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Abstract
This paper deals with the linear aggregation problem. For the true underlying micro relations, which
explain the micro behavior of the individuals, no restrictive rank conditions are assumed. Thus the
analysis is presented in a framework utilizing generalized inverses of singular matrices. We
investigate several estimators for certain linear transformations of the systematic part of the
corresponding macro relations. Homogeneity of micro parameters is discussed. Best linear unbiased
estimation for micro parameters is described.
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1. Introduction
The linear aggregation problem considered consists of obtaining consistent and
economically meaningful micro economic (from individuals) and macro economic (from
groups of individuals) relationships.

The problem of aggregation over micro units has had a long tradition in the econometric
literature, streching back to the pioneering work of (Theil 1954). (Kloek 1961) used
matrix notation to explain aggregation over one set of individuals. (Misra 1969, Gupta
1970, Moriguchi 1970, Lutjohann 1972, Wu 1973, Akdeniz and Milliken 1975),Akdeniz
and Werner (1999)also utilized matrix notation to study micro and macro economic
relations. Sasaki (1978) has analyzed empirically the aggregation problems.Leeet al.
(1990) considered the problem of 'aggregation bias' defined by the deviation of the macro
parameters from the average of the corresponding micro parameters. In addition to an
aggregation of a real units, one may also distinguish an aggregation of models or
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equations pertaining to a real units. In this regard, one may analyze the impact of a
particular aggregation level of individual units upon the explanatory power of a model or
relationship (see Blommestein and Nijkamp,1986).

In this paper, we considered a more general linear aggregation model by allowing for
collinearity between the explanatory variables. Thus, the analysis is presented in a
framework using generalized inverses of singular matrices. In this case, we obtained a
consistent relationship between the micro and macro parameters.

We are concerned with a comparison of two estimators of the macro parameters (actually,
due to the collinearity, of the structural portion Xγ). One obvious estimate is obtained
directly from the application of ordinary least squares to the macro equation. It is well
known (indeed, because of the specification error above) that the expectation of this
estimate generally differs from the aggregate of the expectation of ordinary least squares
estimates obtained from the micro equations. Therefore, comparing these two estimators
will necessarily involve considerations of bias as well as efficiency. Nevertheless, this is
the comparison which has traditionally been made. In the present study the direct
ordinary least squares estimate (OLSE) of the macro equation is retained, but a rather
different aggregate of the micro estimates is employed. Instead of simply aggregating the
micro estimates, the projection into the space spanned by the macro explanatory variables
is taken.

This paper is organized as follows. The next section describes the general linear
aggregation problem. A comparison of two estimators of the macro parameters is given in
Section 3. The OLSE and weighted least squares estimator (WLSE) of the macro
parameters is compared in Section 4. Homogeneous micro parameters and aggregation
bias are discussed in Section 5. Section 6 describes the best linear unbiased estimation of
micro parameters.

2. The general linear aggregation problem
Let the economic relationship for the i-th economic unit (general disaggregated model) be
given by

iiii uXy   , Ni ,...,2,1 (2.1)
or

 ,;,: iiiii VXyL  Ni ,...,2,1 (2.2)
where iy is a vector of observations on the micro dependent variable; iX is a T×K matrix
of explanatory micro variables; i is a vector of K micro parameters and iu is a
disturbance vector, N is the number of economic units and 0),cov( ji yy for i≠j; iX
and iV ≥ 0 are fixed and known matrices.

By letting
  ,,...,, 21

*  Nyyyy ),...,,( 21
*

NXXXdiagX 

,),...,,( 21
*  N ,),...,,( 21

*  Nuuuu ),...,,( 21
*

NVVVdiagV 
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we can obviously combine our N individual micro relations in the single linear micro
model

**** uXy   (2.3)
or

 ***** ,,: VXyL  (2.4)

The following assumptions are used throughout this paper.
Assumption 1. The matrix iX has rank Kri  and consists of nonstochastic elements.
Assumption 2. 'iu s have zero means, are independent of ),...,,( 21 NXXX i.e.

