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Abstract
The use of logistic regression modeling has exploded during the past decade for prediction and forecasting.
From its original acceptance in epidemiologic research, the method is now commonly employed in almost all
branches of knowledge. Rainfall is one of the most important phenomena of climate system. It is well known
that the variability and intensity of rainfall act on natural, agricultural, human and even total biological system.
So it is essential to be able to predict rainfall by finding out the appropriate predictors. In this paper an attempt
has been made to use logistic regression for predicting rainfall. It is evident that the climatic data are often
subjected to gross recording errors though this problem often goes unnoticed to the analysts. In this paper we
have used very recent screening methods to check and correct the climatic data that we use in our study. We
have used fourteen years’ daily rainfall data to formulate our model. Then we use two years’ observed daily
rainfall data treating them as future data for the cross validation of our model. Our findings clearly show that
if we are able to choose appropriate predictors for rainfall, logistic regression model can predict the rainfall
very efficiently.

Keywords and Phrases: Rainfall,Climatic Variables, Spurious Observations, Outliers,
Logistic Regression, Generalized Standardized Pearson Residuals, Cross Validation,
Cohen’s Kappa, Misclassification.

1. Introduction

Prediction of rainfall is still a huge challenge to the climatologists. It is the most important
component of a climate system. Most of the burning issues of our time like global
warming, floods, draught, heat waves, soil erosion and many other climatic issues are
directly related with rainfall. Agriculture is still the main source of economic activities in
the most of the countries of the world and rainfall In order to increase crop production and
protecting crops, human life, ecosystem there is an increasing demand from the policy
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makers for a reliable prediction of rainfall. Therefore it is really very important to be able to
predict rainfall correctly.

A variety of approaches have been employed in the literature (see Ahmed and Karmakar,
1993; Salinger and Griffiths, 2001) to predict rainfall. Most of the methods were based on
linear models and the findings were inconclusive. Moreover, they lack diagnostic checking
which has become an essential part of data analysis. In this paper we employ the logistic
regression technique to predict rainfall. In recent times, this method is commonly employed
in many fields including biomedical research, business and finance, criminology, ecology,
engineering, health policy, linguistics, wildlife biology etc. Logistic regression is useful for
situations in which we want to be able to predict the presence or absence of an outcome
(e.g, rainfall) based on values of a set of predictor variables. In our study we have used a
climatic data set from Bihar, India, that has been extensively analyzed by many others
(Mollaet al., 2006). Although climatic data are usually subjected to gross measurement
error, we often see that this issue is not much focused in the literature. Before fitting the
model by a logistic regression, we use some recently developed data screening methods
like brushing and clustering to identify spurious observations. After fitting the model we
employ some recently developed logistic regression diagnostics like Generalized
Standardized Pearson Residuals (Imon and Hadi, 2008) to identify the outliers. Then we
apply the cross validation technique which is a very popular and useful technique
(Montgomery et al. 2006; Rao, 2005) for the validation of the fitted model for the future
data. We measure the probability of misclassification error since the response in our study
is a class variable. We also use Cohen’s Kappa (Cohen, 1960) statistic to test the
concordance of rainfall by the logistic regression model.

2. Data and Methodology

In our study we have used the daily rainfall data for adjoining areas in Giridhi, Bihar, India
that are collected from the Indian Statistical Institute (ISI) Kolkata database.
Climatologically the area under the study is located in the tropical Indian monsoon region.
The climate of the area before the monsoon is characterized by a hot summer season, which
is called the pre-monsoon season. However in early March, the area also experiences
significant rainfall and that continue until August. The data set contain daily rainfall update
for the period 1989 to 2004 together with some other climatic variables, such as
evaporation (mm), maximum temperature ( c ), minimum temperature ( c ), humidity at
8:30 am (%) and humidity at 4:30 pm (%) which are believed to be important predictors for
rainfall.

