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Abstract
Qualitative robustness, influence function, and breakdown point are three main concepts to judge an
estimator from the viewpoint of robust estimation. It is important as well as interesting to study relation
among them. This article attempts to present the concept of qualitative robustness as forwarded by first
proponents and its later development. It illustrates intricacies of qualitative robustness and its relation with
consistency, and also tries to remove commonly believed misunderstandings about relation between
influence function and qualitative robustness citing some examples from literature and providing a new
counter-example. At the end it places a useful finite and a simulated version of qualitative robustness
index (QRI). In order to assess the performance of the proposed measures, we have compared fifteen
estimators of correlation coefficient using simulated as well as real data sets.

Keywords: Breakdown Point, Influence Function, Qualitative Robustness and
Qualitative Robustness Index.

1. Introduction
Hampel in his Ph.D. thesis (1968) developed three concepts: qualitative robustness (also
 -robustness), breakdown point and influence function to assess robustness in
estimation and thus raised rigorousness in robust estimation to a satisfactory level. He
developed qualitative robustness to uphold qualitative side of robustness gauging
distributional robustness,  -robustness; a form of qualitative robustness suitable for
dependent observations, breakdown point to quantify global side of robustness and
influence function to quantify infinitesimal side of robustness. In Huber’s (1972) words,
“Hampel (1968) recognized and sorted out the stability aspect of robustness, in close
analogy to stability of a mechanical structure (say of a bridge): (i) the qualitative aspect: a
small perturbation should have small effects; (ii) the breakdown aspect: how big can the
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perturbation be before everything breaks down; (iii) the infinitesimal aspect: the effects
of infinitesimal perturbations.” In Robust Statistics parameters are considered as
functionals;    T F where domain is  XS , set of finite signed measures defined on
the sample space or a subset of it (such as  XS p , set of probability measures) and

co-domain is R k or R or a function space or set of sets of a metric space. Fundamental
concept of robustness is directly or indirectly related to continuity or differentiability of
T. A natural sample estimator of T F( ) is provided by statistical function T Fn( ) based
on the sample d.f. Fn . It is intuitively obvious that when T is continuous at F and Fn is
near F , T Fn( ) is near T F( ) . Equicontinuity w.r.t. n is more desirable. “ Continuity”-
one of the fundamental concepts of Classical Analysis, which was generalized to spaces
which include Euclidean spaces during first two decades (Frechet, 1906 (metric space);
Hausdorff, 1914 (topological space)) of last century is the backbone of the concept;
“Qualitative Robustness” of estimators. If T is differentiable at F, one can find the
differential of T and thereby can measure the nearness of T Fn( ) to T F( ) due to
infinitesimal change in F through F n . Now arises the question how one can define and
check continuity and differentiability of T. Continuity of T is related to qualitative
robustness, while differentiability to quantitative and infinitesimal robustness. It is
important as well as interesting to study relation among them, specially the relation
between qualitative robustness and influence function because both deal effect of small
perturbations. Hampel discussed and elaborated this concept at the outset of his thesis,
breakdown point and influence function in the latter part. His seminal article on
qualitative robustness (1971) was published three years before his mostly quoted article
on influence function (1974). Breakdown point attracted wide range of researchers only
after the development of finite version of breakdown point by Donoho (1982) and
Donoho and Huber (1983). Qualitative robustness, though no less important than the
other two concepts from the viewpoint of robustness has gained less popularity. Most
probably its mathematical complications and absence of finite versions have acted behind
this present but undesirable unpopularity.

