
Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp605-617

Statistics in the Twenty-First Century: Special Volume
In Honour of Distinguished Professor Dr. Mir Masoom Ali
On the Occasion of his 75th Birthday Anniversary
PJSOR, Vol. 8, No. 3,  pages 605-617,  July 2012

Entropy and Residual Entropy Functions
and Some Characterization Results

Ramesh C. Gupta
Department of Mathematics and Statistics
University of Maine, Orono, ME 04469-5752, U.S.A.
Ramesh.Gupta@umit.maine.edu

H.C. Taneja
Department of Applied Mathematics,
Delhi Technological University, Delhi-110042, India
hctaneja@rediffmail.com

Abstract
In this paper, we have developed conditions under which the entropy function and the residual entropy
function characterize the distribution. We have also studied some stochastic comparisons based on the
entropy measure and established relations between entropy comparisons and comparisons with respect to
other measures in reliability. Conditions for decreasing (increasing) uncertainty in a residual life
distribution are obtained. Some relations between the classes of distribution in reliability and the classes of
distribution, based on the monotonic properties of uncertainty, in a residual life distribution are obtained.

Keywords and Phrases: Stochastic comparisons, IFR (DFR) distributions, Order
statistics, Residual life distribution, Decreasing (increasing) uncertainty residual life.

1. Introduction
Let X be a non-negative random variable with distribution function ( )F x and
probability density function ( )f x . Shannon (1948) introduced a measure of uncertainty
associated with distribution function ( )F x as

0
( ) = ( ) log ( ) = [log ( )] .H F f x f x dx E f X


  (1)

The above differential entropy plays a central role in information theory and a large
number of research work has been reported on it in the literature.

The entropy measure ( )H F measures the uncertainty associated with the distribution
function ( )F x . As ( )H F increases, ( )f x approaches a uniform distribution.
Consequently, it becomes more difficult to predict an outcome of a draw from ( )f x . In
fact, a very sharply peaked distribution has a very low entropy, whereas if the probability
is spread out, the entropy is much higher. In this sense, ( )H F is a measure of uncertainty
associated with ( )f x .
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The entropy ( )H F has been computed for various distributions. For example Verdugo
Lazo and Rathie (1978) presented a table for a large class of continuous distributions.
Ahmed and Gokhale (1989) derived expression of entropy for several continuous
multivariate distributions including the multivariate normal, multivariate Pareto,
multivariate exponential and multivariate logistic distributions.

It is obvious that the function ( )H F does not characterize the distribution. In this
connection Ebrahimi (2001) presented results that identify certain conditions based on the
entropy under which two random variables are stochastically equal. Ebrahimi et al.
(2004) also studied some stochastic comparisons in terms of entropy measures and
established relations between entropy comparisons and comparisons with respect to some
other measures used in reliability studies. The entropy of order statistics based on a
random sample from a distribution function ( )F x has been studied by various authors
including Ebrahimi at al. (2004), Yari and Borzadaran (2010), Tahmasebi and
Behboodian (2010), Baratpour et al. (2007) and Baratpour et al. (2008). Some of these
authors have characterized the parent distributions based on Shannon entropy of order
statistics and record values.

If we think of X as the lifetime of a new unit, then Shannon entropy ( )H F can be
useful for measuring the associated uncertainty. However, for a used unit ( )H F is no
longer useful for measuring the uncertainty about the remaining lifetime of the unit. In
such a situation, if the unit has survived up to time t , we consider the uncertainty of the
residual life distribution as( ; ) = − ∫ ( )( ) log ( )( ) (2)= 1 − ( )( ) log ( )
where ( )F t is the survival function corresponding to (.)F and ( )F x is its failure rate

defined by ( ) = ( ) / ( ).F x f x F x After the component has survived up to time t , ( ; )H F t
measures the expected uncertainty contained in the conditional density of X t given

>X t , about the predictability of remaining lifetime of the unit. Clearly for = 0t ,

0
( ;0) = ( ) log ( )H F f x f x dx


 represents the Shannon uncertainty contained in X .

Analogous to the residual entropy, the entropy of |X X t called the past entropy at time
t , has also drawn attention in the literature in the past decade or so. The past entropy is
given by ( ; ) = − ∫ ( )( ) log ( )( ) (3)= 1 − ∫ ( )( ) log ( ) , (4)
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where ( )F x is the reversed hazard rate function of ,X given by ( ) = ( ) / ( )F x f x F x .
Lately the reversed hazard rate has attracted considerable attention, see for example
Block et al. (1998), Di Crescenzo and Longobardi (2002, 2004) and Gupta and Gupta
(2007).