,0)/( ii XuE ,0)/( ** XuE
ji
ji

for
forV

XXuuE i
jiji 








0
),/( and **** )/( VXuuE 

where *V is block-diagonal matrix, consisting of matrices iV . Define the macro variables





N

i
iyy

1
: and KT

N

i
i JXJXX 



*

1
: (2.5)

as unweighted aggregates of the corresponding micro variables over the N individuals.
For convenience, put





N

i
iVV

1
: , TNT IjJ  , KNK IjJ  (2.6)

where TI is a T×T identity matrix Nj is a N×1 column vector of unit elements and A B
denotes the Kronecker product of the matrices A and B. Then *yJy T and it is clear
that the disagregate model or true linear macro model (derived aggregate model)

*** uJXJy TT   (2.7)
or

 VXJyL T ,,: ** (2.8)
is implied by the micro model

 ***** ,,: VXyL  ,

where .)()(
1

*** VVJVJJuVarJuJVar
N

i
iTTTTT  



Using the aggregate

observations the artificial macro model (aggregate model) can be written as
,uXy   (2.9)

or
 VXyLa ,,  (2.10)

The macro relations in (2.9) generally differ from the true macro relations, implying there
is possible specification error in (2.9). XyE )( can occur. We are trying essentially to
describe the vector **XJT in the best possible way by X . The best description is the
projection of **XJT onto the vector space spanned by the columns of X. The projection
of onto the vector space is

.**

1
 XJXXXXXX Ti

N

i
i





   (2.11)
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where X denotes the Moore-Penrose inverse of X (Styan, 1983)). Akdeniz and Milliken
(1975) has shown that the system of equations relating to  and * , ** XJXXX T


is consistent. We don't need the Moore-Penrose inverse of X to establish the relationship
between the quantities in the micro and macro equations. We can use any generalized
inverse, but we need the Moore-Penrose inverse in Section 3.

Thus the specification error u~ is in the vector space spanned by the columns of X, i.e.,
,)(~ **XJXXIu T

 (2.12)
or

 XXJu T  **~ . (2.13)

The specification error is the vector between **XJT and its projection onto C(X). It is
also called the "Aggregation bias" of u (Green, 1964). Where C(X) denotes the column
space of X. Direct estimation of aggregate model parameters generates in general
aggregation bias.

The macro disturbance vector will be equal to 


N

i
iu

1

*uJT only if the “perfect

aggregation” condition 0: **   XXJH T is satisfied (Pesaranet al. 1989). Hence
the macro disturbance vector u is expressed as follows:

*~ uJuu T (2.14)
or

** uJSu T  (2.15)

Where ,: * XPXJS T  *: XJXP T
 (Wu,1973; Terzi, 2009).S is a T×KN matrix of

least squares residuals and P is a K×KN matrix of least squares "auxiliary regression"
coefficients. The estimated auxiliary equation for the i-th micro unit is written in the form
(Kloek,1961):

iii WXBX  (2.16)

where ii XXB : and .)(: ii XXXIW  Thus we have 



N

i
i

N

i
i

N

i
i WBXXX

111

and
1

,
N

i
i

B X X



1

0
N

i
i

W


 .

Therefore, (2.14) is expressed as follows:

.
11




N

i
ii

N

i
i uWu  (2.17)

The aggregation procedure complicates the structure of macro errors. In equation (2.15)
there are two terms; the first term is the linear combination of all micro coefficients,
weighted by components of the S matrix, and the second term is the sum of
corresponding micro errors (Wu,1973; Maddala, 1977). When the macro relation is
specified as the regression model (2.9), the macro parameter  is implicitly defined as a
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vector of constants independent of X (Lutjohann (1972)). For full rank model  is
defined as a mathematical expectation of its least squares estimator (OLSE) (see Kloek,
1961). For less than full rank model X is defined as the expectation of the least squares
estimates when y is regressed on X .i.e.,

),/ˆ()/( ** XXEXyXXEX    (2.18)
where yX ̂ is the OLSE of  from (2.9). It can be shown that (2.11) and (2.18) are
equivalent.

3. Comparison of two estimators of the macro parameters

By using the relationship * *
TX XX J X  between  and * one can obtain two

estimators of .X Therefore, we consider X here rather than  , since we don't assume
that X necessarily has full column rank. Many widespread uses of the linear model

uXy   are such that  can not be estimated uniquely. But linear combinations of
elements of X can be estimated uniquely. Confining attention to estimating X
therefore avoid that lack of uniqueness.