The concepts of qualitative robustness and  robustness (more restrictive concept than
qualitative robustness) introduced by Hampel (1968 and1971) were extended in different
directions in last eighties. Huber (1977 and 1981) modified Hampel's definition
suggesting asymptotic equicontinuity of sampling distribution of the estimators with
respect   to n on the ground that nonrobustness gets worse for large n. Rieder (1982) and
Lambert (1982) introduced qualitative robustness in hypothesis testing, Boente et al.
(1987) following Papatoni-Kazakos and Gray (1979) and Cox (1981) generalized
qualitative robustness for stochastic processes. Cuevas (1987 and 1988) adjusted some
results of Hampel (1971) and Huber (1981) in the context of abstract inference. He
showed incompatibility of consistency and qualitative robustness in the case of kernel
density estimators. Cuevas and Romo (1993) and Nasser (2000) applied this concept in
nonparametric bootstrapping and Basu et al. (1998) in Bayesian inference. In case of M-
estimators Clarke (1983) extended Huber’s results forwarding sufficient conditions for
not only weak-continuity (qualitative robustness) but also Fréchet differentiability at a
particular parametric model. In 2001 he enriched his previous results showing global
weak continuity of some well-known M-functionals in neighbiurhood of a prarametic
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model. Fasano et al. (2012) advocated for a novel form of weak differentiability to prove
consistency, asymptotic normality and qualitative robustness of M-estimates under more
general conditions than those required in standard approaches. Daouia and Ruiz-Gazen
(2004) etc studied qualitative robustness of nonparametric frontier estimator. Hable and
Christmann (2011) showed weak continuity of support vector machines, hence its
qualitative robustness and thus combining with the existence and uniqueness of support
vector machines, they can be treated as the solutions of a well-posed mathematical
problem in Hadamard's sense. Mizera (2010) and Krätschmer et al.(2012) tried to
develop basic concept of qualitative robustness in two different directions - Mizera
(2010)  presented connection between weak continuity and qualitative robustness in full
generality and under minimal assumptions taking Prokhorov metric on both set of models
and set of sampling distributions while Krätschmer et al.(2012) using different metric
proposed  index of qualitative robustness  to order statistical procedures on the scale 0 to
∞ in place of qualitative division of robust and non-robust procedures.

In this article we shall try to examine concept of qualitative robustness and its relation
with influence function and thereby to alleviate some related and common
misunderstandings. In Section 2 we provide and discuss model-based definitions of
qualitative robustness as forwarded by Hampel (1968 and 1971), its later development by
Huber (1977 and 1981), their results and their complications through some new
propositions. In Section 3 we discuss works of Mizera (2010) and Krätschmer et
al.(2012) more elaborately while in Section 4 we put forward definition of influence
function and some fact regarding its relation with qualitative robustness with a new
counter example, and place a finite-version and an index of qualitative robustness in
Section 5. Finally, we conclude the work in Section 6.

2. Qualitative robustness
2.1. Gist of Hampel’s paper (1971) and Huber’s results (1981)
Hampel (1968 and 1971) gave definition of qualitative robustness (Bahadur and Savage
(1956) fore-shadowed this idea) and continuity of Tn when sample space is X, a polish

space with metric d and parametric space is Rk . Both spaces are endowed with
Borel  algebra to make them measurable. He deduced two main theorems, three
lemmas and two corollaries to show relation between concept of qualitative robustness
and continuity of Tn in two cases – i) The general case   T T Fn n n and ii) The

particular case   T T Fn n . Staudte (1980) and Staudte and Sheather (1990) followed
the definition and theorems of Hampel (1971). Both Hampel (1968 and 1971) and Huber
(1977 and 1981) cited the result of Strassen (1965) to show Prokhorov metric is intuitive
to catch up (i) rounding and grouping errors (small errors occurring with large
probability) and (ii) gross error (large errors occurring with low probability). Huber
quoted and proved two results due to Prokhorov (1956) – i) The Prokhorov metric
metrizes the weak topology on S Xp ( ) , the set of probability measures on Xi,e it
encompasses weak convergence that is the case of idealized  approximation of the
underlying chance mechanism and ii) S Xp ( ) with the topology is a polish space.
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Huber’s generalization of Hampel’s definition. Huber generalized the definition of
Hampel on the ground that for “non robust” statistics the modulus of continuity typically
gets worse for increasing n. His definition –  nT is qualitative robust at 0F

))X(SF()nn.(t.sn00( p00  
  ))T(L),T(L(d)F,F(d nFnF0201 )

i.e. 1,)(: dXSh pn 2,)( dRS k
p with )()( nFn TLFh  is asymptotically equicontinuous

w.r.t. n at 0F . id are metrics that induce weak topology. In Hampel’s definition  nh is
equicontinuous w.r.t. for all n. id are Prokhorov metrics.

Comment 1.It is clear if  nT is qualitative robustness at F in Hampel’s sense, it is
qualitative robustness at F in Huber’s sense, but converse is not necessarily true.