A natural question arises: whether ( ; )H F t and ( ; )H F t characterize the distribution. In
this connection, Ebrahimi (1996) proved a characterization of a lifetime distribution in
terms of the residual entropy. This was followed by Belzunce et al. (2004) who pointed
out that the proof of Ebrahimi (1996) was not valid without some additional assumption.
Under the additional assumptions Belzunce et al. (2004) proved that ( ; )H F t
characterizes the distribution. Gupta (2009) further studied this problem to determine, if
indeed such assumptions are necessary. Gupta (2009) presented a general result to
determine whether ( ; )H F t and ( ; )H F t determine the distribution. Ebrahimi and Pellery
(1995) studied some stochastic comparisons between two residual entropy measures and
established relation between some other stochastic comparisons used in reliability theory.
This was followed by Ebrahimi and Kirmani (1996 a) who further studied this measure
and obtained some new properties. They also obtained conditions for decreasing
(increasing) uncertainty in a residual life distribution.

The organization of this paper is as follows: In Section 2, we present conditions based on
the entropy function under which two random variables are stochastically equal. We also
study some stochastic comparisons based on the entropy measures and establish relations
between entropy comparisons and comparisons with respect to some other measures used
in reliability theory. Section 3 contains the entropy of order statistics based on a random
sample from a distribution . Some characterization results based on order statistics are
also presented. In Section 4, the concepts of residual entropy and the past entropy are
introduced and some characterization results based on these functions are presented.
Some stochastic comparisons based on residual entropy are presented in Section 5.
Conditions for decreasing (increasing) uncertainty in a residual life distribution are
obtained. Finally in Section 6, we present some conclusions and comments.

2. Characterization Based on Entropy Function
It is obvious that function ( )H F does not characterize a distribution function. In this
section we present condition under which the function ( )H F characterizes the
distribution. For this purpose, we present some stochastic comparison results as follows:

Let X and Y be two absolutely continuous random variables with distribution functions
F and G . Let F and G denote their survival functions with probability density
functions f and g , respectively. Then

(i) The random variable X is said to be stochastically smaller than Y (denoted by
st

X Y ) if ( ( )) ( ( ))E X E Y  for all increasing functions : R R  , whenever these
expectations exist. This is equivalent to ( ) ( )F x G x for all .x
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(ii) The random variable X is said to be smaller than Y in the increasing convex order

(denoted by )
icx

X Y if ( ( )) ( ( ))E X E Y  for all increasing convex functions : R R  ,
whenever these expectations exist. This is equivalent to∫ ( ) ≤ ∫ ̅( ) for all
,t provided the integrals exist.

(iii) The random variable X is said to be smaller than Y in the convex order (denoted by

)
cx

X Y if ( ( )) ( ( ))E X E Y  for all convex functions : R R  , whenever these
expectations exist. This is equivalent to ∫ ( ) ≤ ∫ ( ) for all ,t provided the
integrals exist and ( ) = ( )E X E Y .

Note that
st icx

X Y X Y  
and

cx icx
X Y X Y  

see Shaked and Shanthikumar(2007). We now present the following result.

Theorem 2.1 (Ebrahimi (2001)) Let X and Y be two absolutely continuous random
variables satisfying the conditions above with entropy function ( )H F and ( )H G
respectively. Then

(i)  If (a) ( ) ( ),H F H G (b)
st

X Y and (c) ( )g x is decreasing ( ( )f x is increasing),

then = .
st

X Y

(ii)  If (a) ( ) = ( ),H F H G (b) )
icx

X Y and  (c) ln ( )f x is increasing convex ( ln ( )g x is

decreasing convex), then =
st

X Y .

(iii)   If (a) ( ) = ( ),H F H G (b) )
cx

X Y and  (c) ln ( )f x is convex ( ln ( )g x is

concave), then =
st

X Y .

We now present some results which ensure that ( ) ( ).H F H G For that we have the
following definitions

1.   A non-negative random variable X is said to have increasing (decreasing) failure
rate IFR (DFR) if ( ) = ( ) / ( )XX Xt f t F t is increasing (decreasing).

