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Abstract
Ranked set sampling is an alternative to simple random sampling that has been shown to outperform simple
random sampling in many situations by reducing the variance of an estimator, thereby providing the same
accuracy with a smaller sample size than is needed in simple random sampling. Ranked set sampling
involves preliminary ranking of potential sample units on the variable of interest using judgment or an
auxiliary variable to aid in sample selection. Ranked set sampling prescribes the number of units from each
rank order to be measured.

Balanced ranked set sampling assigns equal numbers of sample units to each rank order. Unbalanced
ranked set sampling allows unequal allocation to the various ranks, but this allocation may be sensitive to
the quality of information available to do the allocation.  In this paper we use a simulation study to conduct
a sensitivity analysis of optimal allocation of sample units to each of the order statistics in unbalanced
ranked set sampling. Our motivating example comes from the National Survey of Families and
Households.

Keywords: Optimal Allocation, Sensitivity Analysis, Simulation Study, Unbalanced
Ranked Set Sampling.

1.  Introduction
Ranked set sampling (RSS), originally proposed by McIntyre (1952), is an alternative
method of sample selection that has been shown to improve on simple random sampling
(SRS). RSS uses judgment ranking of the characteristic of interest to improve estimation
of a population parameter. For a general introduction to RSS, see Wolfe (2004).
Theoretical results have shown that in many settings RSS estimators are unbiased with
precisions at least as small as those of the corresponding SRS estimators (see, for
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example, Patil, 1995). The improvement in RSS over SRS is especially evident in
situations where the sample units can be easily ranked but actual measurement of units is
costly in time and/or effort. In this section, we provide background information on
balanced and unbalanced RSS.

1.1 Balanced RSS
The most basic version of RSS is balanced RSS. In this setting, each judgment order
statistic is allotted the same number of sample units. Under balanced RSS, we first select
m2 items from the population at random. These items are then randomly divided into m
sets of m units each.  Within each set, we rank the m units according to the characteristic
of interest by judgment or through the use of an auxiliary variable or variables. From the
first set, we select the item with the smallest ranking, X[1], for measurement. From the
second set, we select the item with the second smallest ranking, X[2]. We continue in this
manner until we have ranked the items in the mth set and selected the item with the largest
ranking, X[m]. This complete procedure, called a cycle, is repeated independently k times
to obtain a RSS of size n = mk.  As is evident, a total of m2k items are selected randomly
but only mk units are measured.

Let X[r]i denote the quantified rth judgment order statistic from the ith cycle.  The RSS
estimator of the population mean  is the average of these RSS observations; that is,
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We note that if the X[r]I are binary variables then μ̂ estimates the population proportion.
The RSS estimator, μ̂ , is an unbiased estimator of  and is at least as precise as the SRS
estimator based on the same number of measured observations (see, for example, Dell
and Clutter, 1972; Bohn, 1996; Patil, 2002). There are a number of factors that affect how
much more precise the RSS estimator is than the SRS estimator.  For example, the more
accurate the ranking is within each set, the more precise the RSS estimator will be.  In
cases where the ranking is based on a concomitant or auxiliary variable, Chen et al.
(2005)show that the amount of improvement in the precision of the RSS estimator of a
population proportion is directly related to the correlation between the concomitant
variable and the variable of interest.

1.2 Unbalanced RSS
Another option is that of unbalanced RSS under which possibly different numbers of
each ranked order statistic are selected for measurement. Neyman allocation may be used
to allocate sample units for each order statistic proportionally according to its standard
error. This is the optimal form of unbalanced allocation in that it leads to minimum
variance among the class of all such RSS estimators. Chen et al. (2006) discuss the
general properties of unbalanced RSS and describe the Neyman allocation method for
assigning sampling units to each judgment order statistic when the goal is to estimate a
population proportion. We let nr denote the number of observations allocated to the rth

order statistic. Then, for each r = 1,…,m, we sample nr sets of size m units each from the
population and obtain rankings of the variable of interest within each set as before.
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Instead of measuring equal numbers of the various judgment ordered units, however, we
take nr measurements of the rth judgment order statistic, for r = 1,…,m. The total number

of measured units is then
1

m

r
r

n n


 . Under unbalanced RSS, it is not always the case that

the RSS estimator will have greater precision than the balanced RSS or the SRS
estimator.

