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Abstract
We derive distributions of ratio for two independent gamma variables and two independent inverted
gamma variables and then we observe the skewness of two ratio densities. We then consider inference on
reliability in two independent gamma random variables and two independent inverted gamma random
variables each having known shape parameters.
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1. Introduction
For two independent random variables X and Y and a real number c , the probability

( < )P X cY induces the following facts: (i) the probability ( < )P X cY is the reliability
when the real number c equals one, (ii) the probability ( < )P X cY is the distribution of
the ratio / ( )X X Y when = / (1 )c t t for 0 < < 1t , and (iii) the probability

( < )P X cY is the density of a skewed random variable if X and Y are symmetric
random variables about origin.

The reliability will increase the need for industry to perform systematic study for the
identifications and reduction of causes of failures. These reliability studies must be
performed by persons who (i) can identify and quantify the modes of failures, (ii) know
how to obtain and analyze the statistics of failure occurrences, and (iii) can construct
mathematical models of failure that depend on, for example, the parameters of material
strength or design quality, fatigue or wear resistance, and the stochastic nature of the
anticipated duty cycle (see Saunders (2007)).

Many authors have considered properties of gamma distribution (see Johnson et al
(1994)). McCool (1991) considered the inference problem on reliability ( < )P X Y in the
Weibull case. Ali and Woo (2005 a & b)studied inference on reliability ( < )P Y X in
power function and Levy distributions. Pal, Ali, and Woo (2005) studied estimation of
testing ( > )P Y X in two parameter exponential distribution. Ali, Pal, and Woo (2010)
studied the ratio of two independent exponentiated Pareto variables. Saunders (2007)



Jungsoo Woo

Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp635-643636

introduced reliability, life testing and prediction of service lives for engineers and other
scientists.

In this paper, we derive distributions of ratio for two independent gamma and two
independent inverted gamma random variables and then we observe the skewness of the
two ratio densities. We then consider inference on reliability in two independent gamma
random variables and two independence inverted gamma random variables each having
known shape parameter.

2. Distribution of ratio
In this Section we consider density of ratio of two independent gamma random variables
each having the following density functions in (2.1) and density of the ratio of two
independent inverted gamma random variables each having the following density
functions in (2.4).

2.1 Gamma distribution
Let X and Y be independent gamma random variables having the following densities.
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where i 's and i 's are positive.

Let = /W Y X . Then from the quotient density in Rohatgi (1976, p.141) and formula
3.381(4) in Gradshteyn and Ryzhik (1965, p.317), density of = /W Y X is given by
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In fact,
0

( ) = 1Wf w dw


 from formula 2.19 in Oberhettinger (1974, p.15).

From the density (2.2) and formula 3.5 in Oberhettinger (1974, p.26), moment generating
function (mgf) ( )WM t of W is given by
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where , ( )a bW x is the Whittaker function, see Abramowitz and Stegun (1970, p.505).

It guarantees the existence of the k th moment of W , and hence from formula 3.194(3) in
Gradshten and Ryzhik (1965, p.285), k th moment of = /W Y X is given by
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We obtain the density of the ratio = / ( ) = 1/ (1 )R X X Y W  from (2.2) as the
following.

Proposition 1: Let X and Y be independent random variables each having the

respective density as in (2.1). Let 2

1

= 


. Then the density of = / ( )R X X Y is given

by
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where ( , )B a b is the beta function.

From Proposition 1 and formula 2.33 in Oberhettinger (1974, p.19), k th moment of the

ratio R is obtained as follows. For = 1, 2,3,k  and 2
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(2.3)

where 2 1( , ; ; )F a b c x is the hypergeometric function, see Abramowitz and Stegun
(1970, p.555).