The least squares estimator, to be denoted OLSE( X ) is
yXXXOLSEX  )(ˆˆ1  . (3.1)

But another estimator exists by using the relationship .** XJXXX T
 Let **bX be

the vector of least squares estimate of the micro parameters obtained from (2.1). Then the
other unbiased estimate of X is

.ˆ **
2 bXJXXXb T

 (3.2)

The expectation of Xb is
 XXPXJXXXXbE T   **** )/( , (3.3)

* * * *( / ) / .TE Xb X E XX J X b X    (3.4)

Thus we have two unbiased estimators of X , 1̂ and 2̂ . These two estimators will, in
general, not identical. The problem of equality 1̂ = 2̂ is discussed in the following
theorem.

THEOREM 3.1. The two estimators of X , 1̂ and 2̂ are equal if and only if
)()( iXCXC  (3.5)

for Ni ,...,2,1 , where )( iXC denotes the column space of iX .

Proof of necessity: Let 1̂ = 2̂ . Observe that the two estimators under study can be
expressed in terms of micro dependent variable as *

1ˆ yJXX T
 and

.ˆ ***
2 yXXJXX T

 Letting H:= XX and  *** : XXH , we therefore get

1̂ - 2̂ = ** )( yHIHJ TT  (3.6)
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Consequently, 1̂ = 2̂ if and only if ** )( yHIHJ TT  = 0 for all *y or equivalently,
0)( *  HIHJ TT

The latter happens if and only if we have NiXHXH ii ,...,2,1,   . Premultiplying
 ii XHXH by X  gives  ii XXXX or XXXX ii

 and therefore
)()( iXCXC  for each i completing the proof on necessity.

Proof of sufficiency: To that end, let (3.5) hold true for each Ni ,...,2,1 . Then there
exist matrices iA ( ),...,2,1 Ni  such that

ii

N

j
j AXXX 

1
. (3.7)

The matrix product )( *HIHJ TT  can then be expressed as

 )(),...,(),...,( 11
  NNii XXIXXXIXXXIXX =

 )(),...,(),...,( 1111
  NNNNiiii XXIXAXXIXAXXIXAX = 0.

Thus 0)( *  HIHJT implies that 0)( **  yHIHJT which implies that

1̂ = 2̂ .

The experimental situations where these two estimators are identical will be the exception
rather than the rule, thus we wish to determine which of the two estimators is better when
they are not equal. To do that we examine the covariance structure of each estimator to
determine which estimator has the smaller variance. The following Theorem describes
this relationship.

THEOREM 3.2. The variances of the components of 2̂ are smaller than or equal to the
corresponding variances of the components of 1̂ , thus 2̂ is the better of the two
estimators.

Proof. The proof consists of deriving the dispersion matrices of 1̂ and 2̂ and then
examining the diagonal elements of the difference of the two dispersion matrices. The
dispersion matrix of 1̂ is denoted by Σ1 and is defined as








   
 


N

i

N

i
iiii XXXXXXXXE

1 1
1 )ˆ)(ˆ(  ,

= )ˆ)(ˆ(   XXXXE

= ))((    XyXXXyXXE

=   XXuuEXX )( . (3.8)

( )HE uu H 
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We use the expression for u given in (2.15) to evaluate )( uuE  as
*( ) T TE uu J V J MRR M     (3.9)

where  XXIM : and **: XJR T . Thus replacing )( uuE  by (3.9), Σ1 becomes
*

1 ( )T TH J V J MRR M H     

HJVHJ TT  *

HHVHVH
N

i
i  



)(
1

(3.10)

The dispersion matrix of Xb2̂ is








  







N

i
ii

N

i
ii XXXXbXXXXbE

11
2 )()( 

=  ))((   XXbXXb

 ))(( ****   XbXHJXbXHJE TT

  )())(( ********  TT HJXbXXbXEHJ 

= * * *
T THJ H V H J H  . (3.11)

To compare the two estimators, we examine 1 2 
* * * *

1 2 ( )( )T THJ V H V H HJ    
= ( )T THJ Q HJ  (3.12)

where Q  * * * *( )V H V H  * * * * * *V X X V X X   is block-diagonal matrix, consisting
of matrices i i i i i iV X X V X X  .