In this paper, we examine the sensitivity of unbalanced RSS to departures from optimal
allocation when the goal is to estimate a population proportion. Neyman allocation is
only optimal if the true population proportion is known in advance of performing the
allocation. In practice, of course, we only have an estimate of the population proportion
based on a previous study or an educated guess.  Thus, it is important to know how such
“approximate” Neyman allocation performs. In our study, we vary the sample sizes from
the optimal sample sizes found using Neyman allocation and examine the effect this has
on the standard error of the RSS estimator. We also study the effect of imperfect rankings
on this standard error.

For additional discussion of the use of RSS with binary data, see Lacayoet al. (2002),
Terpstra (2004), Terpstra and Liudahl (2004), Chen et al. (2005, 2007), Terpstra and
Nelson (2005), Terpstra and Miller (2006), and Chen (2007).  Theoretical results for the
sample mean apply immediately to this situation as a sample proportion is simply the
sample mean for binary data. Terpstra and Liudahl (2004) and Chen et al. (2005, 2007)
studied the use of logistic regression based on auxiliary variables that are either readily
available or easy to obtain from potential sampling units to estimate probabilities of
success that are, in turn, used to improve the accuracy of the within-sets ranking process.
This approach can lead to considerable gains in precision of the RSS estimator over the
SRS estimator.  In the simulations for this paper, we use only a single auxiliary variable
to accomplish our within-sets ranking, which is, of course, equivalent to using the
estimated probabilities from a logistic regression model based on only this one auxiliary
variable.

Another issue in RSS is that of perfect versus imperfect rankings.  If rankings are perfect,
the judgment order statistics equal the true order statistics. In the case of a binary
variable, when rankings are perfect we can express the probability of success for each
rank order statistic as a function of the underlying population proportion only.  When the
ranking procedure lies somewhere between random ordering and perfect rankings (that is,
we have imperfect rankings), there is concern as to how well Neyman allocation will
perform.  We study the potential loss of precision in the unbalanced RSS estimator if our
stipulated unbalanced allocation (derived under the assumption of perfect rankings)
deviates from the true optimal allocation.

In section 2, we discuss how we expect the sample allocation to affect the precision of the
estimator. In section 3, we describe the data that we use for our simulation. The
simulation results are discussed in section 4. Section 5 presents conclusions and future
work.
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2.  Departures from Optimal Allocation
In this paper, we address the sensitivity of the estimator of a population proportion to
departures from the optimal allocation in unbalanced RSS. If we knew the true population
proportion, then we would be able to determine the exact Neyman optimal allocation of
the total sample to the various judgment order statistics.  Chen et al. (2006) provide the
following results for determining probabilities of success, p(r), within rank r, r = 1, 2, …m
when the true population proportion is known:
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The function F(  ) in equations (1) and (2) is the c.d.f. for the Binomial(m, p) distribution.
Neyman allocation then specifies the rank order sample sizes as follows:
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We do not know the true population proportion, however, since that is what we wish to
estimate with our sample. Thus, it is necessary to use a rough preliminary estimate of the
population proportion to determine an approximate “optimal” allocation of the sample
units.

We anticipate that there is some flexibility in how close our approximate allocation has to
be to the optimal allocation to still achieve a degree of precision close to that of the RSS
estimator with optimal allocation.  If the precision of the RSS estimator is relatively
insensitive to departures from optimal allocation, then errors in the preliminary rough
estimate of the population proportion used to obtain approximate Neyman allocation
should not result in large increases in the variance of the RSS estimator.