Table 1: Means, Variances, and Coefficients of Skewness for the density of ratio R
in the Gamma Distribution

1 2  Mean Variance Skewness
1 2  Mean Variance Skewness

1/3 1/3 1/4 .63134 .14094 -0.57650 1 1 2 .38629 .07819 0.48613
1/2 .56611 .14778 -0.28375 4 .28280 .06483 1.00876
1 .5 .125 0 3 1/6 .56630 .06495 -0.44687
2 .43389 .14778 0.28375 1/4 .49175 .06400 -0.15461
4 .36866 .14094 0.57650 1/2 .36447 .05397 0.34031

1 1/4 .41303 .11923 0.25304 1 .25 .03750 0.34031
1/2 .32870 .10183 0.62912 2 .15888 .02146 1.44438
1 .25 .08036 1.05830 3 1/3 1/4 .95655 .01256 -6.39987
2 .18244 .05849 1.56897 1/2 .93255 .01615 -4.13837
4 .12575 .03941 2.20195 1 .89410 .02545 -2.48378

3 1/4 .22862 .06214 1.00151 2 .83895 .04180 -1.58436
1/2 .15637 .03861 1.48985 4 .76766 .06414 -1.01868
1 .1 .02077 2.08167 1 1/4 .90573 .01023 -2.13336
2 .06001 .00966 2.81950 1/2 .84112 .02146 -1.44441
4 .03408 .00392 3.75406 1 .75 .03750 -0.86067

1 1/3 1/4 .86823 .04388 -2.2693 2 .63553 .05397 -0.34031
1/2 .81379 .06152 -1.57083 4 .50825 .06401 0.15461
1 .74621 .08224 -1.05286 6 .43370 .06495 .044687
2 .66829 .10285 -0.62245 3 1/4 .76861 .02089 -1,10089
4 .58458 .11964 -0.2467 1/2 .64468 .03116 -0.53053

1 1/4 .71720 .06483 -1.00876 1 .5 .04571 0
1/2 .61371 .07819 -0.48613 2 .35532 .03116 0.53053
1 .5 .08333 0 4 .23139 .02089 1.1089



Jungsoo Woo

Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp635-643638

From k th moment of the ratio R in (2.3) and recursion formulas of hypergeometric
function in Abramowitz and Stegun (1970, p.558), Table 1 provides numerical values of
mean, variance, and coefficient of skewness for ratio density in Proposition 1.

From Table 1 we observe the following trends of the ratio density in Proposition 1.

Fact 1: Let X and Y be independent gamma random variables each having the density
as given in (2.1). Then for 2 1= /   , and the ratio = / ( )R X X Y , we observe the
following.
(i) When 1 2=  , the density of the ratio R is symmetric at = 1/ 2r when = 1 , the
density is left-skewed when < 1 , it is right-skewed when > 1 .
(ii) It is left-skewed when = 1/ 4(2)4 for 1 2( , ) = (1,1/ 3)  and (3, 1/3), but it is right-
skewed when = 1/ 4(2)4 for 1 2( , ) = (1/ 3,1)  (1/3, 3).

2.2 Inverted gamma distribution
We now consider the density of the ratio of two independent inverted gamma random
variables U and V , each having the following respective density. In the context of the
gamma densities in (2.1), = 1/U X and =1/V Y .
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Let = /Q V U . Then from Rohatgi (1976, p.141) and formula 3.381(4) in Gradshteyn and
Ryzhik (1965, p.317), the density of = /Q V U is obtained as
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In fact,
0

( ) = 1Qf w dw


 by formula 2.19 in Oberhettinger (1974, p.15).

We obtain the density of 1 = / ( ) = 1/ (1 )R U U V Q  from (2.5) as follows.

Proposition 2: Let U and V be independent inverted gamma random variables each
having the respective density in (2.4). Then the density of the ratio 1R is given by

1
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where 2 1= /   .

From Proposition 2 and formula 2.33 in Oberhettinger (1974, p.19), k th moment of the
ratio 1R is given below. For = 1, 2,3,k  and 2 1= /   ,
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Let us observe the following relation between 1R and R .

The ratio 1
1/= / ( ) = = / ( ) = 1 / ( ) = 1

(1/ 1/ )
XR U U V Y X Y X X Y R

X Y
    


. Hence,

1( ) = 1 ( )E R E R , 1( ) = ( )Var R Var R , and skewness of 1R =
3 3/2 3 3/2

1 1 1[( ( )) / [ ( )] = [( ( )) / [ ( )]E R E R Var R E R E R Var R   = - skewness of R . Thus the
mean, variance, and skewness of 1R can be numerically obtained from Table 1 without
providing a separate Table.