We assumed that each iV is positive definite, thus *V is also positive definite. To
substantiate the theorem, it is sufficient to show that the matrix Q is nonnegative. As *V
is positive definite there exists a non singular matrix  such that *V    or that

1 * 1 .V I    The matrix Q can be expressed as
1 1( ( )( ))Q I H H           . (3.13)

Thus it is sufficient to show I N N is nonnegative, where 1.N H    But 2H H and
2 ,N N hence the characteristic roots of N are either +1 or 0 as are the characteristic

roots of .N N The matrix N N is nonnegative, thus there exists an orthogonal matrix 
such that N N D    where D has the characteristic roots of N N on the diagonal,
i.e.,

0
0 0
I

D
 
  
 

.
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Hence
0 0

( )
0

I N N I N N I D
I

              
 

Thus I N N has characteristic roots of +1 and 0, which implies I N N is idempotent
and hence a nonnegative matrix. This means that Q is a nonnegative matrix and thus

1 2   ( )T THJ Q HJ  (3.14)
is also a nonnegative matrix. The matrix 1 2  being nonnegative implies that its
diagonal elements are greater than or equal to zero, thus the variance of each component
of 1̂ ˆX  is greater than or equal to the variance of the corresponding component
of 2ˆ Xb  . That completes the proof.

4. Comparison of OLSE and WLSE of the macro parameters
In model (2.9), X  is defined as a mathematical expectation of its weighted least squares
estimator (WLSE)

  ),/~(/)( **11 XXEXyVXXVXXEX    (4.1)
where yVXXVXXX 11 )(~   and  ))))(((  EuuuEuEV . The aggregation
problems which arise from the use of macro equation (2.9) instead of the micro equations
(2.1). The macro relations in (2.9) are generally different from the true macro relations in
(2.7). The ''aggregate'' method presumably involves a specification error in (2.9).
Essentially we are trying to describe the vector **XJT in the best possible way by X
weighted by the respective covariance matrices. This best description is the projection of

**XJT onto the vector space spanned by the columns of X. The projection of
**XJT onto the vector space weighted by V is
X **11 )( XJVXXVXX T

  (4.2)
*** XJP T ,

where 11* )(   VXXVXXP is the orthogonal projector onto C(X), which is unique for
any choice of the generalized inverse involved in (4.1) (Rao,1973)). It is shown that
equations (4.1) and (4.2) are equivalent.

Thus the specification error 0u is in the vector space orthogonal to the vector space
spanned by the columns of a matrix X, i.e.,

***0 )( XJPIu T (4.3)

Considering (2.7), (2.9) and (4.3) then the macro disturbance vector u can be written as
0* uuJu T  ,

 *uJT
*** )( XJPI T . (4.4)

By utilizing the relationship between  and * two estimators of X can be obtained.
The WLSE of X from (2.9) is

,)(~)( 11 yVXXVXXXXWLSE    (4.5)
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so that X is uniquely determined. But another estimator exists by utilizing the
relationship

X *** XJP T . (4.6)
Let *~ be the vector of WLSE of the micro parameters obtained from (2.4), then an
estimate of X is

*Xb *** ~XJP T (4.7)

where * *X   .)( *1***1*** yVXXVXX  The expectation of *Xb is
.)/( ** XXXbE  . (4.8)

THEOREM 4.1. The variances of the components of ~X are greater than or equal to the
corresponding variances of the components of *Xb , thus *Xb is the better of the two
estimators.

Proof. The proof consists of deriving the dispersion matrices of ~X and *Xb and then
examining the diagonal elements of the difference of the two dispersion matrices.

The dispersion matrix of ~X is denoted by 1W and is defined to be

 1 ( ( )( ( ) .W E X E X X E X          (4.9)

The equation (4.4) is then used to evaluate (4.9). The expectation of ~X is
 *11* /)()/~( XyVXXVXXEXXE  

)(* uEPX  
)/()( ****** XuEPJXJPIPX TT  

X , (4.10)
where 0)( **  PIP and 0)/( ** XuE . Then

* *
1 ( )( )W P E uu P  (4.11)

where TT JVJPIRRPIuuE  *** )()()( and **: XJR T as before. Thus 1W
becomes

* * * * *
1 ( ) ( ) ( )TW P I P RR I P J V J P        
   .)()( *****  PVPPJVJP T

The dispersion matrix of *Xb is
* *

2 ( )( )W E Xb X Xb X      
)~)(~( ************   XJPXJPXJPXJPE TTTT

)()( ***1****   XJPXVXXJP TT . (4.12)

To compare the two estimators, we examine 1 2W W or

1 2W W  * * * * * 1 * * *( ) ( )T TP J V X X V X X P J      . (4.13)
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In order to substantiate the theorem, it is sufficient to show that 1 2W W is a n.n.d. matrix.

