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Abstract
A brief introduction to sampling without replacement is presented. We represent the probability of a sample
outcome in sampling without replacement from a finite population by three equivalent forms involving
permutation and combination. Then it is used to calculate the probability of any number of successes in a
given sample. The resulting forms are equivalent to the well known mass function of the hypergeometric
distribution. Vandermonde’s identity readily justifies different forms of the mass function. One of the new
form of the mass function embodies binomial coefficient showing much resemblance to that of binomial
distribution. It also yields some interesting identities. Some other related issues are discussed.

1. Introduction
Usually hypergeometric probability distribution is introduced without really introducing
sampling scheme without replacement. In this paper, we want to introduce the related
issues of sampling without replacement to provide clarity in the understanding of the
hypergeometric probability distribution. We represent the probability of a sample
outcome in sampling without replacement from a finite population by three equivalent
forms involving permutation and combination. Then it is used to calculate the probability
of any number of successes in a given sample. The resulting forms are equivalent to the
well known mass function of the hypergeometric distribution. Some related instructional
issues are presented.

1.1 Sampling Without Replacement
Consider a population of three doctors and two nurses denoted by , ,A B C and ,D E
respectively. Notice that the individuals are distinctly identified. The sample space of a
sample of 3 persons selected without replacement is given by

{ ,  ,  ,  ,  ,  ,  ,  ,  ,  }.ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

i) Probability That a Person Is Included in a Particular Draw

Let ( 1,2,3)iA i  be the event that Doctor A is included in the -thi selection. Then the
probability that A is included in the 1st selection is 1( ) 1/ 5P A  . Since the sampling is
without replacement, the probability that Ais included in the 2nd selection is given by

1 2 1 2 1( ) ( ) ( | )P A A P A P A A   which equals  1 (1/ 5) (1/ 4) 1/ 5. 
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Also the probability that Doctor A is included in the 3rd selection is given by
' ' ' ' '

1 2 3 1 2 1 3 1 2( ) ( ) ( | ) ( | )P A A A P A P A A P A A A   which is   1 (1/ 5) 1 (1/ 4) (1/ 3) 1/ 5.  

Obviously, the probability that unit j of the population of N units is included in the
-thi selection is given by

     1 1 1 1 11 1 ( 1) 1 ( 2) ( 1) .N N N i N i N             (1.1)

ii) Probability That a Person Is Included in a Sample

The probability that Doctor Ais included in the sample is

1 1 2 1 2 3( ) ( ) ( ) (1/ 5) (1/ 5) (1/ 5) 3 / 5.P A P A A P A A A       

Thus each of the 5 persons have the same chance (3 / 5) of being selected in a without
replacement sample of size 3.

Let ( ) ,
N j

M j
n j
 

   
1, 2, , .j n  The number of samples of size n that contains unit

j of the population of N units is
1

(1) .
1

N
M

n
 

   
Since the total number of samples of

size n is given by (0) ,
N

M
n
 
  
 

the probability that unit j of the population of N units is

included in the sample is given by

1(1) .
1(0)

N NM n
n nM N
   

        
(1.2)

1.2 Probability of Selecting a Sample (Equiprobable Case)
The probability of selecting a sampleof size 3n  members from a population of 5
people discussed in Section 1.1 is given by

1
53 3 1 3 2 .
35 5 1 5 2


   

         

In general, at the first draw the probability that one of the n specified units is selected is
/n N . At the second draw the probability that one of the remaining ( 1)n  specified

units is drawn is ( 1) /( 1)n N  , and so on. Hence the probability that all n specified
units are selected in n draws is

1
1 2 ( 1) !( )! 1
1 2 ( 1) ! (0)

Nn n n n n n N n
nN N N N n N M


      

            
 (1.3)
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(Cochran, 1977). An alternative argument is provided now. Since the number of samples

that includes unit j and k of the population in the sample is given by
2

(2) ,
2

N
M

n
 

   
the probability that unit j and k of the population will be included in the sample is given
by

2(2) ( 1) .
2(0) ( 1)

N NM n n
n nM N N
    

         

Again the number of samples that includes unit ,j k and l of the population is given by
3

(3) ,
3

N
M

n
 

   
and hence, the probability that unit ,j k and l of the population will be

included in the sample is given by

3(3) ( 1)( 3) .
3(0) ( 1)( 2)

N NM n n n
n nM N N N
     

          

Since the number of samples that include specific n units of the population is

( ) ,
N n

M n
n n
 

   
the probability that specified n units of the population of N units is

included in a sample of size n is given by

( )
(0)

N n NM n
n n nM
   

       

which is the same as (1.3).