2.1.1. Three main results of Hampel (1971 and 1986)

Definition 2. A  T nn :  1 is continuous at F 0 0
 0 n,m0 , F Fn m, ;   ),(),()()( nnFmFn FFFFXSFXSF

mn


)()( mmnn FTFT   (where Fj , a discrete probability measures whose atoms have

probability equal to
1
j

or multiple of )
1
j
.

Let )( nn FTT  , then T is weakly continuous at FTn is continuous at F. Converse is
not true.

Theorem 1. (Also theorem 1 in Hampel’s paper) If i)  nT is continuous at F and ii) Tn is
continuous as point function on X n ,  n, then nT is robust at F.

Comment 2.Let )( nn FTT  and T be continuous at F, and, )( nFT continuous point
function on X n n. Then )( nn FTT  , is robust at F. Since )( nn FTT  is nearly always
continuous point function on X n n, weak-continuity of T at Fo qualitative robustness
of )( nn FTT  at Fo. For X R and )( nn FTT  , Huber (1981) proved, condition ii in
theorem is not required if Huber's definition is adopted (discussed below). Even for
general c.s.m.s X, the statement is true is shown in the following subsection.

Theorem 2. (Lemma 3 in Hampel's (1971)let  nT be robust at Fo and consistent at all G
in nbdof Fo . Then )(GT [where )()( GTGT p

n  ] is continuous at Fo.

Comment 3. Let )( nn FTT  be robust at Fo and consistent at all G in a nbd of Fo(with
   GTGT  ). Then T is continuous at Fo.



Qualitative Robustness in Estimation

Pak.j.stat.oper.res. Vol. VIII No.3 2012 pp619-634 623

Theorem 3. (Theorem 2 in Hampel's (1971), Let )( nn FTT  . Then T is continuous at all
F nT is robust and consistent, tending to FFT )( )(XSK p , relatively
compact,

F )(XS p G )(XS p ,   )()(),( GTFTGFKF

The theorem is mathematically very nice but looks very strict from practical viewpoint.

2.1.2. Huber’s results

Theorem 4.(Proposition 6.2 (Huber, 1981)). Assume that  )( nn FTT  is consistent in
anbd of F.  Then T is continuous at F nT is robust at F.

Comment 4. a) He proved it taking X R and d1 = vyeL  metric, d2 = Prokhorov
metric. He used the result d2 ( yx  , )=(x yd, )= d(x,y). It is only true when
d(x,y)  1. But there is no mention of the condition. Huber assumed the well-known
fact, for any metric space X d,  a metric d1 s.t. d1 1 and X d, is homeomorphicto

X d, 1 .

Comment 5.His proof clearly indicates that this theorem has two parts:

a) T is continuous at F Tn is qualitative robustness (in Huber’s sense) at F. We should
note the difference between this result and Hampel’s theorem 1. Condition ii in Hampel’s
theorem is required to prove,  hn is equicontinuous at F, where n n 0 . We have
demonstrated in the first proposition of the next section the same holds for general
c.s.m.s.
b) Tn is q.r at F. and consistent at G in a nbd of F  T is continuous at F. Here he also
assumed    GTGT  without mentioning. All these are more clarified with an example
in the next section.
The former result does not hold in Hampel’s sense, while the latter does in both sense.

Comment 6. By Polya’s theorem T is Kolmogorov (Kuiper) continuous at F T is
weakly continuous F (F is continuous). So we can infer that T is Kolmogorov (Kuiper)
continuous at F Tn is qualitative robustness ( in Huber’s sense) when F is continuous(
Staudte 1980). It is well known that Kolmogorov metric is equivalent to Kuiper metric.
We extend the result in the following subsection in the case X Rm assuming F is
absolute continuous. So we can rewrite Huber’s theorem 6 as follows: Assume
that )(FTTn  is consistent in an nbd ofF, F is continuous. Then T is Kolmogorov-
continuous at F  nT is robust at F (Parr, 1985). This reformulation might be easier to
handle. These results seem very important from the viewpoint of attempt to study
continuity and differentiability of T in the same topology. Staudte and Sheather (1990)
gave due credit for the inception of the idea to Hampel (1968 and 1971) and briefly
discussed qualitative robustness. For more detailed discussion they pointed to Staudte
(1980) where he followed Hampel’s definition avoiding Huber’s one and described the
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same relation between continuity and qualitative robustness as given by Hampel (1968
and 1971). Jureckova and Sen (1996) briefly quoted the definition of qualitative
robustness of Huber and gave the comment:

“The weak continuity of )(( nn GTT  at G (here G is the true d.f. of X1 ) and its
consistency at G in the sense that )(GTTn  almost surely (a.e) as n  characterize
the robustness of Tn in a nbd of G”. Our comment 5 and the new result in proposition 3
indicate that the sentence may lead one to some inappropriateness due to its briefness.