2.1. Checking of Data
Screening of data is now considered as an essential task before analyzing it. Hampel et al.
(1986) point out that a routine data may contain about 10% outlier in it and even a good
quantity data cannot be guaranteed free from outliers. The presence of outliers can vitally
affect the results of analyses. To quote Rousseeuw and Van Zomeren (1990), ‘outliers are
an empirical reality, but their exact definition is as elusive as the exact definition of a
cluster (or, for that matter, an exact definition of data analysis).’ An outlier is usually an
extreme observation. According to Barnett and Lewis (1994), ‘Outliers are those
observations which stand apart from the majority of the data in a sample of moderate size
from a population.’ Outliers do not inevitably ‘perplex’ or ‘mislead’; they are not
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necessarily ‘bad’ or ‘erroneous’, and the experimenter may be tempted in some situations
not to reject an outlier but to welcome it as an indication of some unexpectedly useful
industrial treatment or surprisingly successful agricultural variety.This type of outliers may
come as an inherent feature of the data. Sometimes outlier might occur because of an
execution error mainly due to an imperfect collection of data. We may inadvertently choose
a biased sample or include individuals not truly representative of the population we aimed
to sample. But sometimes outliers might occur due to gross measurement error.
Observations arising from large variation of the inherent type are called outliers, while
observations subjected to large measurement or execution error are termed spurious
observations (Anscombe and Guttman, 1960). There are many different ways of handling
outliers, but in case of spurious observation we need to correct the observations (if
possible) or delete them (if correction is not possible) from the further analysis.

A large body of literature is now available regarding how to identify outliers (see Barnett
and Lewis, 1994; Huber 2004). But in our study we try to locate the spurious observations
first. These are the observations which contain some impossible values and index plot,
scatter plot or 3D plot of variables can often locate them clearly. Analytically we can apply
a variety of clustering methods (see He et al., 2003) and observations forming a very
unusual cluster(s) may be considered as spurious observations. However, in our study we
have used clustering techniques available in S-Plus that are developed by Struyf et al.
(1997).

2.2. Logistic Regression
Logistic regression allows one to predict a discrete outcome, such as whether it will rain
today or not, from a set of variables that may be continuous, discrete, dichotomous, or a
mix of any of these. Generally, the dependent or response variable is dichotomous, such as
presence/absence or success/failure, i.e., the dependent variable can take the value 0 or 1
with a probability of failure or success. This type of variable is called a Bernoulli (or
binary) variable. Although not as common and not discussed in this paper, applications of
logistic regression have also been extended to cases where the dependent variable is of
more than two cases, known as multinomial or polytomous regression.

Consider a simple k variable regression model

where k= p + 1. We would logically let

Generally, where the response variable is binary, there is considerable empirical evidence
indicating that the shape of the response function should be nonlinear (in variable). A
monotonically increasing (or decreasing) S – shaped (or reversed S – shaped) curve could
be a better choice. We can obtain this kind of curve if we choose the specific form of the
function as

where              .
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This function is called the logistic response function. Here Z is called the linear predictor
defined by

Z =

The model in terms of Y would be written as

It is a well-known problem that the binary response model violates a number of ordinary
least squares (OLS) assumptions. Hence it is a common practice to use the maximum
likelihood (ML) method based on iterative reweighted least squares (IRLS) algorithm.

In linear regression 2R is a very popular diagnostic for testing the goodness of fit. But in
logistic regression 2R is not usually recommended because of its well-known disadvantage
of possessing very low values. One can use adjusted 2R which is also known as
Nagelkerke 2R in the literature. Perhaps the deviance statistic is a better option for testing
the goodness-of-fit in logistic regression which corresponds to the error sum of squares
(SSE) in linear regression.  Deviance is the difference between observed likelihood and
expected likelihood. It is used in logistic regression for statistical inference. We know the
asymptotic property of likelihood ratio statistic l is demonstrated by-2 lnl ~ . Here we
define the deviance statistic as D = -2 lnl and its value is generally compared with the value
of chi-square with n – k degrees of freedom. For grouped data we use commonly use the
goodness-of-fit technique suggested by Hosmer and Lemeshow (2000). The Hosmer-
Lemeshow statistic is given by

where g denotes the number of groups, jn is the number of observation in the j-th group,

jO is the sum of the Y values for the j-th group, and j̂ is the average probability for the j-
th group. It is interesting to note that the statistic C differs slightly from the usual chi-
squared goodness-of-fit test, as the denominator in above expression is not the expected
frequency. Rather, it is the expected frequency for the j-th group multiplied times one
minus the average of the estimated probabilities for the j-th group. Thus each of the g
denominators will be less than the g expected frequencies, and there will be a considerable
difference when j̂ is close to 1. In our study we use both the deviance and the Hosmer-
Lemeshow statistic for the adequacy of model fitting.