We examine the sensitivity of the standard errors of the RSS estimators to departures
from the optimal allocations through a simulation study. This is accomplished by first
determining the Neyman allocation based on a known population proportion, p, using a
set size of three. Then we use this optimal allocation to simulate the sampling distribution
of the RSS estimator of p.  This provides us with an estimate of the best possible
improvement (over SRS) in precision from RSS. Then we conduct similar simulations
with allocations differing from the optimal Neyman allocation to assess the resulting
effect on the precision of the unbalanced RSS estimators. We estimate the relative
precision of the unbalanced RSS estimator to the balanced RSS estimator by the standard
error of the balanced RSS estimator divided by the standard error of the unbalanced RSS
estimator. A similar relative precision is also used to compare the unbalanced RSS
estimator to the SRS estimator. Plots of the estimated relative precisions of these various
allocations and their associated RSS estimators will be used to evaluate the robustness of
Neyman allocation to misspecification.
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3.  The Data
To make our simulated RSS realistic, we choose a public-use data set, the National
Survey of Families and Households (NSFH), and treat it as our population of interest.
The NSFH was funded by the Center for Population Research of the United States’
National Institute of Child Health and Human Development. The fieldwork was
completed by the Institute for Survey Research at Temple University.  The NSFH data
were collected in three waves using a national probability sample of 13,008 individuals
aged 19 and over (see Sweet, et al., 1988, for a detailed description of the NSFH).  The
sample includes a main, cross-sectional sample of 9,637 households plus an over-
sampling of African Americans, Puerto Ricans, Mexican Americans, single-parent
families, families with step-children, cohabiting couples and recently married persons.
One adult per household was randomly selected as the primary respondent. Several
portions of the main interview were self-administered to facilitate the collection of
sensitive information and to ease the flow of the interview. The average interview lasted
one hour and forty minutes. In addition, a shorter self-administered questionnaire was
given to the spouse or cohabiting partner of the primary respondent.

Respondents were first interviewed between March 1987 and March 1988. They were re-
contacted between 1992 and 1994 for a follow-up interview, and a third interview was
conducted in 2001-2003. A considerable amount of life-history information was
collected, including: the respondent's family living arrangements in childhood, departures
and returns to the parental home, and histories of marriage, cohabitation, education,
fertility, and employment. The design permits the detailed description of past and current
living arrangements and other characteristics and experiences, as well as the analysis of
the consequences of earlier patterns on current states, marital and parenting relationships,
kin contact, and economic and psychological well-being on employment, age, and receipt
of public assistance.

We consider data collected in the first wave of the NSFH as our population so that we
know the population proportions exactly. This permits us to determine the optimal
Neyman allocation in a variety of situations. In practice, estimates of the population
proportion from the first wave of the survey could be used to determine the sample
allocation for follow-up surveys.

4. The Simulation Study
4.1  Perfect Rankings
We discuss the details of our simulation for the case of perfect rankings with set sizes of
m = 3, 4, and 5. A total sample size of two hundred observations was used.  We denote
the sample size allocated to the ith judgment order statistic as ni, i = 1, 2, 3.  For this
setting, we take the NSFH females to be our population of interest and consider the
women’s age as the variable of interest.  We construct three binary variables based on age
range to provide data sets with three different population proportions.  The category of
age over 23 yields a population proportion of p = 0.897, the category of age over 30
yields a population proportion of p = 0.743, and the third category of age over 35 has
associated p = 0.575.  We use the actual age of the respondent as the ranking variable for
p = probability of a given age range.  Thus we guarantee that the rankings are correct.
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Table 1: Optimal Allocation for Various Values of the Population Proportion, p

P %n1 %n2 %n3
0.575 34.5 42.5 23.0
0.743 49.5 37.5 13.0
0.897 69.0 26.0 5.0

Note: % nr = percentage of total sample size allocated to the rth order statistic

Table 1 shows the optimal allocation of the RSS sample found using equation (3) for the
three values of p.  For each different population proportion, there is one judgment order
statistic that is least likely to have a success.  We measure a larger number of
observations from that order statistic so that we have a sufficient number of successes to
accurately estimate the probability of success in that judgment rank.  As the population
proportion p varies, the allocations to the three judgment order statistics change.  We see
from Table 1 that for p close to 0.5 the percentages of the sample allocated to the various
order statistics are similar.  On the other hand, when p is close to 1, a very small portion
of the sample is allocated to the largest judgment order statistic; the majority of the
sample is allocated to the smallest judgment order statistic.

In our simulation study for m = 3, we first select 3 units at random from the NSFH
“population”. We rank these 3 units by some characteristic or auxiliary variable
depending on the situation.  In our case, we want two hundred measured observations in
our unbalanced RSS.  The optimal proportion of the sample allocated to each order
statistic is given in Table 1.  In our simulations, we vary the number allotted to each order
statistic.  First, we vary by one unit out to five units from the optimal allocation and then
we vary by increments of five units out another twenty-five units from optimal allocation.
Within each rank, we calculate the sample proportion of the variable of interest. For
ˆ RSSp , our RSS estimate of the population proportion, p, we simply take the average of

these within-ranks sample proportions. This simulation is repeated 10,000 times to enable
us to estimate the mean and standard error of ˆ RSSp for each possible allocation that we
are considering.  The exact standard error for the SRS estimator, ˆ SRSp , is given by

(1 )ˆ( )SRS
p pSE p

n


 ,

where p is the true population proportion.  Note that in our case, the finite population
correction factor is 0.98 and so it can be omitted from the calculations without changing
the results significantly.