2.  A random variable X is said to be less than Y in dispersion ordering (denoted by

)
d

X Y if
1 1 1 1( ) ( ) ( ) ( ), 0 1.F u F v G u G v v u         

3.   A random variable X is said to be less than Y in likelihood ratio ordering (denoted

by
lr

X Y ) if ( ) / ( )X Yf x g x is non increasing in x .
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4.   A random variable X is said to be less than Y in entropy ordering (denoted by
e

X Y ) if ( ) ( )H F H G .

5.   A random variable X is said to be less than Y in failure rate ordering (denoted by
FR

X Y ) if ( ) ( )F Gx x  for all 0x  , where ( )F x and ( )G x are the failure rates of
X and Y , respectively.

It is well known that
d st

X Y X Y  
and

, and .
lr st lr FR

X Y X Y X Y X Y     

It is also known that ,
d e

X Y X Y   see Oja (1981).

The following theorem gives conditions for two random variable X and Y to have
entropy ordering.

Theorem 2.2 (Ebrahimi et al.(2004)) Suppose X and Y are two nonnegative random

variables. If
st

X Y and X is DFR, then
e

X Y .

3. Entropy of Order Statistics

Suppose X is a continuous random variable with distribution function ( )XF x . It is well
known that = ( )XU F X has a uniform distribution in [0,1] . Let 1 2, , , nU U U be a
random sample from a uniform distribution [0,1] and 1 2< < < nW W W be the order
statistics, then , = 1, 2,iW i n has a beta distribution with density function

11( ) = (1 ) , 0 1,
( ; 1)

i n i
ig w w w w

B i n i
   

 
(3)

where ( ) ( )( ; ) = .
( )
a bB a b
a b

 
 

The entropy of a random variable X is given by

1 1

0

( ) = ( ) log ( ) ,

= log ( ) .

X X

X

H F f x f x dx

F u du










(4)

Hereafter the range of integration will not be shown and will be clear from the context .
Let 1 2, , , nX X X be a random sample of size n from a distribution ( ).XF x Let

1 2< < < nY Y Y be the order statistics. Then the entropy function of iY is given by

( ) = ( ) ( ) log ( )i n i i XH Y H W f y f y dy  (5)
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where ( )n iH W denotes the entropy of the beta distribution given by (5) and is given by
( ) = ln ( ; 1) ( 1)[ ( ) ( 1)] ( )[ ( 1) ( 1)]n iH W B i n i i i n n i n i n               (6)

where ( ) = ln ( )dz z
dz

  is the digamma function. We now present two examples.

Example 3.1 Let X be a random variable with exponential distribution
( )( ) = 1 , 0.x

XF x e x 

Putting = 1i in (8), we get

1
1( ) = 1 log .nH W n
n

 

Using (7) to calculate the entropy of first order statistics for exponential distribution and
substituting for 1( )nH W we obtain

1( ) = 1 log .H Y n
Similarly, for =i n , we obtain

( ) = 1 log log ( ) ,nH Y n n     
where = (1) = 0.5772   is the Euler's constant, for details see Ebrahimi et al.
(2004).

Example 3.2 Suppose X has a Pareto distribution with distribution function
1

( ) = 1 1 ( ) , > , > 0, > 0, > 0X
xF x x



    



 
  
  

(7)

and p.d.f.( ) = , >
Using (1) we get

  1( ) = ln ( 1) (1) ( ) .H F     
 

       
 

The p.d.f of the thi order statistics is given by

: ( ) = [ ( )] [1 − ( )] ( ).

Using the above relation for Pareto distribution given by (9), we get
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( 1) 11 11

:

1
1

1
( ) = 1

1

1 1 , > .

n i

i n

i

nn y yg y
i

y y



 





  
  

 


   




                    

              

The entropy expression for : ( )i ng y is given by

:

1

1

1 1( ) = ln 1 ln
1

[ (( 1) 1) 1] ln 1

(1 ) ln 1 1 .

i n

nn YH Y E
i

Yn i E

Yi E







 
  









                        
           
 

               

To calculate : ( )i nH Y , we need to calculate ln YE 


   
    

,
1

ln 1 YE




      
 

and

1

ln 1 1 YE






             

. These expressions, after some mathematical simplifications,

give

:

1

=0

1 1
( ) = ln ( 1)

1 1

1 (1) ( ( 1 ))( 1) [ ( 1) 1]
1

( 1) ( 1) ( 1)[ ( 1) ( )],

i n

i
l

i

n nnH Y n
i i

i n i l n i
l n i l

n n i i n i

 


   

   




      
           
                 

          



for details refer to Yari and Borzadaran (2010).

