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Abstract

In this paper, it is shown that a complex multivariate random variable Z =(Z,,Z,, -, Z » )" is a complex
multivariate normal random variable of dimensionality p if and only if all nondegenerate complex linear
combinations of Z have a complex univariate normal distribution. The characteristic function of Z has
been derived, and simpler forms of some theorems have been given using this characterization theorem
without assuming that the variance-covariance matrix of the vector Z is Hermitian positive definite.

Marginal distributions of Z have been given. In addition, a complex multivariate t-distribution has been
defined and the density derived. A characterization of the complex multivariate t-distribution is given. A
few possible uses of this distribution have been suggested.

1. Introduction

Wooding (1956) had initially considered the multivariate analogue of the complex
Gaussian distribution. Later Goodman (1963) discussed similar aspects of the complex
multivariate normal distribution, and also considered the analogue of the Wishart
distribution and of multiple and partial correlations. Brillinger (1968), Goodman and
Dubman (1968), and Young (1971) gave some practical uses of the complex analogue.
Other authors, for example, Capon and Goodman (1970), Giri (1965), Kabe (1966a, b),
Khatri (1964, 1965), Saxena (1965), Srivastava (1963), Tan (1969), and Young (1971),
have discussed the complex analogues of the classical real variable multivariate analysis.
For some recent references on complex random variables, see Van den Bos (1995, 1998),
Dryden and Mardia (1998), Olhede (2006) and Eriksson et al. (2009) and references
therein.
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A complex random variable Z is a measurable function defined on a probability measure
space taking values in the field of complex numbers. A complex random variable Z ,
defined in this unique way, is represented by the equation Z = X +iY where (X,Y)is a

bivariate real random variable.

The mean or expected value of complex random variablesZ, defined as
EZ)=E{X+iY}=E(X)+iE(Y), is said to be exist if both real expectations E(X)
and E(Y) exist. As in real random variables case, E(X) are exists iffE(|X |) exists,
E(Z) implies that E(X|) and E(Y|) exist. Further, in complex random variables the
inequality |E(Z)|< E(|Z|) holds as in the case of real random variables. Similarly, the
variance of Z is defined as V(Z)=E[(Z-E(Z))(Z-E(Z)"] where Z =X -iY
denotes the complex conjugate transpose of Z. It can be shown that
V(Z)=V(X)+V(Y) and that it exists if both V' (X) and V' (Y) exist. Also if Z, and Z,
are two complex random variables, then the covariance between Z, and Z, is defined as
cov(Z,,Z,) = E[(Z,— E(Z))(Z, — E(Z,)"] and exists if V(Z,) and V(Z,) both exist. For
details see Andersen et al. (1995), Biglieri (2005) and Gubner (2006).

If Z,=X,+iY, is a fixed complex number, then the probability that Z < Z, implies
that
F(z))=P(Z<Z))=P(X < X,,Y <Y))=F(x5,¥,)

Where the functions F(z,) and F(x,,y,) are the cumulative distribution function (cdf)

of the complex random variable Z and the joint cdf of the bivariate random vector
(X,,Y,) respectively.

If it is assumed that ¢ =¢, +it, is a fixed complex number, the characteristic function of
Z 1s defined as

¢(t)(Z) _ E(ei(t|X+t2Y)) _ E[eiRP(tHZ)]

where RP(-) denotes the real part of (-)and ¢ denotes the complex conjugate of .

Similarly, Z=(Z,,Z,,--,Z,)" is a dimensional complex random variable if the vectors of

its real and imaginary parts are a 2p-dimensional real random variable taking values in
E*? , the 2p-dimensional Euclidean space. The characteristic function of Z with respect
to the complex vector 7' =(7,T,,---,T,)" is defined as

$.(Z) = E(e*"™), where T" is a complex conjugate transpose of T.

2. Multivariate Complex Normal Distribution

A p-variate complex normal random variable (denoted as CN ) Z=(Z,Z,,--,Z,) is a

multiple complex random variables such that the vector of real and imaginary parts,
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n=(X,,Y,X,,Y,,.,X,,Y,), is a 2p-variate normal random variable (denoted as N, ,).
Let
0'=E(n)= (ﬂl’vl’#z’vz"“’yp’vp)’7
and
2, = E[(n=56)(n-9)1,
be the variance-covariance matrix of n, where the 2x2 sub matrices of X, have the
following special form:

o1 0 o
—& if j =k,
cov(X;, X,) cov(X,Y) 2101 @.1)
COV(Yj’Xk) COV(Y/J)IIc) O-jo-k ajk _ﬂjk lf];tk .
2 | Bu oy

Then the density function of Z , following Goodman (1963), is given as:
P(Z)=(n"[X,) " expi~(Z - )" £ (Z - )}, (2.2)
where ¢ is the mean vector of Z defined as
U=E@Z)=(u+iv,p, +iv,,- SH, +in)’,
and ., is the variance-covariance matrix of Z defined as
X, =E(Z-u)(Z-w"].