We take a similar approach in our simulation for set sizes m = 4 and 5.  In the figures that

appear in the appendix, we plot ˆ( )
ˆ( )

BalRSS

UnbalRSS

SE p
SE p and ˆ( )

ˆ( )
SRS

UnbalRSS

SE p
SE p .  The

horizontal line at one that appears in graphs corresponds to the sampling methods having
the same standard errors, meaning their performance is the same.  Above this line,
unbalanced RSS yields higher precision and below this line balanced RSS or SRS has
greater precision.

For perfect rankings, Figures 1 – 9 show plots of the relative precision of the unbalanced
RSS estimator to both the balanced RSS estimator and the SRS estimator for set sizes 3,
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4, and 5, with p’s corresponding to the various proportions of women in the three age
groups.  The general shape of the graphs of the relative precision is a parabola.  The lack
of smoothness in the maximum portions of the parabolas is due to simulation error.
(Note the small scale on the axis for the relative precision.)    The top curve (  ) in each
graph shows the relative precision of unbalanced RSS to SRS and the bottom curve (  )
shows the relative precision of unbalanced RSS to balanced RSS.

Figures 1 - 3 display graphs of relative precision for estimating the proportion of females
older than 35, corresponding to p = 0.575, for set sizes m = 3, 4, and 5, respectively.  It is
evident from Figure 1 that when we hold n1 fixed the attained precision of the RSS
estimator remains close to the relative precision under optimal allocation even if we
allow the allocations to the other two ranks to vary by as much as plus or minus ten
observations.  Similarly, when n2 or n3 is held fixed, the allocation to the other two ranks
may change by as much as plus or minus ten observations from the optimal allocation
with only minimal loss of precision for the estimator.  These results suggest that for set
size 3 and p close to 0.5 the number of sample units allocated to each judgment order
statistic does not have to be exactly at the optimal allocation for the precision of the RSS
estimator to remain close to optimal.  From Figures 2 and 3, we see a similar pattern for
set sizes 4 and 5, respectively.  Note that the top curve on the plots (  ) is the relative
precision of unbalanced RSS to SRS.   Chen et al (2006) discuss how unbalanced RSS
significantly outperforms SRS and that is evident from our graphs as well.

Next, we consider females older than 30, corresponding to a population proportion of p =
0.743.  In this case, the first judgment order statistic is assigned almost half the
observations under optimal allocation.  Figures 4 – 6 show the effect that changing the
sample allocations has on the relative precision of the RSS estimator for this value of p
and for set sizes 3, 4, and 5, respectively.  For set size m = 3, holding n1 fixed, we see
from Figure 4 that we can vary the sample allocations to the other two order statistics by
fifteen in either direction and still have nearly optimal precision.   Holding n2 fixed, we
can vary the other two sample allocations from the optimal allocation by plus or minus
twenty observations without much loss in precision.  When we hold n3 fixed, there is
even more flexibility.  We can vary by plus or minus thirty observations without
unbalanced RSS performing worse than balanced RSS.   We see from Figures 5 and 6
that the same pattern also holds for set sizes 4 and 5.

Lastly, we consider females older than 23, corresponding to a population proportion of
p = 0.897.  In this case, optimal allocation assigns 69% of the sample to the first order
statistic.  Figures 7 – 9 show the effect of changing the sample allocations on the relative
precision of the RSS estimator for this value of p and set sizes 3, 4, and 5, respectively.
In this case, due to the heavy skewness of the binomial distribution with p = 0.897,
unbalanced RSS clearly outperforms both balanced RSS and SRS.   For set size m = 3,
holding n1 fixed, we can vary the sample size from the optimal allocation by about thirty
in either direction if possible and still outperform balanced RSS and SRS.   When n2 or n3
is fixed, we see that we can vary from the optimal allocation by thirty observations if
possible without substantial reduction in precision.  The pattern holds for set sizes 4 and 5
as well.
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4.2 Imperfect Rankings
Next, we address the case of imperfect rankings.  In this setting, we use auxiliary
variables for the ranking of units.  Here we look at the proportions of males and females
working: 0.743 and 0.544, respectively.  For both males and females we consider
separately the three possible auxiliary variables, “public assistance”, “age”, and “hours
worked last week” to obtain our RSS rankings. (The public assistance variable is an
indicator of whether or not the respondent’s family received public assistance when the
respondent was a child.) We could, of course, incorporate all three of these auxiliary
variables simultaneously by using a single logistic regression model based on the three
variables to estimate probabilities of success and then use these estimated probabilities to
obtain our within-sets rankings, as proposed in Terpstra and Liudahl (2004) and Chen et
al. (2005, 2007). This would certainly lead to improvement in precision over the three
separate RSS estimators based on one of these auxiliary variables at a time.  One of the
items of interest to us in this paper, however, is the effect of the correlation between a
single ranking variable and the variable of interest on the robustness of the optimal
allocation of sample units in unbalanced RSS.  Thus, we choose to consider each of these
three variables separately in our simulation studies.