4. Characterization Based on Entropy of Order Statistics
We first present two characterizations of exponential distribution based on sample
minimum or maximum.
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Theorem 4.1 (Baratpour et al. (2007)) The hazard rate functions ( ; ) = ( )X x    for
some positive function ( )  if and only if

;( , ) ( , ) = log for all 1,i nH X H X n n  

where ;i nX is the first order statistics.

Theorem 4.2 (Baratpour et al. 2007) The reversed hazard rate function ( , ) = ( )x   
for some positive function ( )  if and only if

;( , ) ( , ) = log for all 1,n nH X H X n n  

where ;n nX is the maximum in a sample of size n .

We now present a general result for the characterization based on entropy of order
statistics.

Theorem 4.3 (Baratpour et al. 2007) Let X and Y be two continuous random variables
with distribution function ( )F x and ( )G y , respectively, whose supports 1S and 2S have
a common lower boundary b . Then for a fixed m , (1 )m n  , X and Y have the same
distribution if and only if

: :( ) = ( ), .m n m nH X H Y n m  (8)

Remark 1 The above result can be proved by using the Stone-Weierstrass Theorem.

Remark 2 Similar results based on entropy of record values can be obtained, see
Baratpour et al. (2007).

Remark 3 For more general results based on entropy of order  , see Baratpour et al.
(2008).

5. Characterization by Residual Entropy
As stated in the introduction, the residual entropy of a random variable X is given by

1( ; ) = 1 ( ) log ( ) ,
( ) Ft

H F t f x x dx
F t




 
where ( )F x is the failure rate of X . The past entropy function is given by

0

1( ; ) = 1 ( ) log ( ) ,
( )

t

FH F t f x x dx
F t

 
where ( )F x is the reversed failure rate of X . We first present the following results due
to Ebrahimi (1996).

Theorem 5.1 Let X be a nonnegative random variable with density function f and
residual entropy ( ; ) < , 0.H F t t  Also assume that ( ; )H F t is an increasing function
of t , then ( ; )H F t characterizes the distribution.

Proof: See Gupta (2009).



Entropy and Residual Entropy Functions and Some Characterization Results

Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp605-617 613

Remark If ( ; )H F t is decreasing, it has been shown by Gupta (2009) that the proof
given in Ebrahimi (1996) is not valid.

Remark Belzunce et al. (2004) provide another proof under the assumption that ( ; )H F t
is an increasing function of t .

The questions now remains as to whether the characterization result of the above
Theorem holds without the additional assumption that ( ; )H F t is an increasing function
of t .

Before answering this question we present the following result. Consider the problem of
finding a sufficient condition for the uniqueness of the solution of the initial value
problem (IVP)

0 0= ( , ), ( ) = ,dy f x y y x y
dx

(11)

where f is given function of two variables whose domain is a region 2
0 0, ( , )D R x y is

a specified point in D , y is the unknown function. By the solution of the IVP on an
interval ,I R we mean a function ( )x such that (i)  is differentiable on I ,   (ii)  the
growth of  lies in ,D (iii) 0 0( ) =x y and  (iv) '

0( ) = ( , ( )),x f x x  for all x I . The
following theorem together with other results will help in proving our characterization
result.

Theorem 5.2Let the function f be defined and continuous in a domain 2D R , and let
f satisfying a Lipschitz condition (with respect to y ) in D , namely

1 2 1 2| ( , ) ( , ) | | |, > 0,f x y f x y k y y k   (12)
for every point 1( , )x y and 2( , )x y in D . Then the function = ( )y x satisfying the initial
value problem ' = ( , )y f x y and 0 0( ) = ,x y x I  , is unique.

Proof See Gupta and Kirmani (2008).

For any function ( , )f x y of two variables defined in 2D R , we now present a
sufficient condition which guarantees that the Lipschitz condition is satisfied in D .

Lemma 5.1Suppose that the function f is continuous in a convex region 2D R .

Suppose further that f
y



exits and is continuous in D . Then the function f satisfies

Lipschitz condition in D .

Proof See Gupta and Kirmani (1998).

