o T Y;’jk_AYijk _E@y_e,-j) 6.19)
[ei’jk _eijk]_[ai'j - 6’1]]

Each bracketed term is invariant to the random effects, so the differences of these

residuals are invariant to the random effects. Furthermore, the pdf of difference of the

random errors in the first bracket is symmetric about 0.

Fik

Form the set of these sets of these residuals; i.e,, the set
T =i =1,... smusk=1,...,n:j=1,....q. (6.20)

*

V.

ii'jk =7

i'jk

Let M denote the number of such residuals and, for convenience, renumber them as 1 to
M . Next form the Walsh averages of these residuals, i.e., {w, =, +7,)/2 for s<t.

Denote the the number of Walsh averages by M =MM+1)/2. Let
{w (]) <...W;<M*)} denote the set of ordered Walsh averages. McKean and

Hettmansperger (1976) proposed estimating 7 by a standardized length of a confidence
interval for the intercept given by

* *
. \/M[F(M*—C) - r(c+1)] (6 21)
T, = , )
i 2z,,

where

:M(M+1)_Z MWM+DH2M+1) 1

4 “? 24 2
and 0 <a <1. The generally recommended value of « is 0.05. For a fixed effects linear
model with symmetric errors and residuals based on a Wilcoxon fit, 7,,, is a consistent

estimator of 7. In our situation, the errors are symmetrically distributed. but due to the
random effects there are dependencies of the random errors within a subject.
One way of avoiding this is to first consider the case of no missing data. Then consider

the (%) sets of residuals, one for each pairing; that is, for each pair i,i'=1,..., p;i </’
form the set

*

Ve = Tijk

s k=1.,n,0j+1,...,q. (6.22)

Table 7.2: True Cell Medians for Times and Their Contrasts

Cell Medians Contrasts
Group 1 2 3 4 a,—a, o, —a, a,—a,
Placebo 11.2 11.3 10.9 11.4 0.1 -0.3 0.2
Group 10.4 11.3 11.6 11.5 0.9 1.2 1.1

For each of these sets obtain the McKean-Hettmansperger consistent estimator of 7
Then as a final estimator take the average of these estimators. Since each of the {ﬁ)
estimators is consistent and there are only a finite number of them, this average is
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consistent also. This was the estimator used in the example of Section 7. In practice, as
long as the missing is within practical bounds, this estimator is consistent.

7. Example

One of us consulted on a data set that would serve as an example but due to
confidentiality matters it cannot be used. Instead, we have simulated a data set which is
similar to real data set in most aspects. The design for the real data set was a repeated
measures design with two groups (Placebo and Treated) and the primary outcome (a
lipid) measured at 4 time periods on a total of 81 patients (22 in the Placebo arm and 59
in the Treated arm). There were many outliers in the real data set. The interaction
between the groups and times was the effect of interest.

For our simulated data set, we used the same design, including sample sizes and the
number of repeated measures. We set the cell medians (means) at the values in Table 7.2,
which are close to the estimated cell medians of the real data set. This table also shows
the true values of the contrasts o, —¢,, for i=2,3,4. Hence, there are time and

interaction effects.

We generated data with a high intraclass correlation coefficient. The random errors were
simulated from the Laplace distribution with variance set at 1.30, while the random
effects are generated normal variates with variance set at 16 also. So the intraclass
correlation coefficient is 0.924. In the cell with Group at level 2 and Time at level 1 two
points were contaminated.

Using the algorithm discussed in Kloke et al. (2009), we computed the JR-fit for the
vector of parameters WV . Figure 7.1 show the ¢g—¢ and Interaction Plots based on the JR

Fit. The g—g clearly shows the two contaminated data points. Actually, except for these
two points, the rest of the data are good. The profile plots clearly indicate interaction
between the group and time. The top profile is that of the treated group, while the bottom
profile is based on the fit for placebo group. The interaction plot detected the drop in
response between times 2 and 3 for the placebo group.

Pak.j.stat.oper.res. Vol.VIIl No.3 2012 pp719-735 731



M. Mushfiqur Rashid, Joseph W. McKean, John D. Kloke

Figure 7.1: ¢—q and Interaction Plots of the JR Fit. The top

1 Bleyainis

e

et S

ap

and bottom profiles are the

profiles for the treated and placebo groups, respectively.

Using the MR algorithm, as discussed in the last paragraph of Section 3.1, we obtained
the RBRI fit of the vector of parameters ©®. Based on this fit, the McKean-
Hettmansperger estimate of 7 is 1.479, as discussed in the last paragraph of Section 6.
Table 7.3 displays these time effects estimates and their standard errors. For comparison,
we also included the JR estimates and their standard errors. The estimates and standard
errors for the two methods are similar. They both detect the patterns in the table of the

true contrasts. The RBRI seems to be a little more precise.