2.2. New results

2.2.1. Three New Propositions.
This subsection upholds three new propositions some of which are indicated above.

Proposition 1. If T is continuous at F , )(( nn GTT  is qualitative robust at F in Huber’s
sense for general c.s.m.s. w.r.t. Prokhorov metric.

Proof.  First part of proof of theorem 2 in Cuevas (1988) begets the result.

In this regard we can quote from Cuevas and Romo (1993), “It is known (Hampel, 1971)
that if that T is continuous on some  0FU then the sequence  nT is qualitatively robust
at F0 .”  Our discussion demonstrates, the statement is not precise. Not in Hampel’s but in
Huber’s sense, continuity of T over a nbd is equivalent to qualitative robustness of Tn

over the nbd. To get results in Hampel’s line we need continuity of T over whole
.overcontinuousisor)( nXTXS n

np  Now using the above proposition and Ranga Rao’s
result the following proposition is proved.

Proposition 2. Assume that X= kR and )(( nn GTT  is consistent in anbd of F, F is
absolute continuous. Then T is Kolmogorov-continuous at F is robust at F.

Proof .

Necessary part:  Ranga Rao’s (1962, p-665) result implies that T is Kolmogorov-
continuous at F T is weakly-continuous at F, and by the above proposition,  nT is
robust at F.

Sufficiency part: From comment 2 after Hampel’s theorem 2 (in our article) we have,
 nT is robust at F T is weakly-continuous at F, i.e. T is Kolmogorov-continuous at F.
Now the following results clarify the intricacies of the above theorems and propositions
to some extent:

Proposition 3
Let us define two functional on, TT  XSp ;
1)     .ofjumps theofsum,: FFTRXST p 

2)     .1,:   FTRXST p
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Results:
a)     FFTFTT p

nn   .

b)   .atrobustis FFFTT nn 
c) T is not Kolmogorov-continuous (i.e. not weakly continuous) at F, where F is not

discrete.

Proof:

a) It is obvious.
       

.definition
 thefromallatrobustis.,,1 FFTTXSpGFnTLTL nnnGnF  

b)    
    .1and1since

but,Then.d.f.empiricalbeLet


  

FTnFT
FTFTFFF

n

nnn

The above results demonstrate two things – i) qualitative robustness does not imply
consistency of estimators and ii) qualitative robustness and consistency should be the
minimum properties of an estimator from the viewpoint of robust estimation. Cuevas
(1987 and 1988) generalized some of the Hampel’s and Huber’s results and applied them
in areas of abstract inference, such as density estimation, stochastic process. He never
mentioned the fact - all the results of Hampel and Huber could be easily generalized in
about identical form. All the results of Hampel and Huber can be generalized to the case
of “generalized statistics” (statistics which take values in the general complete separable
metric spaces"). It requires only two modifications;
1) using the metric  , yxd of parametric space in place of yx  and adjusting the

definitions with the metric.
2) applying Cantor’s Intersection Theorem for general complete metric space in

proving lemma 2 in Hampel (1971).

3. Contributions of Mizera (2010)   and Krätschmer et al.(2012)
Mizera (2010) placing Hubers’ definition of qualitative robustness of a statistics tn
(estimators or test statistics) explained the complicacy  of  median  elaborately in order to
present as well as to generalize the intricate relationship between  qualitative robustness
and weak continuity,

He generalized Huber’s theorem 6.2 in three directions:

i) He extended area of application of the theorem using Prokhorov metric in place of
Levy metric deriving an Uniform Glivenko-Cantelli property (Mizera, 2010, lemma 4)

ii) He also extended the definition of weak continuity to adjust set-valued functional:

Definition of weak continuity. A functional T is called weakly continuous at P, if for
any ε>0
there is δ >0 such that
π(P,Q) ≤ δ implies d(θ, τ) < ε
for any value θ and τ of T at P and Q, respectively.
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His main theorem: Theorem 1. Suppose that a procedure tn is represented by a functional
T. If T is weakly continuous at P, then any lawful version of tn is qualitatively robust at P.
He then defining coining the term, “regular functional” presented theorem 2 in order to
illustrate complicacy of converse theorem 2, i.e. to show how weak consistency and
qualitative robustness Implies weak continuity.