We expect that the gain in precision for the unbalanced RSS estimator over the balanced
RSS and SRS estimators will be an increasing function of the absolute magnitude of the
correlation between the variable of interest and the auxiliary variable used to obtain the
RSS rankings.  The relevant Kendall correlations between working (a binary variable)
and the auxiliary variables mentioned above for both females and males are shown in
Table 2.

Table 2: Correlations of Auxiliary Variables with Working

Auxiliary Variable Females Males
Public Assistance 0.039 0.035
Age 0.238 0.319
Number of Hours Worked 0.758 0.597

We again consider sample allocations different from the optimal allocation to each
judgment order statistic to see what effect this has on the standard error of the RSS
estimator of p.

We discuss our findings for the women’s data (the results are similar for the male data
set), for which the proportion of women reporting that they are working is p = 0.544.  The
effect of adjusting sample allocations on the relative precision of the unbalanced RSS
estimator is displayed in Figures 10 – 18 for set sizes 3, 4, and 5.  Once again, the top
curve (  ) is the relative precision of unbalanced RSS to SRS and the bottom curve (  ) is
the relative precision of unbalanced RSS to balanced RSS.

We first consider the case where “public assistance” (correlation of 0.039 with working)
is used for the rankings.  Since this ranking variable is virtually uncorrelated with the
variable of interest, we see from Figures 10 – 12 that the ranking does not improve the
precision of the unbalanced RSS estimator.  In this case, we always do worse with
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unbalanced RSS than with balanced RSS or SRS even with the “optimal allocation”
under perfect rankings.  This phenomenon is common across all three set sizes and
illustrates the danger of using unbalanced RSS when the rankings are not very reliable.
Only balanced RSS guarantees that we will not do worse than SRS.  This leads us to the
conclusion that it is extremely important to have a rough idea of the correlation that the
ranking variable has with the variable of interest before using unbalanced RSS.

Next, consider the case where “age” (correlation 0.238 with working) is used for ranking.
We again look at what happens when we hold the “optimal” sample allocations
associated with each of the judgment order statistics fixed.  The results are displayed in
Figures 13 – 15.  Since the ranking variable is not highly correlated with the variable of
interest, it is not surprising that the precision of the unbalanced RSS estimator is less than
the precision of the balanced RSS or the SRS estimator unless the sample allocations are
nearly optimal.  When we hold n3 fixed, unbalanced RSS does not outperform balanced
RSS. As we vary the sample allocations for the judgment order statistics, both the
balanced RSS and the SRS estimator quickly outperform the unbalanced RSS estimator
with non-optimal sample allocations.  This general pattern also holds as we increase the
set size.  With weak correlation, it is difficult for unbalanced RSS to outperform balanced
RSS and SRS for larger set sizes due at least partly to the fact that there are more units
that can be ranked incorrectly as we increase the set size.

Finally, consider the ranking variable “hours worked last week”, which has correlation
0.758 with the variable of interest.  When we vary the sample allocations to each
judgment order statistic for this setting, we see from Figures 16 – 18 that there is
substantial improvement in precision with the unbalanced RSS estimator in comparison
to that from balanced RSS and SRS.  It is interesting to note that balanced RSS and SRS
out performs unbalanced RSS only when there is a small number of observations in one
of the order statistics.  It is necessary to depart from optimal allocation by more than
twenty in a given order statistic for the precision of the unbalanced RSS estimator to be
worse than that of the balanced RSS and the SRS estimators when we hold n1 or n2 fixed.
When we hold n3 fixed, we can vary from optimal allocation by thirty and still have
unbalanced RSS perform better than either balanced RSS and SRS. A similar pattern
holds for set sizes 4 and 5.