1.3 Hypergeometric Probabilities

There are two major ways of calculating hypergeometric probabilities. One assumes that
the items in the population are distinguishable, or can be labeled to make distinguishable.
This will be discussed in Section 3.

In the other case, it is immaterial whether the items in the population are distinguishable
or indistinguishable. This will yield a sample space  where outcomes are based on
dichotomous nature of the population. This will be discussed in Section 2.

Suppose that a population containing K items are of one kind (say defective) and
N K items are of different kind (say non-defective). Let n items be drawn at random in
succession, without replacement, and X denote the number of defective items selected.
The quantity 1 2 1x x nD D D D D   denotes x successive defectives items and
n x successive non-defective items. The probability of 1 2 1x x nD D D D D   is
expressed by truncated factorial by Joarder and Al-Sabah (2007). In this paper, we show
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that it can be represented by permutation or combination. We have used it for the
probability of any number of successes which results in equivalent but insightful forms of
the mass function of the hypergeometric distribution. Since the combinatorial function is
available in almost all calculators, these forms are preferred to that presented by Joarder
and Al-Sabah (2007) and Kendal and Stuart (1969, 133). Vandermonde’s identity readily
justifies the equivalence of the different forms of the mass function. On the other hand,
any of the mass functions can also be used to prove Vandermonde’s identity.

One of the new form of the mass function embodies binomial coefficient
n
x
 
 
 

showing

much resemblance to that of binomial distribution. It will be more transparent that
hypergeometric mass function converges to that of the binomial distribution.

The paper is organized as follows. In Section 2, we will clearly demonstrate unequally
likely sample space  and related representations of the hypergeometric probabilities.  In
Section 3, we will discuss the equally likely sample space and the wellknow
hypergeometric mass function. We compare them by putting the two sample spaces based
on Example 2.1 and Example 3.1 side by side. In Section 4, we show by an example how
exact hypergeometric probabilities can be calculated.  In Section 6, we present
Vandermonde’s identities related to hypergeometric distribution. Some other related
issues are discussed. In Section 7, we prove that the probability of a particular sequence
of outcomes with exactly x defective items and n x nondefective items in sampling
without replacement, with unequally likely sample space, converges to that of a similar
sequence in binomial distribution.

2. Conditional Probability Method (Unequally Likely Sample Space)

Let the population items be divided into units of two exhaustive kinds and denote the
unequally likely sample space of at most 2n outcomes. It is usually done by a tree
diagram for the case of indistinguishable items. But in this method, it is really immaterial
whether the items are distinguishable or not. Then we have the following lemma.

Lemma 2.1 Suppose that an urn contains K items of one kind (say defective) and
N K items are of a different kind (say non-defective). Let n items be drawn at random
in succession, without replacement, and X denote the number of defective items
selected. The probability of x successive successes in n trials is given by any of the
following three mass functions:

1 2 1( ) ( | ) ,
K N K

x n x
wor x x n N N x

N x N n

P Pi P D D D D D
P P




 
 

      (2.1a)

1 2 1( ) ( | ) ,wor x x n

N n N
ii P D D D D D

K x K

            
   (2.1b)
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1 2 1( ) ( | ) ,
K N K

x n x
wor x x n N

n

P Piii P D D D D D
P




     (2.1c)

where
! !,

( )! !( )!
K

x

KK KP
xK x x K x
 

    
and max{0, ( )} min{ , }.n N K x n K   

Proof. The left hand side of (2.1a) is given by

1 2 1 1 2 1 1 1 2

1 2 1 1 1

( ) ( | ) ( | ) ( | )
( | )

