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Abstract
We illustrate with examples when and how maximum likelihood estimators continue to be asymptotically
efficient even under misspecified models. Also, we provide a necessary and sufficient condition under
which a subset of the vector of MLE's retains its asymptotic efficiency under misspecified models even
though the MLE itself is not fully asymptotic efficient.

1.Introduction
Maximum likelihood based procedures are quite predominant in classical statistical
inference. Their justification is primarily asymptotic, the two key features being
consistency and asymptotic efficiency under some specified model. However, these
properties may not hold if the model is misspecified.

White (1982), in a very influential article, has laid down sufficient conditions which
ensures consistency and asymptotic normality of the MLE's under the assumed model.
His result also shows that the variance-covariance matrix of this asymptotic distribution
is the inverse of the Godambe (1960) information matrix, popularly known as the
"sandwich information matrix" under the "actual" model. However, except in very trivial
situations, the inverse of the observed information matrix converges in probability to a
matrix which is different from the inverse of the sandwich information matrix. Also, in
many situations, the former is smaller than the latter (in the sense that the difference is
negative definite). As we will see later in Section 2, in such cases, a confidence ellipsoid
for a parameter of interest centered at the MLE and scaled by the inverse of the square
root of the observed information matrix may fall short of the target coverage probability.

The situation is not averted by any Bayesian approach. The classical result of Bernstein
and von Mises (Bernstein, 1917) asserts that under an assumed model with modest
regularity assumptions, the posterior is asymptotically normal centered at the MLE or the
posterior mode, and its asymptotic variance-covariance matrix is the inverse of the
observed Fisher information matrix. Thus, the non-optimality of the MLE under a
misspecified model, carries over to any asymptotics based on the posterior.
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In Section 2 of this note, we illustrate with examples when and how the observed
information matrix converges in probability to the sandwich information matrix. In
Section 3, we show that even when this convergence does not hold, a subset of the
inverse of the observed information matrix converges in probability to the corresponding
component of the inverse of the sandwich information matrix. Thus, the corresponding
subset of the MLE retains its asymptotic efficiency.

2.  Asymptotic Efficiency of the Misspecified Models

Suppose that 1, , |nx x  are iid with a common working pdf ( | )f x  which need not be
the same as the actual pdf ( | ).g x  It is assumed that both models are characterized by a
common real-or vector-valued parameter , where  may or may not have the same
interpretation under the two models.

To see an example where  has the same interpretation under two models, suppose f is
the ( ,1)N  pdf while ( | ) = ( ),g x g x  where ( ) = ( )g x g x and ( ) = 1,g x dx that is

g is a general symmetric location family pdf. On the other hand, if f is the 2( , )N  
distribution, while 1( | , ) = (( ) / ),g x g x      where ( ) = ( )g x g x , then both f and
g have the same location parameter , but the variances usually differ depending on the
form f and g .

Following White (1982), we assume that the score function /fl   , where

1
= log ( | )

n

f il f x  is an unbiased estimating function even under the pdf g , i.e.

[ log / ] = 0.gE f   This is a basic requirement without which n̂ , the MLE of  under
f , will be an inconsistent estimator of  under g . Under this basic assuumption and

added regularity conditions, White (1982) proved the consistency of n̂ as an estimator of
 under the model g . With these regularity conditions, he proved also an asymptotic

normality result, namely, 1 1ˆ( ) (0, )
dg

nn N B AB     where
2 log= ( )g T

fB E
 


 

and

log log= [( )( ) ].T
g

f fA E
 

 
 

1BA B is usually referred to as the sandwich information

matrix. The key point to note here is that 1 1 1B AB B   unless =A B .

The observed information matrix, under modest regularity assumptions, converges to B
rather than 1BA B . Thus, in general, the MLE loses its asymptotic efficiency under
misspecified models. There are instances though when =A B even when f and g are
distinct. To see this, consider a simple example given in White (1982). Suppose f is the

2( , )N   pdf, Then writing = ( , )T   , 2log = ( ) /f x  






,
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1 2 3log = ( ) /f x  



  


,

2
2

2

log = 1/f 






,

2
3log = 2( ) /f x  

 


 
 

,

2
2 2 4

2

log = 1/ 3( ) /f x  



 


. Thus for any pdf with mean  and variance 2 ,

log log[ ] = 0 = [ ]g g
f fE E
 

 
 

. Also, 2= (1,2)B Diag  and

3
2 3

3 4
3 4

1 /
=

/ / 1
A

 


   
  
 

 
. This leads to 1 2= (1,1/ 2)B Diag and

3
1 1 2 3

3
3 2

1 / (2 )
=

/ (2 ) (1/ 4)( 2)
B AB

 

  

   
 

 
. Then for any distribution with skewness

coefficient 0 and kurtosis 4
2 4= / 3 = 0    , the MLE's of  and  based on the

normal model are asymptotically efficient.