Proposition 3: Let U and V be two independent inverted gamma random variables each
having the density respectively in (2.4). For ratio 1 = / (R U U V ) and = / ( )R X X Y ,
skewness for 1R and R are in the opposite direction, where ( , )X Y is a pair of
independent gamma variables each having the respective density as in (2.1).

3. Reliability ( < )P Y X in the Gamma Case

In this Section we consider inference on reliability in two independent gamma random
variables each having density with known respective shape parameter as in (2.1).

From the density (2.2) and formulas 3.381(1)&(2) in Gradshteyn and Ryzhik (1965,
p.317), we obtain the reliability as follows.

Proposition 4 Let X and Y be two independent gamma random variables each having
the respective density as in (2.1) with known shape parameter. Let 2 1= /   . Then

1
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1 2
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From Proposition 4 and formula 15.2.1 in Abramowitz and Stegun (1970, p.557), we
obtain the following.

Proposition 5: Let X and Y be two independent gamma random variables each having
the respective density as in (2.1). If mean of Y is greater than that of X , i.e., if

2 2 1 1>    in densities (2.1), then reliability ( ) = ( < )R P Y X is a monotone
decreasing finction of  . If mean of X is greater than mean of Y , i.e., if 2 2 1 1<    in
densities (2.1), then reliability ( ) = ( < ) = 1 ( < )R P Y X P X Y  is a monotone increasing
function of  .
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We now consider inference on reliability ( < )P Y X when the shape parameters 1 and

2 are known. Because ( )R  is a monotonic function of  , inference on reliability is
equivalent to inference on  (see McCool (1991)). Hence, it is sufficient for us to
consider inference on 2 1/   when the shape parameters 1 and 2 are known.

We get the following Lemma easily from formulas 3.381(4) in Gradshteyn and Ryzhik
(1965, p.317).

Lemma 1: Let X be a gamma random variable having mean  and variance 2 .
Then

(a) 1(1/ ) = , > 1
( 1)

E X if 
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.
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Assume 1 2, , , mX X X and 1 2, , , nY Y Y be two independent samples from each density in

(2.1) with known shape parameter, respectively. Then MLE î of i , = 1, 2i are given
by
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From expectation in (3.1), an unbiased estimator  of  is defined by
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From Lemma 1, variance of  is given by
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From the results in (3.1), (3.2), and (3.3), we find that MSE(  ) < MSE( ̂ )and then we
obtain the following from equivalence of inference between  and ( )R  (see McCool
(1991)).

Proposition 6: Assume 1 2, , , mX X X and 1 2, , , nY Y Y be two independent random
samples from the respective densities in (2.1) with known shape parameters. Then an
estimator ( )R  performs better than the MLE ˆ( )R  in the sense of MSE if 1 > 2m .

3.1 The shape parameter is a positive integer

We consider interval estimator of  , especially if the shape parameters i 's in the
densities (2.1) are known positive integers., i.e., the densities (2.1) belong to Erlang
distributions. Then 1 2

ˆ ˆ/   is a pivot quantity having the F -distribution with degrees
of freedom ( 1 22 ,2m n  ). Therefore, an (1 )100% confidence interval for  is

2 2
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where /2 2 2( ) = / 2, (2 ,2 ), ( )
c
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

 is the density of F -distribution with

degrees of freedom ( 1 22 ,2m n  ).