0 ( 1) 0 ( 1) 0
( ) ( 1) ( ) ( 1) ( )

0 ( ) 0 ( 1) 0 [ ( ) 1]
( ) ( ) ( ) ( 1) ( ) [

x x x x

n x x x n

P D P D D P D D D D P D D D D
P D D D D D D D

K K K x
K N K K N K K x N K

N K N K N K n x
K x N K K x N K K x N K

 

  



  

     
   
        
         

  
         

   
 



 ,
( ) 1]n x  

which is the same as (2.1a). The above can be written as

1 2 1 1 2 1 1 1 2

1 2 1 1 1

( ) ( | ) ( | ) ( | )
( | )

0 ( 1) 0 ( 1) 0
( ) ( 1) ( ) ( 1) ( )

0 ( ) 0 ( 1) 0 [ ( ) 1]
( ) ( ) ( ) ( 1) ( ) [

x x x x

n x x x n

P D P D D P D D D D P D D D D
P D D D D D D D

K K K x
K N K K N K K x N K

N K N K N K n x
K x N K K x N K K x N

 

  



  

     
   
        
         

   
         

   
 



 ,
( ) 1]K n x  

which simplifies to ! ( )! ( )!
( )! ( )! !

K N K N n
K x N K n x N

 
 

   
which is equivalent to (2.1c).

Moreover (2.1a) or (2.1c) simplifies to (2.1b).

The representation (2.1b) appears in a technical report of Joarder, Laradji and Omar
(2009) and Joarder (2010). It is obvious that the representation (2.1c) is intuitively most
appealing as it will be manifested in (2.2b).

The sample space contains a total of
n
x
 
 
 

outcomes having x defectives and ( )n x

non-defectives out of at most 2n outcomes. The elements in the sample space are not
equally likely. The motivation that led to the following theorem is also implicit in Kendal
and Stuart (1969, 133), and Joarder and Al-Sabah (2007).

Theorem 2.1 Suppose that an urn contains K items of one kind (say defective) and
N K items are of a different kind (say non-defective). The items may be
distinguishable or indistinguishable in each of the two categories. Let n items be drawn at
random in succession, without replacement, and X denote the number of defective items
selected. The probability of x successes in n trials is equivalently given by any of the
two equivalent forms:
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( ) ,
n N n N

P X x
x K x K
       

              
max{0, ( )} min{ , },n N K x n K    (2.2a)

or,

( ) ,
K N K

x n x
N

n

n P PP X x
x P


 

   
 

max{0, ( )} min{ , }.n N K x n K    (2.2b)

Proof. Any sample outcome of n items that have exactly x defectives and n x

non-defective items is given by (2.1). Since there are
n
x
 
 
 

such outcomes, out of a

maximum of 2n outcomes in the sample space, we have

1 2 1( ) ( | ).wor x x n

n
P X x P D D D D D

x 

      
 

   (2.3)

Hence by (2.1b) or (2.1c), the mass function is given by (2.2a) or (2.2b).

The name hypergeometric is derived from a series introduced by the Swiss
mathematician and physicist, Leonard Euler, in 1769. The probabilities in (3) are the
successive terms of

2 1
( )!( )!  ( , ;  1;  1),

!( )!
N n N K F n K N K n
N N K n
 

    
 

where 2 1 1 2( , ; ; )F a a b x is the generalized hypergeometric function (Johnson, Kotz and
Kemp, 1993, 237).

Example 2.1 A large chain retailer purchases a certain kind of electronic device from a
manufacturer. The manufacturer indicates that 3 out of 5 devices are defective. The
inspector of the retailer randomly picks up 3 devices from a 5 devices. Determine the
probability that the sample will have two defective devices.

Solution: If iD ( 1, 2)i  is the event that in the -thi draw we have a defective item and f

iN ( 1, 2,3)i  is the event that in the -thi draw we have a non-defective item. Then the
sample space (use tree diagram) is given by

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3{ ,  ,  ,  ,  ,  ,  }D D D D D N D N D D N N N D D N D N N N D .