The elements of >, are given as

o if j=k,

W= : o (2.3)
(ay +ip,)o,o, if j#k,

where j,k =1,2,--, p. The density function of (2.2) exists only if X, is a Hermitian

positive definite matrix. Goodman (1963) derived (2.2) for the special case when x=0;

however, the generalizations are straightforward.

Goodman (1963) defined Z to be CN,, in those cases in which its density function P(Z)

is given by (2.2), which exists only if X, is Hermitian positive definite. In this section,
the characteristic function of Z, which always exists, is derived and this characteristic
function is used to define a random vector to be CN,. To derive the characteristic

function of Z, the following results proved by Goodman (1963) are needed and stated
without proof.

If it is assumed that
a, —p.
ry :{ " "k}and
,Bj a g
cyp=au+if,, j, k=12, p,and R is the matrix of r,'s and C is the matrix of ¢, 's,

then
Lemma 2.1 Matrix C is isomorphic to matrix R (written as C = R).
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Lemma 2.2 R is symmetric if and only if (iff) C is Hermitian.
Lemma 2.3 The det(R) = |det(C)
R.

Lemma 2.4 IfR is symmetric, the quadratic form n'Rn=Z"CZ.

Theorem 2.1 The characteristic function of a complex multivariate normal random
variable Z is given by,

* where det(R) denotes the determinant of the matrix

$,(Z) = exp[iRP(T" 11) —iTH vl (2.4)

where RP(-) denotes the real part of (-), and 7T is a vector of complex numbers.

Proof Let
TZ(TI’TZ""’T,;),Z(UI+iI/15U2+iV2a"',Up+in)';
’u:[E(Z)]'Z(/Ul+ivl’/”2+ina"',,Up+ivp);and
w,:(UI’VI’UPVza"',Up,VP).

Because 7 is a 2p-variate normal, the characteristic function of Z is given by

$1(2) = () = Elexp i (U, X +V,¥ )]

=

L 1,
=exp{i Y (U, u, +Vjvj)—5a) 2, .
=

Because X, is symmetric, ., is Hermitian by Lemma 2.2. Also, >, =22 , therefore
1 p
'Y, 0= ETH Y., T by Lemma 2.4. Furthermore, » (U, u, +Vv;) = RP(T" 1), and the
j=1
characteristic function of Z is thus given by (2.4).

Definition 2.1 A complex random vector Z is CN , its characteristic function is given by
(2.4).

Theorem 2.2 (Characterization Theorem). A random vector Z is CN iff all

nondegenerate complex linear combinations of Z are CN,.

Proof Let Z be p-variate complex normal with mean vector g and Hermitian
covariance matrix ., (denoted as Z ~CN ,(u,2.,)) the characteristic function of Z is
given by (2.4). Let & be a vector of complex components. Then the characteristic

function £”Z is given as

36" 2) = §1:(2) = expliRP(T (" i)~ T (" 3, ),

which is a characteristic function of CN,(&"u,&"Y, ). Hence, for any non-zero

complex vector &, &7Z isacomplex univariate normal with mean &” 4 and variance

2DVYS
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Next, suppose that Z =(Z,,Z,,-,Z,)" is a p-variate complex random vector such that for

every nondegenerate complex vector &, &£7Z is CN,. Then it can be proven that

Z ~ CN, with some mean vector 4 and Hermitian covariance matrix >, .

If the components of the complex vector &, are 0470 except at the kth place, where
they are 1+i0, &"Z=2Z, ~CN, with a mean g, and variance o, = o, that exist by
assumption, and the cov(Z;,Z,) =0, also exists. Let u=(u, s, p,) and X, be

the matrix of O'jk’S. Thus, the characteristic function of §H Z, is distributed as
CN,(E" u, E" X, &) is given by

$,(5"2) = GXP[ZRP(I*(?H#) —%1*(511 2, f)t},
which letting ¢ =1+ 0, reduces to
$.(2) = eXp{iRP(f”u) - €L, «:)}
and is a characteristic function of CN ,(x,2,). Thus, Z ~CN (1,2 ,).