In linear regression t–statistics are used in assessing the value of individual regressors when
other regressors are in the model. In logistic regression we generally use the statistic

W =

which is called the Wald statistic. It should be noted that W does not have a t–distribution,
even though it does have the same form as a t statistic. Rather, it is assumed that
Wisasymptotically normal.
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2.3. Identification of Outliers in Logistic Regression

In recent time diagnostic has become an essential part of logistic regression. The rationale
for diagnostics is mainly the identification of outliers, which are the ill-fitted covariates in
the model. Let       denote the vector of estimated coefficients. Thus the fitted values for the
logistic regression model are

We define the i-th residualas
, i = 1, 2, ..... , n

Regression residuals are often expressed in terms of the hat matrix and they form basis of
many diagnostics. Pregibon (1981) derived a linear approximation to the fitted values,
which yields a hat matrix for logistic regression as

where V is an nn diagonal matrix with general element . The diagonal elements
of H are called the leverage values. In logistic regression, the residuals measure the extent
of ill-fitted factor/covariate patterns. Hence the observations possessing large residuals are
suspect outliers. The Pearson residual for the i-th observation is given by

, i = 1, 2, …,n

If we use the Pregibon (1981) linear regression-like approximation for the residual for the
i-th observation, we obtain

The above approximation helps us to define the Standardized Pearson residuals (SPR)
given by

, i = 1, 2, …,n

We call an observation outlier, if its corresponding Pearson residual or standardized
Pearson residual exceeds 3 in absolute term.

Like the linear regression, the logistic regression also suffers from masking (false negative)
and swamping (false positive) problems when a group of outliers are present in the data. A
number of diagnostics procedures have been suggested to identify multiple outliers in
linear regression (Barnett and Lewis, 1993; Montgomery et al., 2001), but this issue is not
much addressed in logistic regression. When a group of observations indexed by D is
omitted, let be the corresponding vector of estimated coefficients. Thus the
corresponding fitted values for the logistic regression model are

When a group of observations D is omitted, we define deletion weights for the entire data
set as

, i = 1, 2, …,n
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It should be noted that            is the i-th diagonal element of .

We also define
and

Using the above results and also using the linear-regression like approximation, Imon and
Hadi (2008) define the i-th Generalized Standardized Pearson Residual (GSPR), based on a
robust fit of the model, as

We call an observation outlier if its corresponding GSPR exceeds 3 in absolute term.

2.4. Cross Validation
Since the fit of the regression model to the available data forms the basis for many of the
techniques used in the model development process, it is tempting to conclude that a model
that fits the present data well will also be successful in fitting the future data. But this is not
necessarily so. Hence before the model is released to the user, some assessment of its
validity is should be made.

According to Montgomery et al. (2006), three types of procedures are useful for validating
a regression model. (i) Analysis of the model coefficients and predicted values including
comparisons with prior experience, physical theory, and other analytical models or
simulation results, (ii) Collection of new data with which to investigate the model’s
predictive performance, (iii) Data splitting, that is, setting aside some of the original data
and using these observations to investigate the model’s predictive performance. Since we
have a large number of data set, we prefer the data splitting technique for cross-validation
of the fitted model. In data splitting technique we can take subset that contains 80 to 90%
of the original data (see Rao, 2005), develop a prediction equation using the selected data,
and apply this equation to the samples set aside. These actual and predicted output (for the
samples set aside) help us to compute the mean squared error if the response variable is
quantitative or misclassification probability if the response is class variable.

2.5. Cohen’s Kappa

We have just mentioned that misclassification probability from the cross validation analysis
could be an indicator of the validity of the model. For example, a misclassification
probability less than 5 to 10% would tell that the model is valid for the future observations
as well. But perhaps a better option is to use Cohen’s kappa (Cohen 1960) statistic which is
generally a robust measure of concordance for dichotomous data. It was originally devised
as a measure of ‘inter-rater’ agreement, for assessments using psychometric scales, but it
serves well for the likes of presence-absence data and it is also very popular to the
statisticians (see McBride, 2005) after so many years of its origination. To compute this
coefficient we have to calculate the expected frequencies of each cell of a contingency table
exactly in a similar way that we do for the chi-square test for the association. When we
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where ie is the expected cell frequencies corresponding to the agreed classes. Obviously 
lies between 0 and 1 and a high value of  (say 0.6 or more) indicates that the agreement is
good (see Landis and Koch, 1977).