Then 1 2 3( | )worP D D N  is given by

1 2 1 3 1 2
3 0 2 0 0 2( ) ( | ) ( | ) ,
3 2 2 2 1 2

P D P D D P N D D   
  
  

which is 12/60.  Since each of the element in the event of interest
1 2 3 1 2 3 1 2 3{ ,  ,   }D D N D N D N D D is given by (12/60), we have



Some Instructional Issues in Hypergeometric Distribution

Pak.j.stat.oper.res. Vol. VIII No.3 2012 pp669-684 675

1 2 3

3
( 2) ( | ),

2 worP X P D D N 
   

 
 i.e., ( 2) 36 / 60.P X  

Alternatively, since 5,  3,  3N K n   and 2x  , ( 2)P X  can be directly done by
(2.2a) as follows:

3 5 3 5
( 2) 0.60.

2 3 2 3
P X

       
                

It can also be done by (2.2b) as follows:
3 5 3

2 3 2
5

3

3
( 2) 0.60.

2
P PP X

P


 

   
 

The number 60 in the denominator of probabilities is explained at the end of theorem 3.1.
The probability mass function is explicitly given by the following table:

x 1 2 3
( )f x 3/10 6 /10 1/10

3. Equiprobable Method
In this section, it is required that the populations units be distinguishable. In case, they are
indistinguishable, one may label them to make them distinguishable.

Theorem 3.1. Suppose that an urn contains K items of one kind (say defective) and
N K items are of a different kind (say non-defective). The items may be
distinguishable or indistinguishable in each of the two categories. Let n items be drawn at
random in succession, without replacement, and X denote the number of defective items
selected. The probability of x successes in n trials is given by

( ) ,
K N K N

P X x
x n x n

      
            

max{0, ( )} min{ , }.n N K x n K    (3.1)

Proof. There will be a total of
N
n
 
 
 

equally likely elements in the sample space. The

combinatorial proof of this theorem is available in most textbooks on statistics and

discrete mathematics (e.g. Barnett, 1998). There are
K
x
 
 
 

ways of choosing x of the

K items (say defective items) and
N K
n x
 

  
ways of choosing ( )n x of the ( )N K

non-defective items, and hence there are
K N K
x n x

  
    

ways of choosing x defectives
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and ( )n x non-defective items. Since there are
N

M
n
 

 
 

ways of choosing n of the

N elements, assuming M sample points are equally likely, the probability of any of the
M sample point is 1/ M . Hence the probability of having x defective items in the
sample is given by (3.1).

Vandermonde’s identity readily justifies that the two forms of the hypergeometric mass
functions given by (2.2) and (3.1) are equivalent (Laradji, 2009).

If one permutes each of the
N
n
 
 
 

sample points, the total number of elements in the

inflated ‘sample space’ would be ! N
n

N
n P

n
 
  

 
in which case (3.1) would turn

into      ( ) / ! / ( )! / ! ,K N K N
x n x nP X x P x P n x P n


      which is the same as (2.2b).

The method in this section, also guarantees that sample outcomes are equally likely or
equiprobable. Thus this method produces a Simple Random Sampling where “simple”
refers to the equally likely outcomes.

Example 3.1 A random committee of size 3 is selected from 3 doctors and 2 nurses.
Suppose that the doctors and members can be identified well making the individuals
distinguishable. What is the probability that there will be 2 doctors in the committee?

Solution: Suppose the doctors are labeled as 1 2,D D and 3,D while the nurses are labeled
as 1N and 2N to make the items in the population distinguishable. The sample space of
outcomes is given by




1 2 3 1 2 1 1 2 2 1 3 1 1 3 2

1 1 2 2 3 1 2 3 2 2 1 2 3 1 2

, , , , ,

, , , ,

D D D D D N D D N D D N D D N

D N N D D N D D N D N N D N N

The event of having 2 doctors in the committee is given by

 1 2 1 1 2 2 1 3 1 1 3 2 2 3 1 2 3 2, , , , ,D D N D D N D D N D D N D D N D D N

which has a probability of 6 /10. This can be directly done (3.1) as the following

3 5 3 5
( 2) ,

2 3 2 3
P X

      
            

i.e., ( 2) 0.6.P X  
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That is there exactly 6 ways of selecting 2 doctors and 1 nurse in a sample of size 3.