Using the above results, Gupta (2009) proved the following characterization theorems.
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Theorem 5.3. Let X be a non-negative continuous random variable with distribution
function (.)F and residual entropy ( ; ) < , 0.H F t t  Then ( ; )H F t characterizes the
distribution.

Theorem 5.4 Let X be a non-negative continuous random variable with distribution
function (.)F and past entropy function ( ; ) < , 0.H F t t  Then ( ; )H F t characterizes
the distribution.

Theorem 5.5 Let X be a non-negative continuous random variable with distribution
function (.)F and cumulative residual entropy function ( ; ) < , 0CRE F t t  where

( ; ) = ( ) log ( ) ,t t
t

CRE F t F x F x dx


 (13)

and ( )= , > .
( )

t
F xF x t
F t

Then ( ; )CRE F t characterizes the distribution.

Remark For some examples, see Gupta (2009).

5.1 Stochastic comparison Based on Residual Entropy

We first present the following definitions.

Definition: A random variable X is said to have less uncertainty than Y if

( ; ) < ( ; )H F t H G t for all 0,t  and we write this as .
lu

X Y

Ebrahimi and Pellery (1995) proved the following:

Theorem 5.6 Let
lr

X Y and ( )F x or ( )G x be non-increasing in x . Then
lu

X Y .

Example 5.1 Suppose ( ) = exp( )f t t and ( ) = tg t e . It follows from the above theorem

that
lu

X Y .

Remark: For more results and examples on the uncertainty ordering , see Ebrahimi and
Pellery (1995). The above result can be strengthened for the failure rate ordering as
follows.

Theorem 5.7Let
FR

X Y and let ( )F x or ( )G x be non increasing in x . Then
lu

X Y .

We now present the following definition for the monotonicity of ( ; )H F t .

Definition: A random variable X is said to have decreasing (increasing) uncertainty of
residual life (DURL (IURL)), if ( ; )H F t is decreasing (increasing) in 0t  .
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The following result gives the relationship between the monotonicity of the failure rate
and the monotonicity of the residual entropy.

Theorem 5.8 If X has increasing (decreasing) failure rate (IFR (DFR)), then X is
DURL (IURL).

Proof: See Ebrahimi (1996).

The above result can be strengthened for mean residual life function. For that we have the
following definitions.

Definition The mean residual life function (MRLF) of a random variable X is defined as

( )
( ) = ( | > ) = .

( )
t

F

F x dx
t E X t X t

F t




  (14)

The relation between the failure rate ( )F t and ( )F t is
'1 ( )( ) = .
( )
F

F
F

tt
t


 (15)

Definition A random variable X is said to have decreasing (increasing) mean residual
life (DMRL(IMRL)) if ( )F t is decreasing (increasing) in t .

It is well known that IFR  DMRL. The following is an extension of the previous
theorem for DMRL (IMRL) distributions.

Theorem 5.9 If X has decreasing (increasing) mean residual life, then X is DURL
(IURL).

Proof See Ebrahimi and Kirmani (1996 b).

Remark Ebrahimi and Kirmani (1996) have presented an example to show that the
converse of the above theorem is not true.

In many cases of practical interest one would like to know whether the DURL (IURL)
property of X is inherited by a transformation of X . The following Theorem provides a
partial answer.

Theorem 5.10 (a)   If X is IURL and  is non-negative, increasing and convex, then
( )X is also IURL.

(b)  If X is DURL and  is non-negative, increasing and concave, then ( )X is also
DURL.

Proof See Ebrahimi and Kirmani (1996 b).
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6. Conclusions and Comments
Entropy is an index that is used to measure dispersion, volatility risk and uncertainty.
This concept was formerly introduced by Shannon (1948) in the information theory
literature. If we think of X as the lifetime of a unit, then ( )H F can be useful for
measuring the associated uncertainty. For a component, which has survived up to time t ,

( ; )H F t measures the uncertainty about the remaining life of the component. In this
paper, we have developed condition under which the entropy function and the residual
entropy function characterize the distribution. We have also studied some stochastic
comparison based on the entropy measure and established relations between entropy
comparisons and comparisons with respect to other measures in reliability. The concepts
of residual entropy and the past entropy have been introduced. Conditions for decreasing
(increasing) uncertainty in a residual life distribution are obtained. We hope that this
survey paper will prove helpful to the researchers in studying the concept of entropy
further.
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