In a few settings when we deviate from optimal allocation a problem occurs when the
sample size for one of the judgment order statistics gets too small.  In these cases, we
quickly do worse with overly unbalanced RSS than with balanced RSS or SRS, since it is
necessary even in unbalanced RSS to sample a minimal number of units from each of the
judgment order statistics to effectively estimate a population proportion.

5.  Conclusions and Further Work
In this paper, we have studied the sensitivity of unbalanced RSS estimators to deviations
from the optimal allocation of the sample to the judgment order statistics.  We concluded
that under perfect rankings the optimal allocation is not crucial to insure that the
unbalanced RSS estimator has greater precision than both the balanced RSS and the SRS
estimators.  In the case where we have imperfect rankings, however, there is not as much
flexibility in departing from the optimal allocation of the sample. When the correlation
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between the ranking variable and the variable of interest is low, deviating too far from the
optimal allocation results in the unbalanced RSS estimator being worse than both the
balanced RSS and the SRS estimators.  As this correlation increases to 0.5 and above, we
once again have considerable flexibility in how the sample is allocated.  In such settings
even if we differ from the optimal allocation by 10% in one of the judgment order
statistics, the unbalanced RSS estimator still has greater precision than both the balanced
RSS and the SRS estimators.

In this paper we considered set sizes three, four, and five.  We did this because no clear
pattern emerged for set size two.  We note, of course, that as the set size increases the
probability of imperfect rankings also increases in any practical setting.  The other point
to make is that if the overall sample size stays the same and the set size increases, then
the number of units in each rank decreases, which provides less flexibility in our rank
allocations.

We were concerned with how much flexibility we have in varying the sample allocation
under unbalanced RSS and still improving on the balanced RSS and SRS estimators.  We
showed that in most cases, unbalanced RSS outperforms balanced RSS and SRS even if
we are not using optimal allocation of the sample units.  Clearly, if it is possible to use
optimal allocation then that is the best for minimizing standard error.  It has already been
shown that optimal allocation of unbalanced RSS will do considerably better than
balanced RSS and SRS.  Here we wanted to show that if there was uncertainty about the
proportion p we could still improve on the balanced RSS and SRS estimators using
unbalanced RSS.  This gives us the freedom to use unbalanced RSS even in situations
where there is uncertainty about the likely value of p.
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Appendix of Figures

Figure 1: Relative Precision for Females with age over 35, m = 3, p = 0.575, with Departures
from Optimal Allocation

Note:  The ranking variable here is the continuous variable age.  The optimal allocation is n1 = 69, n2 = 85, and n3 = 46.

(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.

Figure 2: Relative Precision for Females with age over 35, m = 4, p = 0.575, with
Departures from Optimal Allocation

Note:  The ranking variable here is the continuous variable age.  The optimal allocation is n1 = 69, n2 = 71, n3 = 58, and n4 = 26.
(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.
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Figure 3: Relative Precision for Females with age over 35, m = 5, p = 0.575, with
Departures from Optimal Allocation

Note:  The ranking variable here is the continuous variable age.  The optimal allocation is n1 = 30, n2 = 57, n3 = 60, n4 = 39, and n5 = 15.
(  ) denotes the relative precision of unbalanced RSS to SRS.

( ) denotes the relative precision of unbalanced RSS to balanced RSS.

Figure 4: Relative Precision for Females with age over 30, m = 3, p = 0.743, with
Departures from Optimal Allocation

Note:  The ranking variable here is the continuous variable age.  The optimal allocation is n1 = 99, n2 = 75, and n3 = 26.
( ) denotes the relative precision of unbalanced RSS to SRS .
( ) denotes the relative precision of unbalanced RSS to balanced RSS.
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Figure 5: Relative Precision for Females with age over 30, m = 4, p = 0.743, with
Departures from Optimal Allocation

Note:  The ranking variable here is the continuous variable age.  The optimal allocation is n1 = 77, n2 = 74, n3 = 38, and n4 = 11.
(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.