There are
5

10
3

N
n
   

    
   

ways of selecting 3 people from a population of 5 people.This

isthe number of sample points in the sample space. Every sample outcome has a
probability of 1/10. The mass function is exactly the same as what we have in Section 2.

x 1 2 3

( )f x 3/10 6 /10 1/10

The number 60 appearing in Example 2.1 can be explained. In fact if you permute each of

the
5

10
3
 
 

 
sample points in Example 3.1, you will have an inflated sample space of

5
3! 10(6).

3
 
  

 
Then the probability will be

3 5 3 5 3!(6)( 2) 3! 3! 0.60.
2 3 2 3 3!(10)

P X
      

              

The Example 2.1 and Example 3.1 are put side by side in the following table:

Distinguishable /
Indistinguishable
(Theorem 2.1)

Distinguishable
(Theorem 3.1)

Sample Space Probability Sample Space Probability

1 2 3D D D 1/10 1 2 3D D D 1/10

1 2 3D D N 2 /10 1 2 1D D N 1/10

1 2 3D N D 2 /10 1 2 2D D N 1/10

1 2 3D N N 1/10 1 3 1D D N 1/10

1 2 3N D D 2 /10 1 3 2D D N 1/10

1 2 3N D N 1/10 1 1 2D N N 1/10

1 2 3N N D 1/10 2 3 1D D N 1/10
2 3 2D D N 1/10
2 1 2D N N 1/10
3 1 2D N N 1/10

The following table will provide insight into the number of sample points:
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Unequally Likely Sample
Space

Equally Likely Sample Space

Mass
function ( ) ,

K N K
x n x

N
n

n P PP X x
x P


 

   
 

( ) ,
K N K N

P X x
x n x n

      
            

# of Sample
points

max 2n N
n
 
 
 

We have taught both the methods in some service courses in statistics and found that
students get better insight by the Conditional Probability Method. The elements of the
sample space of the Conditional Probability Method are not equally likely or
equiprobable. One element of the sample space in the Conditional Probability Method
maps on to some elements of the sample space of the Equiprobable Method.

Example 3.2 Suppose that a shipment of 9 ( )N digital voice recorders contains 4
( )K that are defective. If n voice recorders are randomly chosen without replacement
for inspection, what is the probability that

a. the first two of 3n  checked will be defective but the third one will be non-defective?
b. 2 of the 3n  recorders will be defective?

Solution:

a. The probability is 1 2 3
4 0 3 0 0 5( )   ,
4 5 3 5 2 5

P D D D      
  

which can be directly solved by (2.1c) as
4 5

2 1
9

3

.P P
P

b. Since 9,  4,  3N K n   , Conditional Probability Method (2.3),  the probability that
2 of the 3 voice recorders will be defective is given by

1 2 3

3 3 4 0 3 0 0 5 5( 2) ( ) ,
2 2 4 5 3 5 2 5 14

P X P D D D                   
which, by (2.2b),  can also be written as

4 5
2 1

9
3

3 180( 2) .
2 504

P PP X
P

 
   

 

Note that the maximum number of sample points is 32 8. Alternatively, by using the
equiprobable method (3.1), we have

4 9 4 9
( 2) ,

2 3 2 3
P X

      
            

which is 30/84, where the number of sample points is
9

84.
3
 
 

 
We remark that 84

sample points in formula (3.1) has been inflated to 3!(84) 504 in the formula in (2.2b).
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The students erroneously tend to use the hypergeometric probability function (3.1) based
on Equally Likely Sample Space to find the probability of a simple event in part (a).
Hence we recommend to use Unequally Likely Sample Space which provides probability
of a simple event (say, part a by (2.1c)) or a compound event (say, part b by (2.2b)).