Next, we consider the testing of the following hypothesis:
0 1 2 1 1 2: = = ( = 1) : ( 1).H against H       

Applying the likelihood ratio test, we reject 0H if and only if

1 2 1 2
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 


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The above likelihood ratio results in the following equvalent test:

Reject 0H if for a given test size  , where 0 < < 1,

2 2
/2 2 1

/2 1 21 1

ˆ ˆ1< > (2 ,2 ).ˆ ˆ(2 ,2 )
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
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(3.4)

3.2 The shape parameter is known positive

We consider an asymptotic interval estimate for  if the shape parameters 1 and 2
are known positve. Then using the asymptotic property of MLE and mean and variance in
(3.1) and (3.2) of ̂ , for large m and n ,

2 2 2
1 1 2 1 2 1

ˆ

( 1) / (( 1) ( 2))m m n m n n
 
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   
has an asymptotic standard normal distribution.
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From (3.1) and (3.2) we find that ̂ is a consistent estimator of  and then from the
limit Theorem in Rohatgi (1976, p.253), we obtain the following. For large m and n ,

2 2 2
1 1 2 1 2 1

ˆ
ˆ ( 1) / (( 1) ( 2))m m n m n n

 
      



   
(3.5)

has an asymptotic standard normal distribution.

Therefore, an asymptotic (1 )100% confidence interval for  is given by
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 , where ( )t is the standard normal density.

We also wish to test the following

0 1 2 1 1 2: = = ( = 1) : ( 1).H against H       

For large m and n and given a test size  , 0 < < 1 , reject 0H if
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4. Reliability P( <V U ) in the inverted gamma case
In this Section we consider inference on reliability in two independent inverted gamma
random variables each having respective density as in (2.4). Using the same method for
the gamma case, we obtain the following.

Proposition 7: Let U and V be independent inverted gamma random variables each
having the respective density in (2.4) with known shape parameters. Then for 2 1= /   ,

1

1 2

1 2
2 1 1 2 2

1 2

( ) = ( < ) = 1 (1/ < 1/ )
( ) 1= 1 (1, ;1 ; )
( ) ( ) (1 ) 1

R P V U P V U

F


 



     
   



 
  
   

is a monotone function of  . The proof comes from Propositions 4 and 5.

Assume 1 2, , , mU U U and 1 2, , , nV V V be two independent random samples from each
respective density in (2.4) with known shape parameters. Then 1 21/ ,1/ ,U U ,1/ mU and

1 21/ ,1/ , ,1/ nV V V are two independent random samples from the respective densities in
(2.1) with known shape parameters.
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The MLE ˆ , , = 1,2i iof i  are given by

1 2
=1 =11 2

1 1 1 1ˆ ˆ= = .
m n

i ji j

and
m U n V

 
  

Using similar arguments as in Section 3, we can consider inference on reliability ( )R  in
the inverted gamma distribution using the two random samples 1 21/ ,1/ , ,U U  1/ mU and

1 21/ ,1/ , ,1/ nV V V .

References
1. Abramowitz, M. and Stegun, I. A. (1970). Handbook of Mathematical Functions.

Dover Publications Inc., New York.
2. Ali, M. Masoom, Pal, M., and Woo, J. (2010). On the ratio of two independent

exponentiated Pareto variables. Austrian Journal of Statistics 39, 329-340.
3. Ali, M. Masoom, Pal, M., and Woo. J. (2005a). Inferences on reliability

P( < )Y X in a power function distribution. Journal of Statistics & Management
Systems 8, 681-686.

4. Ali, M. Masoom, Pal, M., and Woo. J. (2005b). Inference on reliability P( <Y X )
in the Levy distribution. Mathematics and Computer Modelling 41, 965-971.

5. Gradshteyn, I. S. and Ryzhik, I. M. (1965). Tables of Integrals, Series, and
Products. Academic Press, New York.

6. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate
Distributions. Houghton Mifflin Com., Boston.

7. McCool, J. I. (1991). Inference on P( <Y X ) in the Weibull case.
Communications in Statistics - Simulation & Computation 20, 129-148.

8. Oberhettinger, F. (1974). Tables of Mellin Transform. Springer-Verlag, New
York, New York.

9. Pal, M., Ali, M. Masoom, and Woo, J. (2005). Estimation and testing of
P( >Y X ) in two parameter exponential distributions. Statistics 39, 415-428.

10. Rohatgi, V. K. (1976). An Introduction to Probability Theory and Mathematical
Statistics. John Wiley & Sons, New York.

11. Saunders, S. C. (2007). Reliability, Life Testing, and Prediction of Service Lives.
Springer, New York.