Theorem 2.3 The components Z,,Z,, -, Z » of Z are mutually independent iff >, isa

diagonal matrix. Moreover, each component is complex univariate normal.

Prooflf Z,,Z,,--,Z ,are mutually independent, then
2 op e
if j=k
cov(Z,,2,)=1 ! =%
0 otherwise,

and)., is a diagonal matrix consisting of real numbers. Further, the characteristic
function of Z factors implies that the components are mutually independent, and
Z, ~CN,(1,,07), k=12, p.

It may be noted that the other results can be similarly derived using this characteristic
function.

3. Complex Multivariate t-Distribution

A p-variate complex t random variable ¢ = (¢,,t,,--,¢,)" is a multiple complex t-random

variable such that the wvectors of its real and imaginary parts,
n= (Lt stogsty > st psty) 5 18 @ 2p-variate real t-distribution. The p-variate complex t-

distribution arises from the joint distribution of p variates ¢, = Z, / s,i=12,--, p where
the Z.'s have a nonsingular complex multivariate normal distribution with means 0 and
complex covariance matrix Y. =o’R, R = (p,;) with p, =1, and the matrix R is known

in certain cases, but o> is unknown. It is assumed that Y. is Hermitian positive definite
(hpd) and hence R is hpd. Also, it is assumed that 2. is of the form described in (2.3).
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s is an estimate of ¢ * based on 2n degrees of freedom and is independently distributed
of Z=(Z,Z,,-,Z,) Also, 2ns’/c” has a chi-square distribution with 2n degrees of

freedom. Under these assumptions we have the following theorem:
Theorem 3.1 The density of ¢ =(¢,,¢,,-+,¢,)" is given by,

(Z): F(n +p) 1+ l‘HRilf
“ (nm)? |R|F(n) n

—(n+p)
j , Where|R| denotes the determinant of R .

Proof Using (2.2), the joint density of Z =(Z,,Z,, -, Z, )" ,and s is

n-1
1 1 _ 1 2ns’ 2n2s 1
P(Z,S):mexp{—?ZHR 12} X F(n)£ 0_2 } 0_2 exp{—?nsz}dzldzz "'dedS,

3 1 2n" ¢
G |R|F(n) o)

wheredZ, =dZ,dZ, k=12, p.

2 exp{—%(ZHR_lZ + ns2)} dzdz, ---dz,ds,
o

When the transformation Z =¢s is made, and it is noted that the Jacobian of the
transformation, J(Z,t), is s’ p, the joint density of ¢ = (t,t,, tp)’, becomes

1 2n"
w’ |R|F(n) o*mp)

Again if the transformation

2
P(t,s) = g exp{— S—z (t"R7't+ n)} dndt, ---dt ds.
o

2
N -
VA :—2(IHR lt‘l’l’l),
o

2sds =c>(t"R " t+n)" dz,
is made and s is integrated out, the joint density of ¢ = (¢,,,,--,¢,)" reduces to (3.1).

Example 3.1 Univariate Complex t-Distribution

If p=1, then R =(1),

5 \—(m+)
R=1,R" =1,and P(t) =l[1+ﬂ]

T n
wherel|” = 1" =12 +1}.

Example 3.2 The Bivariate Complex t-Distribution
If p=2, then t =(¢t,,1,) = (t,, +it,,,t,, +it,,),and

Rz( 1 ' a, +iﬂ12}
a, —if, 1
|R| =1-a} - B, and

45 1 ( 1 —(ay, ‘Hﬁu)j
R = — .
|R| —(a,, —ip,) 1
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Thus, the joint density of #,z, is given as
2 2 . " —(n+2)
n+l - 6] +[] - 2RP(ay, +iB.11,)
nz’(1-a, — f) n(l-a, = )

P(1) =

Example 3.3 A Test of Hypothesis

Let Z~CN,(u,0°) and let z,,z,,--,z, be a random sample from this population (Z),

where z, is of the form x, +iy,, j =1,2,---,n. Situations may arise where it is desirable to
test the hypothesis H, :|,u| =0, ie., u has a representation g =0+:0, versus the
alternative hypothesis H , :|,u|¢0, if there is an ordered sample of the form

[, y)(xy,3,),-(x,,,)], and the null hypothesis is that this sample is centered around

the origin of the 2-dimensional Euclidean space. The usual tests of hypothesis in this
situation do not seem appropriate. Instead, a test statistic based on complex distribution
theory is derived.