Example 3.3 There are N devices in a box. A total of K of them are faulty and N K
are sound. One takes three devices in succession at random without replacement. The
probability that first two are faulty but the third one is not faulty is 12 / 60. what is the
probability that in a sample of 3 devices, two are faulty and one is sound?

Solution: The probability that the first two devices selected are faulty and the third one
is sound is given by

1 2 3
0 ( 1) 0 0 ( )( ) .

( ) ( 1) ( ) ( 2) ( )
K K N KP F F S

K N K K N K K N K
    

  
       

Hence by the given condition, we have, ( 1)( ) 0.20
( 1)( 2)

K K N K
N N N
 


 

which can be solved by

preparing the following table:

K N K N 1 2 3( )P F F S

2 1 3 0.3333 approx.

2 2 4 0.1667 approx

3 1 4 0.25

3 2 5 0.20

4 1 5 0.20

Notice that there are two solutions 3, 2,K N K   or, 4, 1K N K   . Hence, we
have

K N K N ( 2)P X 

3 2 5 3 2 5 3
2 1 3 5
    

     
    

4 1 5 4 1 5 3
2 1 3 5
    

     
    

Thus 3( 2) 0.60.
5

P X    It will be difficult to solve the problem by (2.2a) or by (3.1),

but easy by using (2.2b).
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4. Computational Accuracy
Since the hypergeometric parameters are integers, it is possible to calculate the exact
probability of any event. The following lemmas are in Hua (1982).

Lemma 4.1 Let p be a prime. Then the exact exponents of p that divides !n is given by
2 3/ / / ,n p n p n p            

where x   is the largest integer less than or equal to .x

Lemma 4.2 For any positive integer 2,n  the quantity !n can be written as a product of
prime numbers in the following manner:

31 2

1 2 3! . . ... ,krr r r
kn p p p p

for some positive integer ,k where 'ip s are prime numbers.

Example 4.1 To simplify the probability in Example 3.2 by (2.2a)

3 9 3 9
( 2) ,

2 4 2 4
P X

       
              

we proceed as follows:

To decompose 9! by Lemma 4.1, the exponent of 2 will be
2 39 / 2 9 / 2 9 / 2 4 2 1 7,               the exponent of 3 will be

29 / 3 9 / 3 3 1 4,         the exponent of 5 will be 9 / 5 1,   the exponent of 7 will be

9 / 7 1,   so that by Lemma 4.2, we have 7 4 1 19! 2 3 5 7 ( 362880).     Then

6 9 6! 5!,
2 4 2! 9!
    

      
    

which can be expressed as
4 2 3 1

7 4

2 3 5 2 3 5 5 ,
2 2 3 5 7 2 3 7
   

 
    

so that
3 5 5( 2) .
2 2 3 7 14

P X  
      

Trong (1993) developed an algorithm to calculate accurate Cumulative Distribution
Function of Hypergeometric Distribution.

5. Acceptance Sampling Plan
Acceptance sampling is an important field of statistical quality control that was
popularized by Dodge and Romig and originally applied by the U.S. military to the
testing of bullets during World War II. If every bullet was tested in advance, no bullets
would be left to ship. If, on the other hand, none were tested, malfunctions might occur in
the field of battle, with potentially disastrous results.
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Dodge and Romig reasoned that a sample should be picked at random from the lot, and
on the basis of information that was yielded by the sample, a decision should be made
regarding the disposition of the lot. In general, the decision is either to accept or reject the
lot. This process is called Lot Acceptance Sampling or just Acceptance Sampling.

Example 5.1. Suppose that a shipment of  9 ( )N digital voice recorders contains 4
( )K that are defective. If a sample of 3 ( )n voice recorders contains at most one
defective, the shipment is rejected. What is the probability that the shipment will be
rejected?

Solution: By the Equiprobable Method (3.1), we have

x 0 1 2 3
( )f x 15/126 60 /126 45/126 6/126

The probability that the shipment will be rejected is given by
15 60 75( 0,1) ( 0) ( 1) 0.5952.