To see a concrete example (communicated by A.M. Kagan), suppose first that X and Y
are independent, each symmetric about zero. Also, let their variances be 1 and fourth
moments 2 and 4. We define =Z X Y . Then Z is symmetric about zero with

( ) = 2V Z and 4 4 4 2 2( ) = ( ) ( ) 6 ( ) ( ) = 12E Z E X E Y E X E Y  . Clearly, the skewness
coefficient 0 and kurtosis 2= 12 / 2 3 = 0 . Defining = ( ) /W Z   , W has a
distribution belonging to the location-scale family which is symmetric about  , variance

2 , 3 = 0 and 4
4 / 3 = 0   .

However, the equality =B A is rarely achieved. In the example cited above, the pdf g
may still have mean  and variance 2 . But at least, one of the two conditions 3 = 0
and 4

4 = 3  fails. Then A B but the upper left hand element of 1 1B AB  agrees with
that of 1B . In other words the sample mean continues to be asymptotically efficient, but
the sample variance is not.

Let 1 1=G B AB  . Consider now the situation when 3 = 0 2 > 0 . Then 1>B G in the
sense that 1B G is positive definite. Then

2 1 2
2; 2;

ˆ ˆ ˆ ˆ[ ( ) ( ) ] < [ ( ) ( ) ],T T
g n n g n nP n B P n G                (1)

where 2
2; is the upper 100 % point of a chisquare distribution with 2 degrees of

freedom. Now the usual confidence ellipsoid under the assumed f is given by
2
2;

ˆ ˆˆ= { : ( ) ( ) },f T
n n n nC n I         where n̂I is the observed Fisher information. Note

that ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( ) 0
Pg

T T
n n n n nn I n B             as n . Also, writing

1 1ˆ ˆˆ=n n n nG I A I  , where ˆ=

log logˆ = ( )( ) |T
n

n

f fA
  

 
 

, one gets

1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0.
Pg

T T
n n n n nn G n G              Since the right hand side of (1)
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converges to 1  as n , it follows that the asymptotic coverage probability of
( )f

g nP C under g less than or equal to 1  . Thus in this example, inference based on the
observed Fisher information matrix under the assumed model f falls short of the target
coverage probability under the actual model g . In contrast, inference for  based on the
MLE under f , is asymptotically valid even under g . The next section of this paper
provides a theorem which ensures the above partial asymptotic efficiency in a general
framework.

3.  Asymptotic Partial Efficiency

Suppose now 1= ( ,T  2 ) .T T We have noted that the MLE of  under the working model

f does not achieve asymptotic efficiency unless
2 log= ( )g T

fB E
 


 

equals

log log= [( )( ) ].T
g

f fA E
 

 
 

However, it is still possible that the MLE of 1, say, 1̂n

under f is an asymptotically efficient estimator of 1 under g . The following matrix
result provides a necessary and sufficient condition to ensure this.

To this end, we partition 11 12

21 22

= ,
A A

A
A A
 
 
 

11 12

21 22

=
B B

B
B B
 
 
 

and
11 12

1

21 22
= .

B B
B

B B

 
  
 

Write

11 121 1

21 22

= =
G G

G B AB
G G

   
 
 

. We also denote 2[( / ) / ]T
gE f f    by C and partition

11 12

21 22

=
C C

C
C C
 
 
 

. We are interested in knowing when 11
11 = .G B The following theorem

provides answer to this question.

Theorem 11 11
11 =G B if and only if

1 1 1 1
11 12 22 21 12 22 21 12 22 22 22 21 = 0.C B B C C B B B B C B B      (2)

Also, if the LHS of the equation (2) is positive definite, then 11
11 >G B in the sense that

11
11G B is positive definite and if the LHS of the equation (2) is negative definite, then

11
11 <G B in the sense that 11

11G B is negative definite.