Definition of regular functional. A representation of a procedure tn by a functional T is
called regular, if (i) it is consistent for every P in the domain of T; and (ii) for every P
and every τ  T(P), there is a sequence Pν of empirical probabilities weakly converging
to P, the functional T is univalued at every Pν, and T(Pν) converges to τ .

Theorem 2.Suppose that the representation of a procedure tn by a functional T is regular.
If some lawful version of tn is qualitatively robust at P, then T is weakly continuous (in
particular, uniquely defined) at P.

Observing the fact that though all the classical moments are nonrobust by Hampel’s
definition, the higher moments are more affected by outliers than lower moments,
Krätschmer et al.(2012) introduced a new concept of qualitative robustness that applies to
a very large class of tail-dependent statistical functional T. The focus of the approach lies
in specifying a metric d on the set of probability models for which T becomes a
continuous functional at P. For R as sample space they used a weighted Kolmogorov-type
distance whereas the sum of the Prokhorov metric and a moment distance was proposed
for Rn or any polish space. Then they established extensions of Hampel's theorem
essentially stating that when T is continuous with respect to d then it is also qualitatively
robust in the sense that Hampel (Huber) condition holds if we choose the Prokhorov
metric for d2.

The proofs of these results rely on strong uniform Glivenko-Cantelli theorems in fine
topologies, They also examined the sensitivity of tail-dependent statistical functionals
w.r.t. infinitesimal contaminations, and proposed a new notion of infinitesimal
robustness. The theoretical results were illustrated by means of several examples
including general L- and V-functionals.

Readers would  certainly feel interested to  understand  the sentence--“Nevertheless, we
emphasize that the concept of qualitative robustness depends on the specific choice of the
metrics d and d and not just on the topologies generated by them” as it differs from
comments of other prominent  researchers on robustness including proponents in this
field. Bur readers’ interest would not be satisfied as this point was not illustrated as they
pledeged.

4. Influence function
4.1 Definition
The most central concept in Hampel’s fundamental contribution to the theory of
robustness (Hampel, 1968, 1971 and 1974) is the “influence function” (originally termed
as “influence curve”). In his seminal article in 1974 he first gave the definition for
particular case (both sample space and functional range space are R or subsets of R )
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and then for general case (sample case- X , a complete separable metric space (c.s.m.s.)
and functional range space- kR ). Let T be a kR -valued mapping from a subset of the
probability measures on X ,  XDT , a finitely full and convex subset of  XS p . Let

)X(DF T and x denote the atomic probability measure concentrated in any given
Xx . Then the vector-valued influence function of T at F (here is a measure) is

defined point wise by

  





)F(TF)1(TF,xIF x
T



0

lim)( 1.1

Though for a particular T it is generally considered as a function of Fx and , later, for
brevity, it is denoted by ).x(IF " The IF is mainly a heuristic tool, with an intuitive
interpretation " (Hampel et al.,1986, p-83). It can be intuitively interpreted as a suitably
normed asymptotic influence of outliers on the value of an estimate or test statistic

).F(T n It is a local robustness property. Various characteristics of an influence functions
are used to develop various concepts such as Gross Error Sensitivity (GES), 
(supremum of )(xIF w.r.t. x for fixed F) and maximum-bias curve over a local
neighbourhood of F (graph of GES vs F), Local -Shift Sensitivity (LSS) (sup of slope
of )(xIF ),  , Rejection Point,  (related to upper limit of the range outside which
influence function vanishes) etc to delineate definite but  different aspects of local
robustness property. As important by- products of the attempt to quantify the effect of
outlier on the estimators Change of Variance Function (CVF) has been developed
from )(xIF to plot asymptotic variance vs. F. The heuristics of influence function are
heuristics, not theorems. But tendencies to use them as theorems are not rare in literature
(Davies, 1993).