Since *V is p.d. it can be written as *V :=FF′, where F is a nonsingular matrix. Thus
(4.13) becomes

* *
1 2 ( ) ( )T TW W P J F M P J F   , (4.14)

Where M:=I-B(B′B)+B′ and .: *1 XFB  It is well known that M is n.n.d., then M can be
written as M :=CC′. Thus

* *
1 2 ( )( )T TW W P J FC P J FC   (4.15)

is n.n.d. matrix. This completes the proof. Thus above theorem implies that the better
estimator of the macro relations is via the consistent equation expressing the relationship
between  and * .

5. Homogeneous micro parameters and aggregation bias

The problem of 'aggregation bias', as originally discussed by Theil (I954) is defined in
terms of the deviations of macro parameters from the averages of the corresponding
micro parameters. Theil (1971) discusses the nature of aggregation bias in estimating a
linear model with aggregate data to make macro inferences when the micro models are
linear. Lee, Pesaran and Pierse (1990) develop direct tests of aggregation bias in contrast
to the indirect test proposed by Zellner (1962) which tests the hypothesis that all the
disaggregated coefficients are equal. Offutt (1988) performed two tests to investigate the
hypothesis of aggregation bias for the random coefficient model. Pieraccini (2005) shows
that direct estimation of the aggregate model leads in general to aggregation bias and that
even in presence of perfect aggregation the disaggregate model is to be preferred.
Monteforte (2007) assess the existence and characteristics of the aggregation error in
estimated macroeconometric models. It should be recalled that for any macro parameter
the aggregation bias due to any micro parameter is absent when all micro parameters are
equal among micro units. Suppose the null hypothesis that all micro parameters are equal
among micro units is tested.

It should be noted that the homogeneity of micro regression coefficients is not a
necessary condition but a sufficient condition for the absence of aggregation bias. Hence,
the rejection the hypothesis of homogeneity does not necessarily mean the presence of
aggregation bias (Sasaki,1978). Zellner (1962) developed the two alternative methods for
test of homogeneity of micro regression coefficients.

5.1. Homogeneity of Micro Parameters
It is possible to establish test of a variety of hypothesis about coefficient vector in (2.2).
Now, if we impose the restriction

*21 ...   N (5.1)
or

0L
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then the system in (2) becomes
*

*
** vZy   (5.2)

where    NN XXXXZ 12
* ... . Different micro-units are characterized by

the same regression coefficient. Pre multiplying of (5.2) by TNT IjJ  we have the
macro relations are:

*y Z v   (5.3)

where *: Ty J y , *: ZJZ T and *:~ vJv T i.e., there is no aggregation bias. It is shown
that yZZZ *̂ is unbiased least squares estimator of *Z . According to the micro
relations the expected value of *̂Z is

 **
*

***
* /))/()/ˆ( ZvJZJZZEZyZZEZZE TT    (5.4)

.***
*  ZZZZZJZZ T  

In this case, the dispersion matrix of *̂Z is

)(**
1  

TT JZZJZZ (5.5)

where ).( *** 
 vvE The least squares estimator of * from (5.2) is any solution of the

normal equations **** ~ yZbZZ   . It is shown that bZ~ is unbiased least squares estimator
of *Z . The dispersion matrix of bZ~ is

****
2 )(   ZZJZZ T )( **  ZZJZZ T (5.6)

Finally, using the Theorm 3.2 one may shows that
 *

2
*
1   )(*

TT JZZJZZ *** )(  ZZJZZ T )( **  ZZJZZ T

   ****** ZZZZJZZ T )( 
TJZZ (5.7)

is nonnegative definite.

6. Best linear unbiased estimation for micro parameters

Fundamental problem is to find the "best" estimate of the parameter vector * in Eq.
(2.3) based on the Nyyy ,...,, 21 . There are many equivalent forms of the best linear
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unbiased estimator of **X in Eq. (2.3), to be denoted )( **XBLUE . When the
dispersion matrix *V is positive definite, then it is well known that

)( **XBLUE * * * 1 * * * 1 * * * *( )X X V X X V y X G y      (6.1)
******** )()( yMMMMHXOLSE  

where 1***1*** )(:  VXXVXXG and  )( *1** XVX is any generalized inverse of

)( *1** XVX  and  *** : XXH , ** : HIM  (Puntanen and Styan,1989; Searle, 1994)