Table 7.3: Estimates of Contrasts and Standard Errors for the time Effects for the
RBRI and JR Procedures.
RBRI Procedure JR Procedure
Effect a, —a, a,—a, a,-a, a, —q, o, —a, a,—aq,
Placebo | .502(.355) | —.194 (.355) | .682(.355) | .965(.852) | —.114 (.852) | .923(.852)
Treated 861 (.253) | 1.075(.253) 964 (253) | .626(322) | 1.15(322) 881 (.322)
Table 7.4: Estimates of Contrasts and Standard Errors for the time Effects for the
RBRI and JR Procedures.
Results on Tests for Interaction
Analysis df Test Statistic p -value
RBRI 3 14.446 0.0024
JR 8.325 0.0398
MLE 1.682 0.1716
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For the test of the hypotheses of interaction (2.2), Table 7.4 displays the test statistics and
their p -values in the next table. Results are given for the RBRI and JR-analyses and also
the maximum likelihood analysis (assuming normal error distributions). The mle
computation was performed by the R function lme.

Both robust tests (RBRI and JR) found interaction to be highly significant. They easily
detected the pattern in the table of population medians. On the other hand, the mle
analysis was impaired by the two outliers. Practical interpretations would differ between
the robust and traditional (mle) analyses. In most applications, with this p -value, the
traditional analysis would accept no interaction and concentrate on the main effects. On
the other hand, the robust analyses would turn to the estimation of contrasts similar to
those in Table 7.3.

8. Conclusion

When the response variable is continuous, the assumption of multivariate normal is not
always reasonable. In addition, in other situations involving a continuous variable, the
actual distribution may be unknown. Thus, the use of standard parametric procedures is
patient to criticism regarding both optimality and validity.

In this article, we have developed rank based inferences for unbalanced repeated
measures models with incomplete observations. These inferences are robust alternatives
to parametric analyses which are invariant to the random effect due to patients. Note that
nonparametric methods may also be of interest as a means of confirming the results of a
parametric analysis or in assessing the sensitivity of the results to the assumptions of the
selected parametric model.

Appendix

Proof of Theorem 4.1

Let Q(} be the true value of @;. Without loss of generality, we assume that Q? =0. Let
R, =R(W,). For fixed j and k, under exchangeablity of errors within each patient,

R, are uniformly distributed over the integers from 1 through m,,.

ijk

By using arguments similar to those given in Rashid (2000), it can be shown that
n; S ,(0) is MVNO,%}].

where
¥ = lim (o))
nj—>w u
(j)—§nj11 / DVif i
ol = 1{ i i'jk} {n;(m, +D}if i#i
=
and
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")
o =D A(my =D/ {n (my +1)}if i=1
k=1

The covariance matrix of N™"*S ;(0) is given by
Cov, [N, (0= (1, / N)Z,
(]))

where X, = (o>

i

Let
limN""2Cov[S,(0),5,(0)..... S, ()] = diag[z,%,.....7 %

T2y
N—o I

where 7z, = limnj—>oo(”,- /'N).

LT E]=E

Therefore,
N7"*8(0)is MVNI[O0, £], (8.23)
as N —> o,

Proof of Theorem 4.2

Following Rashid (1996), it can be shown that D(®) can be approximated by a
quadratic function of &:
0(©)=D(0)-0® S(0)+{n/(27)}0 0. (8.24)

Note that ® = (z/n)X”S(0) minimizes Q(®), where X~ is a generalized inverse of 2
(defined in (Error! Reference source not found.) satisfying X 23" =%,
Hence following Jaeckel (1972) we have for given &£ >0
B[Sup |[Nn{®-(c/m) A S(0)} [z £:0eT]=0, (8.25)
where I' =[0®: D(®) = a minimum]. Hence, (4.12) follows from (8.25).

Proof of Theorem 5.1

Suppose ® minimizes Q(©) and O, minimizes O(®) under the restriction 40 = 0. By
using arguments as those given in Rashid(1996), it can be shown that the asymptotic
behavior of D(®)—D(® ,/) can be determined by that of Q(©,,)—Q(®) . Hence

D(®,)-D(©)~0(©,)-0(6).

It can be shown that,

0(6,)-0(0)= %S((@())ZA'[AZA']AZE(@O)-
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Therefore

2[D(©,)-D(®)]/ 7~ % S(@")E ATAZ AT AZ"S(0") +0,(1).

But by (A.1), under the null hypothesis,

%S(@O)ZA’[AZA’]AZ S(@%)

asymptotically follows a chi-square distribution with » degrees of freedom.

Therefore, 2[D(®H)—D((:))]/r follows a chi-square distribution with » degrees of
freedom under the null hypothesis. Let 7 be a consistent estimate of 7. Therefore, by
Slutsky's Theorem, D" (%) follows a chi-square distribution with » degrees of freedom.
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