126 126 126
P X P X P X        

6. Vandermond’e Identity

The identity
0x

n N n N
x K x K

    
        

 is proved by equating the coefficients of ny in the

following identity (1 ) (1 ) (1 )n m n my y y     with x as index of summation and

m N n  . Similarly, the identity
0x

K N K N
x n x n

    
        

 is proved by equating the

coefficients of Ky in the following identity (1 ) (1 ) (1 )K L K Ly y y     with x as index
of summation and .L N K  It is worth noting that the above identities are forms of
well knownVandermonde’s identity.

Proposition 6.1 Suppose that an urn contains K items of one kind (say defective) and
N K items of a different kind (say non-defective). Let n items be drawn at random,
without replacement, and X denote the number of defective items selected. Then we
have the following identities:

a. ,
n N n N K N K N
x K x n x n x K

        
               

b.
min{ , } min{ , }

max{0, ( )} max{0, ( )}
,n K n K

x n N K x n N K

N n N n N K N K
n x K x K x n x     

          
                   

 

c.
min{ , }

max{0, ( )}
,n K

x n N K

n N n N
x K x K  

    
        


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d.
min{ , }

max{0, ( )}
 .n K

x n N K

K N K N
x n x n  

    
        



e.
min{ , }

max{0, ( )}
.n K K N K N

x n x nx n N K

n
P P P

x

  

 
 

 


Proof. Part (a) is obvious. Summing the identity in part (a), we have

min{ , } min{ , }

max{0, ( )} max{0, ( )}
,n K n K

x n N K x n N K

n N n N K N K N
x K x n x n x K     

        
               

 

which is equivalent to part (b). Since (2.2a) is a probability mass function, part (c)
follows from (2.2a). Similarly, part (d) follows from (3.1) and part (e) follows from
(2.2b).

7. Binomial and Hypergeometric Probabilities

Suppose that an urn contains K items of one kind (say defective) and N K items are of
a different kind (say non-defective). Let n items be drawn at random, with replacement in
succession, and X denote the number of defective items selected. The probability that
any item is defective at any draw is /p K N (say). Then with arguments similar to
section 2, the probability of having x successive defectives and ( )n x successive non-
defectives is given by

1 2 1( ) 1 1 1 ,wr x x n
K K K K K KP D D D D D
N N N N N N

                    
     

   

which equals, ,x n xp q  so that 1 2 1( ) ( ),wr x x n

n
P X x P D D D D D

x 

      
 

 

which equals ( ) .x n xn
P X x p q

x
 

   
 

In case of sampling without

replacement, 1 2 1( ) ( | )wor x x n

n
P X x P D D D D D

x 

      
 

   where

1 2 1( )x x nP D D D D D   is given by (2.1). Now if N  , and /p K N , we have the
following corollary.

Corollary 7.1: As ,K N  , but K p
N
 , the limiting the probability

of x successes in n trails in case of sampling without replacement is given by x n xp q  .

Proof. The probability of x successes in n trails in case of sampling without replacement
denoted by 1 2 1( | )wor x x nP D D D D D    is given by (See 2.1b)
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1 2 1( | ) ,wor x x n

N n N
P D D D D D

K x K

            
   (7.1)

which equals 1 2 1 1 2 1 2( | ) ,wor x x n x n xP D D D D D p p p q q q       where

1 1,   ,   1, 2, , ;  1, 2, ,
1

.
1i j

K i N K jp q i x j n x
N i N x j
    

    
    

 

In case ,K N  , the quantity ,  ( 1,2, , ;  0 1)ip p i x p    , and jq q .

( 1, 2, , ;  0 1).j n x q    Hence we have

1 2 1( | ) .x n x
wor x x nP D D D D D p q 

     (7.2)

For any other sequence having x successes and n x failures, the probability, in the limit,
will be the same as above.

This shows the equivalence of binomial and hypergeometric distribution in the limit.
Though the fact is available in most textbooks on statistics, the result in (7.2) and the

factor
n
x
 
 
 

in the hypergeometric mass function (2.2) will be insightful to the students

and instructors.
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