The least squares estimate of * is given by *** yXb  as before. **bX is also a linear
unbiased estimate of **X . On the other hand, using the Eq. (2.6) we have the following
expression ,~***  XJXXX T

 where *X is an estimate of X in model
 VXyLa ,,  . Thus we have the following dispersion matrix of *X
 ))())((( ****

1   XEXXEXED
))(( ****

0
****

0    XJXXyPJXXXJXXyPJXXE TTTT
* * * * * * * * * * *( ) ( )E C u u C C E u u C C V C       (6.2)

where 1***1****
0 )(:  VXXVXXP , * *

0: TC XX J P and .***
0 XXP  The dispersion

matrix of **bXJXX T
 is given by
 ))()(( ********

2  
TT JXXXbXXbXJXXED 

)()( *****   XXJXXVXXJXX TT (6.3)

Since ** ~X is BLUE of **X we conclude that
 12 DD   )()()( ****1******   XXJXXXXVXXVXXJXX TT (6.4)

is nonnegative definite matrix by Theorem 4.1. Following Puntanen et al. (2000) we will
state the following Theorem 6.1.

THEOREM 6.1 Let V be p×p a nonnegative definite and symmetric matrix. Moreover,
let A be a p×p symmetric idempotent matrix of rank r ≤ p. Then Σ=V-AVA′ =V-AVA is
nonnegative definite if and only if

AV(I-A′)=0. (6.5)

Proof. Let [T: U] be a block-partitioned orthogonal matrix such that the columns of T and
U constitute a basis for the range of A and I-A, respectively. Then we have V-AVA′ ≥ 0 if
and only if












U
T

(V- AVA′)  UT : ≥0 (6.6)

Since T′(V-AVA′)T = 0,    T′(V-AVA′)U = T′VU,      U′(V-AVA′)T = U′VT, and
U′(V-AVA′)U=U′VU, (6.6) reduces to

0
0.

T VU
U VT U VU

 
   

(6.7)
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Evidently, the matrix (6.7) and so V-AVA′ is nonnegative definite if and only if
0T VU  . The latter is equivalent to (6.5), and so the proof is complete.

THEOREM 6.2. Under the Gauss-Markov model (2.4),  ***** ,,: VXyL  ,
)( *** XBLUEyG  for all ):( ** VXCy if and only if the following conditions

a) *yG is unbiased., i.e., .** XXG 
b) KXVGXCVGC **** ).,()(  for some K

hold along with any one of the following two conditions:
c1) GVVG ** 
c2) Using the dispersion matrices we have the following Lowner partial ordering:

)()( ** yDyGD  i.e., GVGV **  is n.n.d. (see Baksalary and Puntanen, 1990).

Proof: Using the Theorem 6.1 we get the following results for model
 ***** ,,: VXyL  .

a)  *yG *1***1*** )( yVXXVXX  is unbiased estimator of **X i.e., .** XXG 

We know that **1***1*** )( XXVXXVXX 
 (see Rao, 1973), thus we

get .** XXG 
b) ;)( **1***1**** KXVVXXVXXVG   where **1** )(  XXVXK . Thus we

have ).()( ** XCVGC 

c1) **1***1***1***1**** )()(   XXVXXVVVVXXVXXVG , we have
GVVG **  .

c2) )()( ** yDyGD L i.e., GVGV **  is n.n.d. It is seen that
**1***1**1***1****** )()(  XXVXXVVVXXVXXVGVGV rr

**1**** )(  XXVXXV r

is n.n.d. by Theorem 4.1, where is 
rXVX )( *1** reflexive generalized inverse of

*1** XVX  . On the other hand, since G is idempotent matrix, then using the Theorem
6.1 GVGV **  is n.n.d. if and only if *( ) 0.G V I G   It is seen that

*G V  **1*** )(  XXVXX r
* .G V G

7.  Conclusions
In this paper our primary concern has been with the problem of choice between macro
and micro regression equations for the purpose of predicting macro variables. We are
concerned with a comparison of two estimators of the macro parameters (actually, due to
the collinearity, of the structural portion )X . We consider X rather than  , since we
do not assume that X necessarily has full column rank. The analysis is presented in a
framework utilizing generalized inverses. The OLSE and WLSE estimates of the macro
parameters is compared. Homogeneity of micro parameters is discussed. Best linear
unbiased estimation for micro parameters is described.
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