Proof. We first show that
11 1 1 1 1 11

11 11 12 22 21 12 22 21 12 22 22 22 21= ( ) .G B A B B A A B B B B A B B B      (3)



Asymptotic Efficiency of Maximum Likelihood EstimatorsUnder Misspecified Models

Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp537-542 541

We write
11 12 11 12

11 12

21 2122 2221 22

11 1211 12 11 12
11 21 12 22

21 22 21 22 21 22
11 21 12 22

=

= .

B B B BA A
G

A AB B B B

B BB A B A B A B A
B A B A B A B A B B

    
    

       
   
        

(4)

It follows from (4) that
11 11 12 11 11 21 12 21

11 11 21 12 22= .G B A B B A B B A B B A B   (5)

(5) can be written as
11 11 1 12 21 11 1 11 1 12 21 11 1 11

11 11 21 12 22= ( ( ) ( ) ( ) ( ) ) .G B A B B A A B B B B A B B B      (6)

It follows from Exercise 2.7, p.33 of Rao (1973) that 12 11 1
12 22=B B B B so that

11 1 12 1
12 22( ) = .B B B B  Hence, from (6), one gets

11 1 1 1 1 11
11 11 12 22 21 12 22 21 12 22 22 22 21= ( ) .G B A B B A A B B B B A B B B      (7)

Now, owing to the fact that
2 2log log log= ( ) / ( )( )T

T T

f f f ff
     
 
  
     

, =B C A  .

Substituting 11 11 11=A B C , 12 12 12=A B C , 21 21 21=A B C , and 22 22 22=A B C into (7),
one gets

11 1 1 1 1 1 11
11 11 12 22 21 12 22 21 12 22 22 22 21 11 12 22 21

11 1 1 1 1 11
11 12 22 21 12 22 21 12 22 22 22 21 11.2

= ( )

= ( ) ,

G B C B B C C B B B B C B B B B B B B
B C B B C C B B B B C B B B B

    

   

    

   
(8)

where 1
11.2 11 12 22 21=B B B B B . Noting that 11 1

11.2=B B ,
11 11 1 1 1 1 11 11

11 11 12 22 21 12 22 21 12 22 22 22 21 11.2
11 1 1 1 1 11

11 12 22 21 12 22 21 12 22 22 22 21

= ( )

= ( ) .

G B B C B B C C B B B B C B B B B B
B C B B C C B B B B C B B B

   

   

     

  

The proof is complete.

We illustrate this theorem with the normal pdf f and a location scale family pdf g
which is slightly modified from the one in the Section 2 in that now we assume

( ) = 0xg x dx , and 2 ( ) = 1x g x dx . Then g has the location parameter  and the

variance 2 . Let = ( , )T   . From the calculations in Section 2,
log log[ ] = 0 = [ ]g g

f fE E
 

 
 

and 2= (1,2)B Diag  . It follows that ˆ ˆ ˆ= ( , )n   from f

is consistent. To obtain 11C , we proceed calculating
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2
4 2 2[( ) / ] = [( ) ] = 0g gT

fE f E x  
 

 
 

 
. The necessary and sufficient condition for

11
11 =G B in Theorem 1 is satisfied.

Simple modification of Theorem 1 gives 22
22 =G B if and only if

1 1 1 1
22 21 11 12 21 11 12 21 11 11 11 12 = 0.C B B C C B B B B C B B      (9)

Also, if the LHS of the equation (9) is positive definite, then 22
22 >G B . Instead if

(9) is negative definite, then 22
22 <G B . Since

2
6 4 2 2 4

22 4= [( ) / ] = [( ) ] 3 = ( / 3)g gT

fC E f E x     
 

  
  

 
, 22

22 =G B if and only

if the kurtosis of g is 0. Suppose g is a double exponential pdf given by
1 1( | , ) = (( ) / ) = ( 2 ) exp( 2 | | / ),g x g x x           (10)

for which ( ) = 0xg x dx and 2 ( ) = 1x g x dx . From previous results, we know that the
asymptotic variance for ̂ equals the upper left hand element of the inverse of the Fisher
information matrix based on f . Also, since the double exponential pdf has kurtosis 3, the
asymptotic variance for ̂ is not equal to the lower right hand element of the inverse of
the Fisher information matrix. The former is greater then the latter.

4.  Summary and Conclusion
The present article illustrates when and how the MLE remains asymptotically efficient
under a misspecified model. It provides also a necessary and sufficient condition under
which a principal submatrix of the inverse of the observed information matrix converges
in probability to the corresponding component of the inverse of the sandwich information
matrix when the model is misspecified.
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