Figure 6: Relative Precision for Females with age over 30, m = 5, p = 0.743, with
Departures from Optimal Allocation

Note:  The ranking variable here is the continuous variable age.  The optimal allocation is n1 = 61, n2 = 70, n3 = 45, n4 = 19, and n5 = 5.
( ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.
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Figure 7: Relative Precision for Females with age over 23, m = 3, p = 0.898, with
Departures from Optimal Allocation

Note:  The ranking variable here is the continuous variable age.  The optimal allocation is n1 = 138, n2 = 52, n3 = 10.
(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.

Figure 8: Relative Precision for Females with age over 23, m = 4, p = 0.898, with
Departures from Optimal Allocation

Note:  The ranking variable here is the continuous variable age.  The optimal allocation is n1 = 122, n2 = 59, n3 = 16, and n4 = 3.
( ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.
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Figure 9: Relative Precision for Females with age over 23, m = 5, p = 0.898, with
Departures from Optimal Allocation

Note:  The ranking variable here is the continuous variable age.  The optimal allocation is n1 = 110, n2 = 63, n3 = 21, n4 = 5, and n5 = 1.
(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.

Figure 10:  Relative Precision for Females Working, m = 3, p = 0.544, with Departures
from Optimal Allocation

Note:  The ranking variable here is “public assistance”, which has correlation of 0.039 with the female working variable.
The optimal allocation assuming perfect rankings is n1 = 63, n2 = 86, and n3 = 51.

(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.
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Figure 11:  Relative Precision for Females Working, m = 4, p = 0.544, with Departures
from Optimal Allocation

Note:  The ranking variable here is “public assistance”, which has correlation of 0.039 with the female working variable.
The optimal allocation assuming perfect rankings is n1 = 40, n2 = 69, n3 = 62, and n4 = 29.

(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.

Figure 12:  Relative Precision for Females Working, m = 5, p = 0.544, with Departures
from Optimal Allocation

Note:  The ranking variable here is “public assistance”, which has correlation of 0.039 with the female working variable.
The optimal allocation assuming perfect rankings is n1 = 26, n2 = 53, n3 = 61, n4 = 42, and n5 = 17.

(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.
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Figure 13:  Relative Precision for Females Working, m = 3, p = 0.544, with Departures
from Optimal Allocation

Note:  The ranking variable here is age, which has correlation of 0.238 with the female working variable.
The optimal allocation assuming perfect rankings is n1 = 63, n2 = 86, and n3 = 51.

(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.

Figure 14:  Relative Precision for Females Working, m = 4, p = 0.544, with Departures
from Optimal Allocation

Note:  The ranking variable here is age, which has correlation of 0.238 with the female working variable.
The optimal allocation assuming perfect rankings is n1 = 40, n2 = 69, n3 = 62, and n4 = 29 .

( ) denotes the relative precision of unbalanced RSS to SRS .

( ) denotes the relative precision of unbalanced RSS to balanced RSS.
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Figure 15:  Relative Precision for Females Working, m = 5, p = 0.544, with Departures
from Optimal Allocation

Note:  The ranking variable here is age, which has correlation of 0.238 with the female working variable.
The optimal allocation assuming perfect rankings is n1 = 26, n2 = 53, n3 = 61, n4 = 42, and n5 = 17.

(  ) denotes the relative precision of unbalanced RSS to SRS .
( ) denotes the relative precision of unbalanced RSS to balanced RSS.

Figure 16:  Relative Precision for Females Working, m = 3, p = 0.544, with Departures
from Optimal Allocation

Note:  The ranking variable here is “Hours Worked Last Week”, which has correlation of 0.758 with the female working variable.
The optimal allocation assuming perfect rankings is n1 = 63, n2 = 86, and n3 = 51.

(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.
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Figure 17:  Relative Precision for Females Working, m = 4, p = 0.544, with Departures
from Optimal Allocation

Note:  The ranking variable here is “Hours Worked Last Week”, which has correlation of 0.758 with the female working variable.
The optimal allocation assuming perfect rankings is n1 = 40, n2 = 69, n3 = 62, and n4 = 29.

( ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.

Figure 18:  Relative Precision for Females Working, m = 5, p = 0.544, with Departures
from Optimal Allocation

Note:  The ranking variable here is “Hours Worked Last Week”, which has correlation of 0.758 with the female working variable.
The optimal allocation assuming perfect rankings is n1 = 26, n2 = 53, n3 = 61, n4 = 42, and n5 = 17.

(  ) denotes the relative precision of unbalanced RSS to SRS.
( ) denotes the relative precision of unbalanced RSS to balanced RSS.