3. Results and Discussion

In this section we analyzed our data. Although all the weather parameters for this data were
measured with the instruments specified by Indian Meteorological Department,
Government of India and this data set has been analyzed extensively by many authors (see
Molla et al., 2006), we check the data for possible spurious observations before any formal
analysis. At first we consider the time series (TS) plot of the maximum temperature as
given in Figure 1.
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Figure 1: TS plot of maximum temperature ( c )

From Figure 1 we observe that several observations are far away from the majority data
points. Since here we plotted the maximum temperature ( c ) of a tropical place like Bihar
so it is almost impossible to get the maximum temperature around 0 c . On the other hand
it is also impossible to get a temperature like 80 c even in a very hot summer day. When
we applied the clustering technique as given in S-Plus, the marked observations form
unusual clusters and we may consider them as spurious observations.
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Figure 2: TS plot of minimum temperature ( c )

We observe more unrealistic scenario when we plot the minimum temperature data as
shown in Figure 2. There is absolutely no point in favour of saying that the minimum
temperature in Bihar even in a hot summer day could rise up to 95 c . S-Plus separates
another group of spurious observation in this regard.
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Figure 3: TS plot of maximum and minimum temperature using brushing
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Figure 3 presents a TS plot of daily maximum and minimum temperatures on a same graph.
Here the maximum temperature is plotted as 'o' and the minimum temperature is marked by
'+'. Since we have a large number of observations, the TS plot using all data looks a bit
messy. To get a better view, we use the 'brushing' command of S-Plus to select a portion of
data where this irregularity is more clearly visible.

The existence of spurious observations in the Climatic data of Bihar is very clear from
Figure 3. Perhaps one can argue in favour of very high or very low maximum and/or
minimum temperatures, but it is simply impossible that in a same day the recorded
minimum temperature can be more than the maximum temperature. This gross recording
error did not happen only once, but it happened in several consecutive days.

Although we anticipated that the Climatic data of Bihar possess a good quality, we see in
several occasions the existence of gross measurement or recording error. So we feel to
correct the data before further analysis. We employ the clustering technique that is
available in S-Plus to find very bad clusters and the results are presented in Table 1.

Table 1:Spurious Observations in Bihar Climatic Data
Sources # of Observations

Temp (Min) > Temp (Max) 25
Temp (Max) > 75 c 3
Temp (Max) < 5 c 3

Total 31

The original climatic data of Bihar contain 5606 observations, which are the daily data,
measured over a period of 16 years (1989 to 2004). After a very careful investigation we
locate 31 observations as spurious because they are subjected to gross measurement error.
Here the percentage of spurious observations is about 0.55%. However, we must mention
that we have used the clustering technique very loosely here just to identify very bad
clusters. That does not erase the possibility of the existence of few more outliers in the data.
Since we would check for outliers in the process of model fitting later on, we just skip the
issue for the moment. After the detection of spurious observations, the immediate question
comes to our mind, what we should do with them. We can treat the spurious observations
as missing data. There are a number of methods for estimating the missing data but for this
particular data since the sample size is large, we would follow Samad and Harp (1992)
discarding the spurious observations from the data set.

Now we would apply the logistic regression method to predict the rainfall. Our response
variable takes only two values, 0 for no-rain and 1 for rain. It is worth mentioning that if it
rains less than 5 ml a day, this rainfall is called insignificant from geographical and
agricultural viewpoint (see Ali et al., 1994). Hence we consider the days which had rainfall
less than 5 ml as a dry (no-rain) day. In our mode we have 5 predictors that we believe have
significant impact on rainfall such as evaporation (mm), maximum temperature ( c ),
minimum temperature ( c ), morning humidity (%) (measured at 8:30 am) and afternoon
humidity (%) (measured at 4:30 pm ). For the cross validation of our model we left aside
the last 2 years (2003-2004) data as future observations. Hence we fit the model using the
data for the first 14 years (1989 to 2002). Here we have altogether 4927 observations. We
apply the iterative reweighted least squares (IRLS) algorithm to fit the model and the
results are as follows.
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Table 2: Logistic Regression Table

Predictor Coefficient Standard Error Wald Statistic P - value Odds Ratio
Constant -6.8583 0.51591 -13.29 0.000

Evaporation -0.2594 0.02864 -9.06 0.000 0.77
Temperature (Max) 0.0455 0.01200 3.79 0.000 1.05
Temperature (Min) 0.0617 0.00759 8.13 0.000 1.06
Morning Humidity -0.0152 0.00499 -3.04 0.002 0.98

Afternoon Humidity 0.0593 0.00409 14.50 0.000 1.06

Table 3:Goodness-of-Fit Tests

Method Statistic Degrees of Freedom p – value
Deviance 3636.42 4921 1.000

Hosmer-Lemeshow 13.69 8 0.090

We observe from the results presented in Table 2 that all the predictors we consider in the
model have significant impacts in the fitting of the model. Maximum and Minimum
temperatures and afternoon humidity have positive effects on rainfall while the effects of
evaporation and morning humidity are negative. Meteorologists generally believe that
maximum temperature should have negative impact on the rainfall, but we get a result that
is somewhat different. The deviance statistic shows (see Table 3) that the data adequately
fit the model but the Hosmer-Lemeshow statistic shows that the fit is not good at the 10%
level of significance.