The likelihood function of (z,,z,, -+, z,) 1s

2 n
P(zl,zz,n-,zn):( 12] exp{—%Z‘zj—,ur}, where u=FE(Z)=E(X)+iE().
(o2 Jj=1

no

. __— . . 1<
The maximum likelihood estimates of x and o are 4=2Z 2—22_/, and

n j=1

o IS 2 : o . : A2
G’ :—Z‘z ; —z‘ and are independently distributed. An unbiased estimate of &7 is
n-_

j=

2 1 - _|2 - 2 . . .
§° = IZ‘ZJ. —z‘. Also, z and s° are independently distributed, and

2 2
_ 2(n—1 . C e
z ~CN, (,u,O-—J and(n—z)s ~ Xynpy- Thus, for testing H :| ,u| =0, using likelihood
n o
ratio test, a statistic 7 = /i z/s is arrived at which has univariate complex t-distribution
under the null hypothesis with (n—1) degrees of freedom. The percentage points of the
above t-statistics can be obtained using
P(t<t,)=P(ty <ty .1, <t,),
2nz _~N2nz,

where ¢, = , t;, =——, and t,, ¢, are bivariate t-distributed with each having
N A

2(n—1) degrees of freedom.

Example 3.4 Correlation Between Two Complex Random Variables

Let &,,&,, -+, &, be arandom sample of size n froma CN, (E,Z )

é:k:(Z]kJa 'u:(furi-l:l/l]’ Z:(Gll Glz}k=1,2,'~,n.
Zok =\ M, Y, 0, Oy
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Let the matrix of sum of squares and products be

n " 1 n
where a; =Y (z, ~z )z, —Z,) i, j=12and z, ==>z, , i=12.

k=1 Ly

O

VO110»

The correlation between z, and z, is given by p = and an estimate of p, that is,

the sample covariance, is given by r= a%' For testing the null hypothesis
a,dy
H,:p=0, it can be shown following Young (1971) that the statistic 7 = h has
—rr

univariate complex t-distribution under H,,.

4. Mean Vector and Covariance Matrix of a p-variate Complex t-Distribution
For simplicity, let 7 =(7,,7,,---,T,)" be a p-variate complex T (denoted as CT,); then, by

definition E(T ): 0. Because p-variate complex random vector 7 is a 2p-variate real

random variable ¢ whose variance-covariance matrix 1is 1Rt, n>1, and because
n_
2R, = R, , the Hermitian variance-covariance matrix of C7, is 2= 1) R, n>1. This
n —

leads to the following definition.

Definition 4.1 A p-variate complex random vector 7 =(7,,7,, -, T p)’ is to have a non-

singular complex multivariate 7 distribution with complex mean vector

, .\ : ) n
= (a5 ptyy -+ p,) and Hermitian covariance matrix

R, n>1, if it has the
2(n—-1)

following p.d.f.

. H -1 _ —(n+p)

P(T) = Tntp) ([, T-w R T-p ,
(nm)” |R|F(n) n

Thus, let 7 ~CT,(u,R,n); then, T may be written as T = S™'z where z~ CN, (4, R)

and 2nS’ ~ y; ,independent of z. This implies that T ‘SZ =8*~CN,(1,S”R). Here

T|S* denotes the conditional distribution of T given that the random variable S* assumes

the value s” .
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Theorem 4.1 A Characterization Theorem for CT,(u, R,n)

T ~ CT,(u, R, n)iff for any nondegenerate p x1 complex vector a

a” (T - p)

Ja"Ra

~ CT,(0,1,n).

Proof Let 2nS* ~ y; then, T‘S2 = 8% ~CN (1,5 R) iff

H
M:bﬂ ~CN, (O,s’z)

Ja"Ra

H —
(by Theorem 2.2), ic., ift - L =) _ cT(0,1,n).

Ja"Ra

5. Conclusions

In this article we have shown that complex multivariate random variable of Z is a
complex multivariate normal variable of dimension # if all nondegenerate complex linear
combination of Z have a complex univariate normal distribution. The characteristic
function of Z has been derived. An extension of complex multivariate t-distribution has
been proposed and few examples are suggested.
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