We can easily prove that all moments are Kolmogorov-discontinuous at continuous
models, hence nonrobust. Their influence functions are continuous but unbounded. Then
one may be tempted like Koenker (2005) to infer wrongly that unbounded influence
function implies non-robustness.

4.2 Relation between influence function and qualitative robustness
There exists no direct relation between influence function and qualitative robustness. The
following questions and their answers mainly by examples illustrates their relation:

 Does a bounded influence function imply weak continuity of the functional? No. It
is well –known that the efficient L-estimate of location parameter for the logistic is
not robust, and ,0)(b1   even  is finite.

Does a continuous influence function of bounded variation imply weak continuity of
the functional? No. )x(IF of the above-mentioned

estimator = constant,a
 xe1

1 which is continuous and strictly increasing.

The following new counter example shows that even two-valued almost constant
influence function does not guarantee the weak continuity of the functional;
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Let )F(T = size of the largest atom and y0F  . Then it can be easily shown that

)(xIF yx1
yx0



if
if .

But T is not weakly continuous at 0F since

n
),y(NG

2

n


 0
w F and 0)G(T n  1)F(T 0  .

Does a weak continuous functional provide finite  ? No.  The efficient R-estimate
of location parameter for the normal distribution, the normal scores estimate has
 = with )x(IF =x, but T is weakly continuous at the model.

Does a Hadamard differentiable functional beget a bounded )x(IF ? No. If the
derivative is weakly continuous, we get bounded and continuous )x(IF . We also
get weak continuity of T if V, the associated vector space is topologized by
Kolmogorov norm and F is continuous (see Nasser, 2000; proposition 4.6.1).

Does a Frėchet differentiable M-functional at F , which is Kolmogorov-continuous
at F have always a bounded influence function? Yes (Clarke, 1983).

The discussions amply substantiate our comments made at the beginning of the
subsection. We should be very cautious to comment in general about relation between
influence function and qualitative robustness. In a particular class of estimators we may
have clear-cut relation between the two.

5. A finite version and a simulated version of qualitative robustness index
5.1. Finite version
We have already mentioned that non-availability of finite sample version of qualitative
robustness is one of the main reasons behind its less popularity than the two other
concepts influence function and breakdown point. While proposing a definition of
finite-version qualitative robustness, we keep in mind that an estimator with finite
breakdown point equal to zero should have empirically lower QRI whereas estimators
with high breakdown point should have higher QRI. We propose two versions of
SQRI(SQRI 1 and SQRI 2):

1
( 1)

ˆ ˆ1 max ( )

1
( 2)

ˆ ˆ1 max ( ) ( )

j

i j

SQRI veresion
j

SQRI veresion
i j

 

 



 


 

It is easy to prove i) It’s maximum value is 1. It’s minimum value is zero or above zero,
for example, for simple correlation co-efficient, 1/3. The more SQRI is the more
qualitative robust the estimator is. Alam et al. (2008) compared 15 estimators of simple
correlation co-efficient investigating the bias, standard error, MSE, length of 90
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percentile interval, sensitivity curve of each estimator under a variety of situations and
also employed probability plot, box plot and perspective plot to judge their performances.
The normal score estimator showed the best performance overall.

We have made experiments on simulated as well as real world problems to apply our
proposed SQRI method using 15 estimators of correlation coefficient. Detailed
information of data sets are in appendix A. The results show that the proposed method
successfully chooses the best robust estimator as Alam et al. (2008), the normal score
estimator. The results are given in Table 1 and Table 2 (Appendix B). The visualization
of data sets are in Figure 1-3 (Appendix B).

5.2. A simulated version of qualitative robustness index
To assess the effect of ε% contamination on the sampling distribution of the measures we
define Qualitative Robustness Index, QRI(є)= it should be in same line in  equation

Here qi is the ith quantile of a measure at a model and c

i
q , the ith quantile of the measure

at the model contaminated by ε% contamination. A slight variation of this measure was
used in Alam et al. (2010) to quantify effect of contamination on different types of
canonical correlation coefficient at multivariate normal models.