Now we employ a diagnostic to check whether there is any outlier in the data. We use the
Generalized Standardized Pearson residuals (GSPR) suggested by Imon and Hadi (2008) in
this regard. We observe from the index plot of GSPR (see Figure 4) that a number of
outliers are present in this data. Numerical results suggests (it is not shown for brevity) that
84 observations (1.70% of the total data) had there GSPR values greater than 3 in absolute
terms.
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Figure 4: Index Plot of GSPR for Climatic Data
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To investigate the impact of the outliers we omit them from the data and fit the logistic
regression model once again with the rest of the data. The revised results are presented in
Tables 4 and 5.

Table 4: Logistic Regression Table without Outliers

Predictor Coefficient Standard
Error

Wald
Statistic

p -
value

Odds
Ratio

Constant -4.4020 0.63662 -6.91 0.000
Evaporation -0.2020 0.03091 -6.53 0.000 0.82

Temperature (Max) -0.0914 0.01810 -5.05 0.000 0.91
Temperature (Min) 0.1935 0.01370 14.13 0.000 1.21
Morning Humidity -0.0186 0.00590 -3.15 0.002 0.99

Afternoon Humidity 0.0478 0.00489 9.85 0.000 1.05

The results presented in Table 4 shows that all the predictors we consider in the model have
significant impacts in the fitting of the model. Minimum temperatures and afternoon
humidity have positive effects on rainfall while the effects of maximum temperature,
evaporation and morning humidity are negative. These results makes more sense than the
results we obtained earlier as we now see that the maximum temperature is having a
negative effect on rainfall as anticipated. We also see from the Hosmer-Lemeshow statistic
that a significant improvement in the fitting of the model has been achieved (p – value
increased from 0.09 to 0.67) after dropping the outlying cases.

Table 5: Goodness-of-Fit Tests without Outliers

Method Statistic Degrees of Freedom p – value
Deviance 3045.13 4837 1.000

Hosmer-Lemeshow 5.80 8 0.670

Finally we would perform some cross validation analysis to investigate the validation of
our fitted model. As we have already mentioned that we have set aside 2 years data (648
observations) from the original data as future cases. Now we apply the equation that we
obtain in Table 4 to predict rainfall for these 648 days and the true and predicted results are
given in Table 6.

Table 6:True and Predicted Rainfall for Bihar Climatic Data

True
Rain No Rain TotalPredicted

Rain 562 (520) 9 (51) 571
No Rain 28 (70) 49 (7) 77

Total 590 58 648

We observe from the results presented in Table 6 that our fitted logistic model can correctly
predict 562 days out of 590 (95.25%) when it rained and 49 days out of 58 (84.48%) when
it did not rain. Hence the probability of misclassification error is only 0.0571 which is very
satisfactory. The expected frequencies (frequencies that come only by chance) for each
different cells are presented within the parentheses. This table shows that the total number
of agreeable objects for this data is 611 while the number of corresponding expected
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frequencies is 527. That leaves the value of Cohen’s Kappa as 0.6942 which is quite high
for predicting a climatic variable like rainfall.

4. Conclusions

Our prime objective was to see whether a logistic regression model can successfully predict
rainfall provided that all its important predictors are in place. We worked with a real data
set and checked the data before analyzing it. Although the data set we use in our study is
known to be of high quality, we found quite a few numbers of spurious observations in it.
This finding reemphasizes our concern of data checking before its use. We also observe
that outliers in logistic regression can severely affect the fitting of the model as their
omission can turn a poorly fitted model to be a model of good fit. This finding also
supports our view to use diagnostics in every step of logistic regression fitting. We observe
that rainfall can be successfully predicted by the climatic variables such as maximum and
minimum temperature, evaporation and, morning and afternoon humidity. The cross
validation analysis also shows that the logistic regression not only adequately fits the
rainfall data which are used in the fitting procedure it can be very successful in predicting
rainfall for the future data.
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