6. Conclusion
“Qualitative robustness is of little help in the actual selection of a robust procedure suited
for a particular application. In order to make a rational choice, we must introduce
quantitative aspects as well.”(Huber, 1981,p-73)  As example, both for location and scale
parameters, there exit three class of robust estimators – M-type, L-type and R-type –
under mild conditions; and each class contains different robust subclasses (Huber,1981;
Chapter 3 and 5; and Hampel et al., 1986; chapter 2). None the less we should start from
a consistent and qualitative robust procedure and then seek procedures with extra robust
criteria as such high breakdown point, smooth and bounded influence function, uniform
asymptotic normality etc.
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Appendix A
Data-1.50 sampled schools have drown from 82 law schools (Efron and Tibshirani,1993,
Table 3.2,p.21).

Data-2. 45 sampled schools have drown form 82 law schools and 5 samples have drown
from bivariate normal distribution with mean vector (38.31, 599.66),unit variance for
both variable and covariance 0.1.

Data-3. Biochamical data (Maronna et.al, 2006,Table 6.1, p. 177).

Data-4. 50 sampled from bivariate normal distribution with mean vector (0,0),unit
variance for both variables and covariance 0.5.

Appendix B
Table1: Results of SQRI (version-1) of 15 correlation estimators

Estimators Data-1 Data-2 Data-3 Data-4
0.98039 0.93458 0.76336 0.95238
0.98039 0.96154 0.82645 0.96154
0.98039 0.95238 0.82645 0.97087
0.96154 0.95238 0.69444 0.93458

0.94340 0.95238 0.84746 0.93458
0.95238 0.95238 0.81967 0.95238
0.96154 0.97087 0.90090 0.96154
0.95238 0.96154 0.81301 0.95238
0.98039 0.89286 0.69930 0.87719
0.92593 0.93458 0.81301 0.91743
0.98039 0.98039 0.95238 0.98039
0.92593 0.97087 0.81967 0.94340
0.95238 0.89286 0.86207 0.90909
0.97087 0.91743 0.78125 0.90909
0.96154 0.68966 0.86207 0.91743

Table2: Results of SQRI (version-2) of 15 correlation estimators
Estimators Data-1 Data-2 Data-3 Data-4

0.96154 0.90090 0.69444 0.91743
0.96154 0.92593 0.76923 0.93458
0.96154 0.92593 0.75188 0.94340
0.93458 0.92593 0.60606 0.88496
0.90909 0.91743 0.74074 0.90909
0.92593 0.92593 0.72993 0.93458
0.93458 0.94340 0.81967 0.93458
0.92593 0.96154 0.71429 0.92593
0.98039 0.85470 0.58824 0.86957
0.87719 0.88496 0.70922 0.87719
0.96154 0.97087 0.90909 0.96154
0.86957 0.95238 0.77519 0.90090
0.92593 0.84034 0.86207 0.88496
0.94340 0.90090 0.65359 0.86957
0.95238 0.64103 0.86207 0.90909
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(i) Pearson correlation coefficient, rp(Pearson, 1896), (ii) An absolute value CC, rav(Gideon,1998), (iii) An
absolute value from median CC, ravm(Gideon,1998),(iv) Median-type CC, rmad(Gideon,1998)
(v) Spearman’s CC, rs(Spearman, 1904),(vi) Spearman’s Modified Footrule CC, rmf(Gini,1914)
(vii) Kendall’s CC, rk(Kendall,1938),(viii) The Greatest Deviation CC, rgd(Gideon and Hollister,1987)
(ix) The quadrant Estimate CC estimate, rQ : (Sheppard, 1899;Blomqvist,1950),(x) Transformation of
Kendall’s CC estimate, rK(Kendall, 1970),(xi) Normal Scores CC estimate, rns(Fieller, Hartley and Pearson,
1957; FiellerandPearson, 1961),(xii) The Sum and differences of the standardized observed values CC
estimate, rssd,(Gnanadesikan and Kettenring, 1972),(xiii) Bivariate trimmed CC estimate, rbvt(Gnanadesikan
and Kettenring, 1972),(xiv) Bivariate Winsorized CC estimate, rbvw(Devlin et al. 1975)
(xv) Trimming with respect to the principal components estimate, rpct: (Devlin et al.1975)

Fig1. Scatter plot of 50 sampled Schools. Fig2. Scatter plot of 44 sampled Schools and 5
contaminated samples.

Fig3. Scatter Biochemical data


